University Course

EGEE 518
 Digital Signal Processing I

California State University, Fullerton Fall 2008

My Class Notes
Nasser M. Abbasi

Fall 2008

Contents

1 introduction 1
2 Final project 3
3 Study notes 5
3.1 DSP notes 5
4 HWs 9
4.1 HW2 9
4.2 HW3 17
4.3 HW4, Some floating points computation 34
4.4 HW5 45

Chapter 1

introduction

I took this course in Fall 2008 at CSUF to learn more about DSP.
This course was hard. The textbook was not too easy, The instructor Dr Shiva has tremendous experience in this subject, and he would explain some difficult things with examples on the board which helped quite a bit. The final exam was hard, it was 7 questions and I had no time to finish them all. It is a very useful course to take to learn about signal processing.

Instructor is professor Shiva, Mostaf, Dept Chair, EE, CSUF.

Chapter 2

Final project

final project

Chapter 3

Study notes

3.1 DSP notes

For fourier transform in mathematica, use these options

$$
\begin{aligned}
& \ln [8]=\text { FourierTransform }[1, t, s, \text { FourierParameters } \rightarrow\{-1,1\}] \\
& \text { Out[8]= DiracDelta[s] }
\end{aligned}
$$

From Wikipedia. Discrete convolution

$$
\begin{aligned}
& \text { Discrecemondion } \\
& \text { |efilit }
\end{aligned}
$$

$$
\begin{aligned}
& \text { givenb): } \\
& \begin{aligned}
(f * g)|n| & \stackrel{d e f}{=} \sum_{m=-\infty}^{\infty} f(m|\cdot g| n-m \mid \\
& =\sum_{m=-\infty}^{\infty} f^{\prime}(n-m|\cdot g| m \mid . \quad \text { (commudatity) }
\end{aligned}
\end{aligned}
$$

Autocorrelaton
energy. Signals that "last forever" are treated instead as random processes, in which case different definitions are needed, based on expected values. For wide-sense-stationary random processes, the autocorreations are defined as

$$
\begin{aligned}
& R_{f f}(\tau)=\mathrm{E}[f(t) \bar{f}(t-\tau)] \\
& R_{x x}(j)=\mathrm{E}\left[x_{n} \bar{x}_{n-j}\right]
\end{aligned}
$$

For processes that are not stationary, these will also be functions of t, or n.
For processes that are also ergodic, the expectation can be replaced by the limit of a time average. The autocorrelation of an ergodic process is sometimes defined as or equated to ${ }^{[3]}$

$$
\begin{aligned}
& R_{f f}(\tau)=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} f(t+\tau) \bar{f}(t) d t \\
& R_{x x}(j)=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=0}^{N-1} x_{n} \bar{x}_{n-j} .
\end{aligned}
$$

These definitions have the advantage that they give sensible well-defined single-parameter results for periodic functions, even when those functions are not the output of stationary ergodic processes.

```
function nma_show_fourier
t=-4:.1:4;
N=4;
T=2;
plot(t,y(t,-N,N,T));
end
%------------------
function v=c(k,T)
term=pi*k/2;
v=(1/T)*sin(term)/term;
end
%---------------------
function v=y(t,from,to,T)
coeff=zeros(to-from+1,1);
k=0;
for i=from:to
    k=k+1;
    coeff(k)=c(i,T);
end
v=zeros(length(t),1);
for i=1:length(t)
    v(i)=0;
    for k=from:to
        v(i)=v(i)+coeff(k)*exp(sqrt(-1)*2*pi/T*k*t(i));
    end
```


Chapter 4

HWs

4.1 HW2

Local contents

4.1.1 Problem 1 . 9
4.1.2 Problem 2 . 10
4.1 .3 graded HW2 . 13

4.1.1 Problem 1

Compute an appropriate sampling rate and DFT size $N=2^{v}$ to analyze a single with no significant frequency content above $10 k h z$ and with a minimum resolution of 100 hz

4.1.1.1 Solution

From Nyquist sampling theory we obtain that sampling frequency is

$$
f_{s}=20000 h z
$$

Now, the frequency resolution is given by

$$
\Delta f=\frac{f_{s}}{N}
$$

where N is the number of FFT samples. Now since the minimum Δf is 100 hz then we write

$$
\frac{f_{s}}{N}=\Delta f \geq 100
$$

or

$$
\frac{f_{s}}{N} \geq 100
$$

Hence

$$
\begin{aligned}
N & \leq \frac{20,000}{100} \\
& \leq 200 \text { samples }
\end{aligned}
$$

Therefore, we need the closest N below 200 which is power of 2 , and hence

$$
N=128
$$

4.1.2 Problem 2

sketch the locus of points obtained using Chirp Z Transform in the Z plane for $M=$ $8, W_{0}=2, \phi_{0}=\frac{\pi}{16}, A_{0}=2, \theta_{0}=\frac{\pi}{4}$

Answer:

Chirp Z transform is defined as

$$
\begin{equation*}
X\left(z_{k}\right)=\sum_{n=0}^{N-1} x[n] z_{k}^{-n} \quad k=0,1, \cdots, M-1 \tag{1}
\end{equation*}
$$

Where

$$
z_{k}=A W^{-k}
$$

and $A=A_{0} e^{j \theta_{0}}$ and $W=W_{0} e^{-j \phi_{0}}$
Hence

$$
\begin{aligned}
z_{k} & =\left(A_{0} e^{j \theta_{0}}\right)\left(W_{0} e^{-j \phi_{0}}\right)^{-k} \\
& =\frac{A_{0}}{W_{0}^{k}} e^{j\left(\theta_{0}+k \phi_{0}\right)}
\end{aligned}
$$

Hence

$$
\begin{aligned}
\left|z_{k}\right| & =\frac{A_{0}}{W_{0}^{k}} \\
& =\frac{2}{2^{k}}
\end{aligned}
$$

and

$$
\text { phase of } \begin{aligned}
z_{k} & =\theta_{0}+k \phi_{0} \\
& =\frac{\pi}{4}+k \frac{\pi}{16}
\end{aligned}
$$

Hence

k	$\left\|z_{k}\right\|=\frac{2}{2^{k}}$	phase of $z_{k}=\frac{\pi}{4}+k \frac{\pi}{16}$	phase of z_{k} in degrees
0	$\frac{2}{1}=2$	$\frac{\pi}{4}+0 \times \frac{\pi}{16}=\frac{\pi}{4}$	45
1	$\frac{2}{2}=1$	$\frac{\pi}{4}+1 \times \frac{\pi}{16}=\frac{5}{16} \pi$	56.25
2	$\frac{2}{4}=\frac{1}{2}$	$\frac{\pi}{4}+2 \times \frac{\pi}{16}=\frac{3}{8} \pi$	67.5
3	$\frac{2}{8}=\frac{1}{4}$	$\frac{\pi}{4}+3 \times \frac{\pi}{16}=\frac{7}{16} \pi$	78.75
4	$\frac{2}{16}=\frac{1}{8}$	$\frac{\pi}{4}+4 \times \frac{\pi}{16}=\frac{1}{2} \pi$	90
5	$\frac{2}{32}=\frac{1}{16}$	$\frac{\pi}{4}+5 \times \frac{\pi}{16}=\frac{9}{16} \pi$	101.25
6	$\frac{2}{64}=\frac{1}{32}$	$\frac{\pi}{4}+6 \times \frac{\pi}{16}=\frac{5}{8} \pi$	112.5
7	$\frac{2}{128}=\frac{1}{64}$	$\frac{\pi}{4}+7 \times \frac{\pi}{16}=\frac{11}{16} \pi$	123.75


```
    W0 = 2;
    A0 = 2;
    00= Pi / 4;
    \phi0= Pi / 16;
    m= 8;
    zValues = Table[z[k, W0, A0, 00, \phi0], {k, 0, m-1}];
    arg = Arg[zValues]
    abs = Abs[zValues]
    data = Transpose[{arg, abs}];
    p1 = ListPolarPlot[data, AxesOrigin }->{0,0}, PlotRange -> All, Joined ->False, PlotMarkers -> Automatic,
            PlotStyle }->\mathrm{ Red];
        p2 = ListPolarPlot[data, AxesOrigin }->{0,0}, PlotRange -> All, Joined ->True]
        p3 = PolarPlot[1, {t, 0, 2 Pi}];
        Show[p1, p2, p3]
Out[0]={\frac{\pi}{4},\frac{5\pi}{16},\frac{3\pi}{8},\frac{7\pi}{16},\frac{\pi}{2},\frac{9\pi}{16},\frac{5\pi}{8},\frac{11\pi}{16}}
```


Figure 4.1: plot of the above contour

This is Mathematica notebook used to make plot of the Chirp Z transform contour. This is my graded HW2

4.1.3 graded HW2

1 Problem 1

Compute an appropriate sampling rate and DFT size $N=2^{v}$ to analyze a single with no significant frequency content above 10 khz and with a minimum resolution of 100 hz

Solution

From Nyquist sampling theory we obtain that sampling frequency is

$$
f_{s}=20000 h z
$$

Now, the frequency resolution is given by

$$
\Delta f=\frac{f_{s}}{N}
$$

where N is the number of FFT samples. Now since the minimum Δf is $100 h z$ then we write

$$
\frac{f_{s}}{N}=\Delta f \geq 100
$$

or

$$
\frac{f_{s}}{N} \geq 100
$$

Hence

Therefore, we need the closest N below 200 which is power of 2 , and hence

$$
N=128 \quad \geqslant 5
$$

2 Problem 2

sketch the locus of points obtained using Chirp Z Transform in the Z plane for $M=8, W_{0}=2, \phi_{0}=$ $\frac{\pi}{16}, A_{0}=2, \theta_{0}=\frac{\pi}{4}$

Answer:

Chirp Z transform is defined as

$$
\begin{equation*}
X\left(z_{k}\right)=\sum_{n=0}^{N-1} x[n] z_{k}^{-n} \quad k=0,1, \cdots, M-1 \tag{1}
\end{equation*}
$$

Where

$$
z_{k}=A W^{-k}
$$

and $A=A_{0} e^{j \theta_{0}}$ and $W=W_{0} e^{-j \phi_{0}}$
Hence

$$
\begin{aligned}
z_{k} & =\left(A_{0} e^{j \theta_{0}}\right)\left(W_{0} e^{-j \phi_{0}}\right)^{-k} \\
& =\frac{A_{0}}{W_{0}^{k}} e^{j\left(\theta_{0}+k \phi_{0}\right)}
\end{aligned}
$$

Hence

$$
\begin{aligned}
\left|z_{k}\right| & =\frac{A_{0}}{W_{0}^{k}} \\
& =\frac{2}{2^{k}}
\end{aligned}
$$

and

$$
\text { phase of } \begin{aligned}
z_{k} & =\theta_{0}+k \phi_{0} \\
& =\frac{\pi}{4}+k \frac{\pi}{16}
\end{aligned}
$$

Hence

k	$\left\|z_{k}\right\|=\frac{2}{2 k}$	phase of $z_{k}=\frac{\pi}{4}+k \frac{\pi}{16}$	phase of z_{k} in degrees
0	$\frac{2}{1}=2$	$\frac{\pi}{4}+0 \times \frac{\pi}{16}=\frac{\pi}{4}$	45
1	$\frac{2}{2}=1$	$\frac{\pi}{4}+1 \times \frac{\pi}{16}=\frac{5}{16} \pi$	56.25
2	$\frac{2}{4}=\frac{1}{2}$	$\frac{\pi}{4}+2 \times \frac{\pi}{16}=\frac{3}{8} \pi$	67.5
3	$\frac{2}{8}=\frac{1}{4}$	$\frac{\pi}{4}+3 \times \frac{\pi}{16}=\frac{7}{16} \pi$	78.75
4	$\frac{2}{16}=\frac{1}{8}$	$\frac{\pi}{4}+4 \times \frac{\pi}{16}=\frac{1}{2} \pi$	90
5	$\frac{2}{32}=\frac{1}{16}$	$\frac{\pi}{4}+5 \times \frac{\pi}{16}=\frac{9}{16} \pi$	101.25
6	$\frac{2}{64}=\frac{1}{32}$	$\frac{\pi}{4}+6 \times \frac{\pi}{16}=\frac{5}{8} \pi$	112.5
7	$\frac{2}{128}=\frac{1}{64}$	$\frac{\pi}{4}+7 \times \frac{\pi}{16}=\frac{11}{16} \pi$	123.75

2

Below is plot of the above contour

```
\operatorname{ln}[579]=}=[\mp@subsup{%}{-}{\prime},W\mp@subsup{O}{_}{\prime},A\mp@subsup{O}{-}{\prime},\otimesO_,Q\mp@subsup{O}{-}{\prime}]:=AO\operatorname{Exp}[I&O](WO\operatorname{Exp}[-I&O]\mp@subsup{)}{}{-k
    W0 = 2;
    A0 =2;
    00= Pi/4;
    \phi0=Pi/16;
    m=8;
    zValues=Table[z[k, W0, A0, 00, ф0], {k, 0,m-1}];
    arg = Arg[zValues]
    abs = Abs[zValues]
    data=Transpose[{arg, abs}];
    pl=ListPolarPlot[data, AxesOrigin }->{0,0}
            PlotRange }->\mathrm{ All, Joined }->\mathrm{ False,
            PlotMarkers }->\mathrm{ {Automatic, Automatic}]
    p2 = ListPolarPlot[data, AxesOrigin }->{0,0}
            PlotRange }->\mathrm{ All, Joined }->\mathrm{ True] ;
        p3 = PolarPlot[1,{t, 0, 2Pi}];
        Show[p1, p2, p3]
Out[586]={\frac{\pi}{4},\frac{5\pi}{16},\frac{3\pi}{8},\frac{7\pi}{16},\frac{7}{2},\frac{9\pi}{16},\frac{5\pi}{8},\frac{11\pi}{16}}
Out[587)={2,1,}\frac{1}{2},\frac{1}{4},\frac{1}{8},\frac{1}{16},\frac{1}{32},\frac{1}{64}
```


4.2 HW3

Local contents

4.2.1 my solution . 18
4.2 .2 key solution . 27

4.2.1 my solution

(5) white Noise:
thin io e R.P. whow power spectral density io constant. i.e. power containeal is a frequang basdwidth B is the same regadless of whine this banelwidth is Contered.
"flat" spectrum
implies $X(t)$ is white Noise promess.

the abone io a descmiption in the thequeng domin. in the tinie domain, ${f_{x x}(m)=f(m) \quad \cdots i c}^{m}$ the autocorralation io nonzeno ony if tine untaruel is Lero. i.e $X(t)$ only correlateo with itself at Zen thin delay. so alt R.V. that kelong to q white noise proce.o ane unconelatel with each of woro if tivie interraf io ronz-s.
(6) Erogdic Process:
this is a R.P. Whos statistio trken from the timesampleo ane the same as statisties taken from Ensembles.
for exampls. wo say o prozc土口 io Ergodic in the mern, then $E\{X(t)\}=\langle X(t)\rangle$

Atatiscal semple. expectied value of R.V.
time averag.. mear "f a smple (or fine
series)
the abouc oquality io in the limit, ie an the trine series lensth cucreses. and the statisual mean is when the Number of time series=0 incresemo as well.
$=113$

$$
y(n)=Q[x(n)]=x(n)+e(n)
$$

$e(n)$ is white Noise.

Pdf for rounding is uniform

Pdf for truncation is

a) Find mean and. Variance due to roundis b) :. truncation.

Answer
a)
$u_{e}=\int_{-\frac{\Delta}{2}}^{-\frac{\Delta}{2}} e \cdot f(e) d e \cdot=\int_{-\frac{\Delta}{2}}^{\frac{\Delta}{2}} \frac{e}{\Delta} d e=\frac{1}{\Delta}\left(\frac{e^{2}}{2}\right)_{-\frac{\Delta}{2}}^{\frac{\Delta}{2}}$

$$
=\frac{1}{2 \Delta}\left[\left(\frac{\Delta}{2}\right)^{2}-\left(-\frac{\Delta}{2}\right)^{2}\right]=\frac{1}{2 \Delta}(0)=0
$$

$$
E\left[e^{2}\right]=\int_{-\frac{\Delta}{2}}^{\frac{\Delta}{2}} e^{2} f(e) d \epsilon=\frac{1}{\Delta} \int_{-\frac{\Delta}{2}}^{\frac{\Delta}{2}} e^{2} d e=\frac{1}{\Delta}\left(\frac{e^{3}}{3}\right)_{-\frac{\Delta}{2}}^{\frac{\Delta}{2}}
$$

$$
=\frac{1}{3 \Delta}\left[\left(\frac{\Delta}{2}\right)^{3}-\left(-\frac{\Delta}{2}\right)^{3}\right]=\frac{1}{3 \Delta}\left[\frac{\Delta^{3}}{8}+\frac{\Delta^{3}}{8}\right]=\frac{1}{3 \Delta}\left[\frac{\Delta^{3}}{4}\right]
$$

$$
=\frac{\Delta^{2}}{12}
$$

$$
\begin{aligned}
& =\frac{1}{2 \Delta}\left(0-\Delta^{2}\right)-\left.\sqrt{-\frac{\Delta}{2}}\right|_{-\Delta} ^{0} e^{2} f(e) d e=e_{-\Delta}^{0} e^{2} \frac{1}{\Delta} d e=\frac{1}{\Delta}\left[\frac{e^{3}}{3}\right]_{-\Delta}^{0} \\
& =\frac{1}{3 \Delta}\left[0^{3}-(-\Delta)^{2}\right]=\frac{\Delta^{2}}{3} \\
\Sigma \sigma^{2} & =E\left[e^{2}\right]-(E[e])=\frac{\Delta^{2}}{3} 20\left(-\frac{\Delta}{2}\right)^{2}=\frac{\Delta^{2}}{3}-\frac{\Delta^{2}}{4}=\frac{4 \Delta^{2}-3 \Delta^{2}}{12}=\frac{\Delta^{2}}{12}
\end{aligned}
$$

: 4 let $e(n)$ white Noise sequence. Let $s(n)$ uncevrelated sequence to $c(n)$. Show that $y(n)=s(n) e(n)$ is white. 'ie $E[y(n) y(n+m)]=A \delta(m)$.

Guswes.

$$
\begin{aligned}
E[y(n) y(n+m)] & =E\left[\begin{array}{ll}
s(n) e(n) & s(n+m) e(n+m)
\end{array}\right] \\
& =E\left[\begin{array}{ll}
s(n) s(n+m) & e(n) e(n+m)
\end{array}\right]
\end{aligned}
$$

Since $e(n)$ and $s(n)$ are uncorrelated, hence independent, than we can write the 1 bow as

$$
=E[s(n) s(n+m)] \quad B[e(n) e(n+m)]
$$

but $e(n)$ is white. hence $\phi_{e e}(n, m) E[e(n) e(n+m)]=\delta(m)$ by definition of white ingral.
hence $\phi_{y y}(n, m)=E[\delta(n) S(n+m)] \delta(m)$.
Now, when $m=0, \phi_{y y}(n, m)=E[S(n) S(n)] \cdot 1$.
Since $S(x)$ is uncorrelated with white Noise, then. $m_{s}=0$ sine $S(x)$ is also white.
thence $E\left[S^{2}(n)\right]=$ Total average power in $S(n)$

$$
=A \text { some constant. }
$$

haven when $m=0, \quad \phi_{y y}(n, m)=A$
when $m \neq 0 \quad \phi_{y y}(n, m)=E[S(n) S(n+m)] \cdot 0$ $=0$

Therefor $\phi_{y y}(n, m)=A \delta(m)$
Since $\phi_{y y}(x, x)$ io function of on's m_{1}, it is white signal.
\#6 Consider 2 real stationg random processes $\left\{x_{n}\right\}$ aul (5) $\left\{g_{n}\right\}$, with mean m_{x}, m_{y}, and Varianc $\sigma_{x}^{2}, \sigma_{y}^{2}$.
(a) $\gamma_{x x}(m)$ this is autp Covaria...

$$
\begin{aligned}
\gamma_{x x}(m) & =E\left\{\left(x(n)-m_{x}\right)\left(x^{*}(n+m)-m_{x}^{*}\right)\right\} \\
& =E\left\{x(n) x^{*}(n+m)-m_{x} x(n)-m_{x} x^{*}(n+m)+m_{x}^{2}\right\} \\
& =E\left\{x(n) x^{*}(n+m)\right\}-m_{x} E\{x(n)\}-m_{x} E\left\{x^{*}(n+m)\right\} \\
& +m^{2} x . \\
& =\dot{\Phi}_{x x}(n, n+m)-m_{x}^{2}-m_{x} E\left\{x^{*}(n+m)\right\}+m^{2} x \\
& =\dot{\Phi}_{x x}(n, n+m)-m x B\left\{x^{*}(n+m)\right\} .
\end{aligned}
$$

but $\left\{x_{n}\right\}^{\prime}$ is stationg, si its statishon do wot chaye with shift it time onisin. hence $E\left\{x^{*}(n+m)\right\}=E\left\{x^{*}(n)\right\}=m_{x}$. su abou becom-

$$
\gamma_{x x}(m)=\phi_{x x}(n, n+m)-m_{x}^{2}
$$

but $\Phi_{x x}(n, n+m)=\Phi_{x x}(m)$ sime stations hence $\gamma_{x x}(m)=\Phi_{x x}(m)-m_{x}^{2}$

$$
\begin{aligned}
\gamma_{x y}(m) & =E\left[(x(n)-m x)\left(\dot{y}^{*}(n+m)-m_{y}^{*}\right)\right] \\
& =E\left[x(n) y^{*}(n+m)-m_{y}^{*} x(n)-m_{x} \dot{y}^{*}(n+m)+m^{*} y m x\right] \\
& =E\left\{x(n) \dot{y}^{*}(n+m)\right\}-m_{y}^{*} y E\{x(n)\}-m_{x} E\left\{y^{*}(n+m)\right\}+m_{y}^{*} m x
\end{aligned}
$$

but ducto stationait, $E\left\{\tilde{y}^{x}(n+m)\right]=m y$. sc aboun besomo

$$
\begin{aligned}
& =E\left\{x(n) y^{*}(n+m)\right\}-m_{y} m_{x}-m_{x} m_{y}+m_{y} m x \\
& =E\left\{x(n) y^{y}(n+m)\right\}-m_{y} m_{x} .
\end{aligned}
$$

bat $E\left\{x(n) y^{x}(n+m)\right\}=\Phi_{x y}(m)$ sina station
$s \gamma_{x y}(m)=\phi_{x y}(m)_{2 \tau} m_{y} m_{x}$
(b) $\phi_{x x}(0)=E\left\{x(n) x^{*}(n+m)\right\}$
but $m=0$. hene
$=$ mean squarie.

$$
\gamma_{x x}(0)=E\left\{(x(n)-m x)\left(x^{*}(n+m)-m^{*} x\right)\right\}
$$

but $m=0$ so

$$
\begin{aligned}
b_{x+x}=0 & =E\left\{\left(x(n)-m_{x}\right)\left(x^{x}(n)-m_{x}^{*}\right)\right\} \\
& =E\left\{x^{2}(n)-x(n) m x-m_{x} x^{*}(n)+m_{x}^{2}\right\} \\
& =E\left\{x^{2}(n)\right\}-m_{x} E\{x(n)\}-m_{x} E\left\{x^{*}(n)\right\}+m_{x}^{2} \\
& =E\left\{x^{2}(n)\right\}-m_{x}^{2}-m_{x}^{2}+w_{x}^{\alpha} \\
& =E\left\{x^{2}(n)\right\}-m_{x}^{2}
\end{aligned}
$$

4 but this is the difinition of σ_{x}^{2}. Hence

$$
\gamma_{x x}(0)=\sigma_{x}^{2}
$$

(c)

$$
\phi_{x x}(m)=E\left\{x(n) x^{*}(n+m)\right\}=E\left\{x_{n+m}^{*} x_{n}\right\}=\left(E\left\{x_{n+m} x_{n}^{*}\right\}\right)^{*} E
$$

$$
\because \because=\phi_{x x}^{*}(-m)
$$

ite if process is real, the $\phi_{x x}^{*}\left(-m_{1}\right)=\phi_{x x}\left(-m_{1}\right)$.

$$
\text { i.e } \phi_{x x}(m)=\phi_{x x}(-m)
$$

6

$$
\begin{align*}
\gamma_{x x}(m) & =E\left\{\left(x(n)-m_{x}\right)\left(x^{*}(n+m)-m_{x}^{*}\right)\right\} \\
& \left.=\oplus_{x x}(m)-m_{x} m_{x}^{*} \quad \text { (fram pait }(a)\right) . \tag{1}
\end{align*}
$$

$$
\because \because=\phi_{x x}^{*}(-m)
$$

$$
=\phi_{x x}^{x}(-m)-m_{x} m_{x}^{*} \quad \text { (using result above). }
$$

$$
=\left(E\left\{x_{n+m} x_{n}^{*}\right)^{*}-m_{x} m_{x}^{*}\right.
$$

$$
=E\left\{x_{n+m}^{*} x_{n}\right\}-m_{x} m_{x}^{*}
$$

$$
=\left(E\left\{x_{n+m} x_{n}^{*}\right\}-m_{x}^{*} m_{x}\right)^{*}
$$

$$
=\gamma_{x x}^{*}(-m)
$$

:part (c) Cont.
show that $\phi_{x y}(m)=\phi_{y_{x}}^{x}(-m)$.

$$
\begin{aligned}
\operatorname{U}_{x y}(m) & =E\left\{x_{n} y_{n+m}^{*}\right\}=E\left\{y_{n+m}^{*} x_{n}\right\}=\left(E\left\{y_{n+m} x_{n}^{*}\right\}\right)^{*} \\
& =\phi_{y x}^{*}(-m)
\end{aligned}
$$

show that $\gamma_{x y}(m)=\gamma_{y x}^{x}\left(-m_{1}\right)$

$$
\gamma_{x y}(m)=E\left\{\left(x_{n}-m_{x}\right)\left(y_{n+m}^{*}-m_{y}^{*}\right)\right\}
$$

$$
=E\left\{\left(y_{n+n}^{*}-m^{\prime} y\right)\left(x_{n}-m x\right)\right\}
$$

$$
=\left(E\left\{\left(y_{n+m}-m_{y}\right)\left(x_{n}^{*}-m_{x}^{*}\right)\right\}\right)^{*}
$$

$$
=\gamma_{y_{x}(-m)}^{*}
$$

part (d)
show that $\left|\phi_{x y}\left(m_{1}\right)\right| \leqslant \sqrt{\phi_{x x}(0) \phi_{y y}(0)}$

$$
\begin{aligned}
\dot{\phi}_{x_{y}}(m) & =E\left\{x_{n} y_{n+m}^{*}\right\} \\
\phi_{x x}(0) & =E\left\{x_{n}^{2}\right\} \\
\phi_{y_{y}}(0) & =E\left\{y_{n}^{2}\right\}
\end{aligned}
$$

we did this in chass ao fallowem:

$$
\begin{aligned}
0 \leqslant E\{ & \left.\left(x_{n}+a y_{n+m}\right)^{2}\right\}=E\left\{x_{n}^{2}+a^{2} y_{n+m}^{2}+2 a x_{n} y_{n+n}\right\} \\
& =E\left(x_{n}^{2}\right)+a^{2} E\left(y_{n+n}^{2}\right)+2 a E\left(x_{n} y_{n+m}\right) \\
& =\phi_{x x}(0)+a^{2} \phi_{y y}(0)+2 a \phi_{x_{y}}(m){ }^{-1 x^{2}+B x+c}
\end{aligned}
$$

this is a quaduts equation that is $\geqslant 0$, alumags.
hence Can't hrue 2 neal norte i.e
discriminnt $\leq 0 . \quad i_{e}$
where $A=\phi_{y_{y}}(0), B=2 \phi_{x_{y}}(m), C=\phi_{x x}(0)$.
bunt discriminntis $\quad B^{2}-4 A C$
so $\quad 4 \phi_{x y}^{2}(m)-4 \phi_{y y}(0) \phi_{x_{x}}(0) \leqslant 0$.

$$
\begin{array}{ll}
i . e & \phi_{x y}^{2}(m) \leqslant \phi_{y y}(0) \phi_{x x}(0) \\
\left|\phi_{x y}(m)\right| \leqslant \sqrt{\phi_{y y}(0) \phi_{x x}(0)}
\end{array}
$$

4.2.2 key solution

HEW. 3 Sol .
(1) a) Autocorrelation sequence: $\phi_{x_{x}}(n, m)$ is defined by

$$
\phi_{x_{*}}(n, m)=E\left\{x_{n} x_{m}^{*}\right\}=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_{n} x_{m}^{*} P_{x_{n} x_{m}}\left(x_{n}, n, x_{m}, m\right) d x_{n} d x
$$

b) A randomproces $\left\{x_{n}\right\}$ is a stationary process if its statistics are not affected by a shift in the time origin. i.e., x_{n} and x_{m} hove the same statistics for all n and m
c) A stationary random process in the nide sense mean
(i) The mean is constant
(ii) the autocorrelation ($2^{\text {nd }}$ order statistics) depend only on the time difference between the random variables
d) Time average of a random process $\left\{x_{n}\right\}$ is defined as

$$
\left\langle x_{n}\right\rangle=\lim _{N \rightarrow \infty} \frac{1}{2 N+1} \sum_{n=-N}^{N} x_{n}
$$

Ensemble average of a random process $\left\{x_{n}\right\}$ is defined as

$$
m_{x_{n}}=E\left\{x_{n}\right\}=\int_{-\infty}^{\infty} x P_{x_{n}}(x, n) d x
$$

e) W bite noise is a random process in which all the random variables are independent. with zero mean

$$
\phi_{x x}(m)=\sigma_{x}^{2} \delta(m)
$$

f) A random process for cuhich the time averages equal the ensemble averages is called an ergodic process.
(2) 8,3

rounding

truncation

Probe. distribution
a) Mean \& variance, rounding

$$
\begin{aligned}
m_{e} & =\int_{-\infty}^{\infty} e P_{e n}(e) d e=\int_{-\Delta / 2}^{\Delta / 2} e \frac{1}{\Delta} d e=\left.\frac{1}{\Delta} \frac{e^{2}}{2}\right|_{-\Delta / 2} ^{\Delta / 2}=0 \\
\nabla_{e}^{2} & =E\left\{e_{n}^{2}\right\}=\int_{-\infty}^{\infty} e^{2} P_{e_{n}}(e) d e=\frac{1}{\Delta} \int_{-\Delta / 2}^{\Delta / 2} e^{2} d e \\
& =\frac{e^{3}}{3 \Delta} \int_{-\Delta / 2}^{\Delta / 2}=\frac{1}{3 \Delta} 2 \frac{\Delta^{3}}{8}=\Delta^{2} / 12
\end{aligned}
$$

b) For truncation

$$
\begin{aligned}
m_{e} & =\frac{1}{\Delta} \int_{-\Delta}^{0} e d e=\left.\frac{1}{\Delta} \frac{e^{2}}{2}\right|_{-\Delta} ^{0}=-\Delta / 2 \\
\nabla_{e}^{2} & =E\left\{\left(e_{n}+\frac{\Delta}{2}\right)^{2}\right\}=E\left\{e_{n}^{2}\right\}+\frac{\Delta^{2}}{4}+2 \frac{\Delta}{2} E\left\{e_{n}\right\} \\
& =E\left\{e_{n}^{2}\right\}+\frac{\Delta^{2}}{4}-\frac{\Delta^{2}}{2}=\frac{E\left\{e_{n}^{2}\right\}-\frac{\Delta^{2}}{4}}{\nabla_{e}^{2}}
\end{aligned}=\frac{1}{\Delta} \int_{-\Delta}^{0} e^{2} d e-\frac{\Delta^{2}}{4}=\left.\frac{1}{\Delta} \frac{e^{3}}{3}\right|_{-\Delta} ^{0}-\frac{\Delta^{2}}{4}=\frac{\Delta}{1} .
$$

(3) $8.4 \quad e(n)$: white move seq. $s(n)$: uncorrelated with en
show $\quad Y(n)=s(n) e(n)$ in unite: gie.

$$
E\{Y(n) Y(n+m)\}=A \delta(m)
$$

$\frac{\text { Sol. }}{\left\{e(n) \text { whit } \Rightarrow E\{e(n) e(n+m)\}=\nabla_{e}^{2} \delta(m)\right.}$ \{uncorrelated $E\{e(n) Y(m)\}=E\{e(n)\} E\{Y(m)\}$

$$
E\{Y(n) Y(n+m)\}=E\{s(n) e(n) s(n+m) e(n+m)\}
$$

assonie
$s(n)$ is WSS
or white noise

$$
\begin{aligned}
& =E\{s(n) s(n+m) e(n) e(n+m)\} \\
& =E\{s(n) s(n+m)\} E\{e(n) \ell(n+m)\} \\
& =E\{s(n) s(n+m)\} \nabla_{e}^{2} \delta(m) \\
& =\nabla_{s}^{2} \nabla_{e}^{2} \delta(m)
\end{aligned}
$$

8.6 Consider the two real stationary random processes $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$. with means m_{x} and m_{y} and variances σ_{x}^{2} and σ_{y}^{2}. show the following
(a) $\gamma_{x x}(m)=\phi_{x x}(m)-m_{x}^{2} \quad \& \gamma_{x y}(m)=\phi_{x y}(m)-m_{x}-m_{y}$ $\gamma_{x x}(m)=E\left[\left(x_{n}-m_{x}\right)\left(x_{n+m}-m_{x}\right)\right]$
$=E\left[x_{n} x_{n+m}\right]-m_{x} E\left[x_{n+m}\right]-m_{x} E\left[x_{n}\right]+m_{x} m_{x}$
$=\varphi_{x x}(m)-m_{x} m_{x}-m_{x} m_{x}+m_{x} m_{x}$
$=\phi_{x x}(m)-m_{x}^{2}$
$\begin{aligned} & =\phi_{x x}(m)-m_{x}^{2} \\ \gamma_{x y}(m) & =E\left[\left(x_{n}-m_{x}\right)\left(y_{n+m}-m_{y}\right)\right]\end{aligned}$
$=E\left[x_{n} y_{n+m}\right]-m_{x} m_{y}-m_{y} m_{x}+m_{x} m_{y}$
$\begin{aligned}(b) \phi_{x x}(0) & =\frac{\phi_{x y}(m)-m_{x} m_{y}}{\text { mean square \& }} \gamma_{x x}(0)=\nabla_{x}^{2} \\ \phi_{x x}(m) & =E\left[x_{n} x_{n+m}\right]=\end{aligned}$
$\phi_{x y}(0)=E\left[x_{n} x_{n}\right]=$ mean square
$\gamma_{x x}(m)=E\left[\left(x_{n}-m_{x}\right)\left(x_{n+m}-m_{x}\right)\right]$
$\gamma_{x x}(0)=E\left[\left(x_{n}-m_{x}\right)^{2}\right]=\sigma_{x}^{2}$
(c) $\phi_{x x}(m)=\phi_{x x}(-m)$
$\phi_{x x}(-m)=\left(E\left[x_{n} x_{n-m}\right]\right)$

$$
\text { let } n^{\prime}=n-m
$$

$$
\phi_{x x}(-m)=\left(E\left[x_{n^{\prime} \times m} x_{n^{\prime}}\right]\right)=E\left[x_{n^{\prime}} x_{n^{\prime}+m}\right]
$$

$$
=\phi_{x x}(m)
$$

$$
\gamma_{x x}(m)=\gamma_{x x}(-m)
$$

$$
\gamma_{x x}(-m)=\left(E\left[\left(x_{n}-m_{x}\right)\left(x_{n-m}-m_{x}\right]\right)\right.
$$

$$
=\left(E\left[\left(x_{n^{\prime}+m}-m_{x}\right)\left(x_{n^{\prime}}-m_{x}\right)\right]\right)
$$

$$
=E\left[\left(x_{n} \cdot-m_{x}\right)\left(x_{n^{\prime}+m}-m_{x}\right)\right]
$$

$$
=\delta_{x x}(m)
$$

$$
\left[\gamma_{x x}(0) \gamma_{y y}(0)\right]^{1 / 2} \geqslant \gamma_{x y}(m)
$$

Letting $y_{n}=x_{\mu}$ we can specialize these $)$ inequalities to

$$
\begin{aligned}
& \phi_{x x}(0) \geqslant \phi_{x x}(m) \\
& \hline \gamma_{x x}(0) \geqslant \gamma_{x x}(m) \\
& \hline
\end{aligned}
$$

(e) Let $y_{n}=x_{\mu}-\mu_{0}$

$$
\begin{aligned}
\phi_{y y}(m) & =E\left[y_{n} y_{m+m}\right] \\
& =E\left[x_{m-m_{0}} x_{n+m-n_{0}}\right] \\
& =\phi_{k}(m)
\end{aligned}
$$

Obviously $\gamma_{y y}(m)=\gamma_{x x}^{\prime}(m)$ for the same reasons.
(ff Let $\gamma_{x x}(m) \longleftrightarrow \Gamma_{x x}(z)$

$$
\gamma_{x y}(m) \longleftrightarrow \Gamma_{x y}(z)
$$

$$
\Gamma_{x x}(z) \stackrel{\oplus}{\rho} \sum_{m} \gamma_{x x}(m) z^{-m} \Rightarrow \text { (I) } \quad \gamma_{x x}(m)=\frac{1}{2 \pi j} \oint_{c} \Gamma_{x x}(z) z^{m-1} d z
$$

$$
\gamma_{x x}(0)=\sigma_{x}^{2}=\frac{1}{2 x j} \oint_{c} \Gamma_{x x}(z) z^{-1} d z
$$

(2) ixtle have shown that $\gamma_{x x}(m)=\gamma_{x x}(-m)$

Therefore $\Gamma_{x x}(z)=\sum_{m=-\infty}^{\infty} r_{x x}(m) z^{-m}$
$\underline{\Gamma_{x x}\left(z^{-1}\right)}=\sum_{m=-\infty}^{\infty} \gamma_{x \alpha}(m) z^{m}=\sum_{p=-\infty}^{\infty} \gamma_{x x}(-p) z^{-p}$
$\rho_{\rho \rightarrow m} \Rightarrow \sum_{m=-\infty}^{\infty} \gamma_{x x}(m) z^{-m}=\Gamma_{x x}(z)$

4.3 HW4, Some floating points computation

Local contents

4.3.1 my solution, First Problem . 34
4.3.2 my solution, second problem . 36
4.3.3 key solution . 37

4.3.1 my solution, First Problem

Looking at 2 floating points problems. The first to illustrate the problem when adding large number to small number. The second to illustrate the problem of subtracting 2 numbers close to each others in magnitude.

Investigate floating point errors generated by the following sum $\sum_{n=1}^{N} \frac{1}{n^{2}}$, compare the result to that due summation in forward and in reverse directions.

4.3.1.1 Analysis

When performing the sum in the forward direction, as in $1+\frac{1}{4}+\frac{1}{16}+\cdots+\frac{1}{N^{2}}$ we observe that very quickly into the sum, we will be adding relatively large quantity to a very small quantity. Adding a large number of a very small number leads to loss of digits as was discussed in last lecture. However, we adding in reverse order, as in $\frac{1}{N^{2}}+\frac{1}{(N-1)^{2}}+\frac{1}{(N-2)^{2}}+\cdots+1$, we see that we will be adding, each time, 2 quantities that are relatively close to each other in magnitude. This reduces floating point errors.

The following code and results generated confirms the above. $N=20,000$ was used. The computation was forced to be in single precision to be able to better illustrate the problem.

4.3.1.2 Computation and Results

This program prints the result of the sum in the forward direction

```
PROGRAM main
    IMPLICIT NONE
    REAL :: s
    INTEGER :: n,MAX
    s = 0.0;
    MAX = 20000;
    DO n = 1,MAX
        s = s + (1./n**2);
    END DO
    WRITE(*,1) s
    format('sum = ', F8.6)
    END PROGRAM main
```

now compare the above result with that when performing the sum in the reverse direction
PROGRAM main
IMPLICIT NONE
REAL :: s
INTEGER :: n, MAX
s = 0.0;
MAX $=20000$;
DO $\mathrm{n}=\mathrm{MAX}, 1,-1$
$\mathrm{s}=\mathrm{s}+(1 . / \mathrm{n} * * 2)$;
END DO
$\operatorname{WRITE}(*, 1) \mathrm{s}$
1 format('sum = ', F8.6)
end PRogram main
sum $=1.644884$

The result from the reverse direction sum is the more accurate result. To proof this, we can use double precision and will see that the sum resulting from double precision agrees with the digits from the above result when using reverse direction sum

```
    PROGRAM main
    IMPLICIT NONE
    DOUBLE PRECISION :: s
    INTEGER :: n,MAX
    s = 0.0;
    MAX = 20000;
    DO n = 1,MAX
        s = s + (1./n**2);
    END DO
    WRITE(*,1) s
    format('sum = ', F18.16)
    END PROGRAM main
sum = 1.6448840680982091
```


4.3.1.3 Conclusion

In floating point arithmetic, avoid adding a large number to a very small number as this results in loss of digits of the small number. The above trick illustrate one way to accomplish this and still perform the required computation.

In the above, there was $1.644884-1.644725=1.59 \times 10^{-4}$ error in the sum when it was done in the forward direction as compared to the reverse direction (for 20,000 steps).In relative term, this error is $\frac{1.644884-1.644725}{1.644884} 100$ which is about 0.01% relative error.

4.3.2 my solution, second problem

Investigate the problem when subtracting 2 numbers which are close in magnitude. If a, b are 2 numbers close to each others, then instead of doing $a-b$ do the following $(a-b) \frac{(a+b)}{(a+b)}=\frac{a^{2}-b^{2}}{a+b}$. The following program attempts to illustrate this by comparing result from $a-b$ to that from $\frac{a^{2}-b^{2}}{-1}$ for 2 numbers close to each others.

> PROGRAM main

IMPLICIT NONE
DOUBLE PRECISION : : a,b,diff
$\mathrm{a}=32.000008$;
b = 32.000002;
diff = a-b;
$\operatorname{WRITE}(*, 1), d i f f$
diff $=(a * * 2-b * * 2) /(a+b)$;
WRITE(*,1), diff
1 format('diff $=$ ', F18.16)
END PROGRAM main
diff $=0.0000038146972656$
diff $=0.0000038146972656$

I need to look more into this as I am not getting the right 2 numbers to show this problem.
4.3.3 key solution

$$
\text { Sol. H.W. } 4 \text { EE518A }
$$

9-6

$$
y(n)=\alpha y(n-1)+x(n)
$$

variables \& coefficients: sign $-\&$-magnitude result i of multi's : truncated

$$
\Rightarrow \quad W(n)=Q[\alpha W(n-1)]+x(n)
$$

$Q[\cdot]: \operatorname{sign}-\&-m a g$. truncation.
possibility of a zero-impest limit cycle

$$
|W(n)|=|W(n-1)| \quad \forall n
$$

show that if the ideal sys, is stable, then no zero -input limit cycle can exist. Is the same true for 2 's complement truncation?

Sol.
To have zero-inpest limit cycle

$$
|w(n)|=|w(n-1)|
$$

ar

$$
\begin{equation*}
|Q[\alpha w(n-1)]|=|W(n-1)| \tag{1}
\end{equation*}
$$

stale sys. $\Rightarrow|\alpha|<1$

$$
\begin{equation*}
\Rightarrow \quad|\alpha w(n-1)|<|w(n-1)| \tag{2}
\end{equation*}
$$

a) For sign - \& - mag. truncation.

$$
\left.\begin{array}{rlr}
-2^{-b} & <Q(x)-x \leqslant 0 & x \geqslant 0 \\
0 & \leqslant Q(x)-x<2^{-b} & x<0
\end{array}\right\} \text { add to } \text { nites }
$$

$\Rightarrow|Q(x)| \leqslant|x| \quad$ for $x \geqslant 0$ or $x<0$
Let $x=\alpha \omega(n-1)$

$$
\begin{equation*}
\Rightarrow|Q[\alpha w(n-1)]| \leqslant|\alpha w(n-1)| \tag{3}
\end{equation*}
$$

(3) $\&(2) \Rightarrow|Q[\alpha \omega(n-1)]| \leqslant|\alpha \omega(n-1)|<|\omega(n-1)|$ sauce (1) is not satisfied no zero input limit cycle is possible.
b) For $Q[\cdot]=$ two's complement

$$
\begin{align*}
& \quad-2^{-b}<Q(x)-x \leqslant 0 \quad \forall x \\
& \text { If } \frac{x>0}{x<0} \quad x \geqslant Q[x] \text { or }|x| \geqslant|Q[x]| \tag{4}\\
& \text { If } \left.\frac{x<0}{} \quad \right\rvert\, Q[x| | \geqslant|x| \quad(5) \tag{5}\\
& \text { For } \alpha w(n-1)>0 \\
& |Q[\alpha w(n-1)]| \leqslant|\alpha w(n-1)|<|w(n-1)|
\end{align*}
$$

\Rightarrow no limit cycle : (1) is not satisfied
For $\propto \omega(n-1)<0$

$$
|\alpha w(n-1)| \leqslant|R[\alpha w(n-1)]| \quad \ln (5)
$$

and $|\alpha \omega(n-1)|<|\omega(n-1)|$ ley (2)
Possible that $\mid Q[\alpha \omega(n-1)|=|\omega(n-1)|$ for

$$
\alpha w(n-1)<0 \quad \Rightarrow \text { limit cycle }
$$

Q []: rounding
Fised-pt. fractions, b bits
zero infect $-Y(-1)=A$ initial cons.
Dead hand : $A \Rightarrow|Q[\alpha A]|=A$
a) dead hand in terms of α and β
b) For $b=6, A=1 / 16$ sketch $y(n)$ for $\alpha=\left\{\begin{array}{l}15 / 16 \\ -15 / 16\end{array}\right.$
c) For $b=6, A=1 / 2$ sketch $Y(n)$ for $\alpha=-15 / 16$

Sol.

$$
Y(n)=Q[\alpha Y(n-1)]+X(n) \quad(X(n)=0)
$$

Rounding: $\quad \frac{-2^{-b}}{2}<Q[\alpha w(n-1)]-\alpha w(n-1) \leqslant \frac{2^{-b}}{2}$
If filter is in the dead hand

$$
-\frac{r^{-b}}{2}<Q[\alpha A]-\alpha A \leqslant \frac{\tau^{-b}}{2}
$$

ar $|Q[\alpha A]-\alpha A| \leqslant \frac{2-b}{2}$
In a limit cycle $|Q[\alpha A]|=A$

$$
\begin{aligned}
& \Rightarrow|Q[\alpha A]|-|\alpha A| \leqslant|Q[\alpha A]-\alpha A| \leqslant \frac{1}{2} 2^{-b} \\
& \Rightarrow|A|-|\alpha||A| \leqslant \frac{1}{2} 2^{-b}
\end{aligned}
$$

$$
\Rightarrow|A| \leqslant \frac{\frac{1}{2} 2^{-b}}{1-|\alpha|}
$$

r.
b) $b=6: \quad z^{-b}=1 / 64 \quad|\alpha|=15 / 16 \quad|-1 \alpha|=1 / 16$

$$
|A| \leqslant \frac{\frac{1}{2} \cdot \frac{1}{64}}{\frac{1}{16}}=1 / 8 \quad \text { dead hand }
$$

Thus for $A=1 / 16$ the system starts immediately in the limit cycle.

$$
\dot{\alpha}=\frac{15}{16} \quad Y(n)=Q[\alpha Y(n-1)]=Q\left[\frac{15}{16} \cdot \frac{1}{16}\right]=Q\left[\frac{15}{256}\right]=i_{i}
$$

$$
\begin{gathered}
\alpha=\frac{-15}{16} \quad y(n)=Q\left[-\frac{15}{16} .\right. \\
y(-1)=\frac{1}{16} \\
\left.\frac{1}{-1} \int_{012}^{y} 1\right] \cdots \\
n
\end{gathered}
$$

$$
\alpha=-15 / 16
$$

$$
\begin{aligned}
& \text { C) } b=6 \quad A=1 / 2 \quad \alpha=\frac{-15}{16} \quad \Rightarrow \text { samedeadhand } \\
& Y(n)=Q\left[\frac{-15}{16} \cdot Y(n-1)\right]
\end{aligned}
$$

Thus we have: $w(0)=Q\left[-\frac{1}{2} \frac{15}{16}\right]=Q\left[-59 \frac{\Delta}{2}-\frac{\Delta}{2}\right]=-30 \Delta$

$$
W(1)=Q\left[\frac{15}{16} \cdot 30 \Delta\right] \because Q\left[56 \frac{\Delta}{2}+\frac{1}{4} \frac{\Delta}{2}\right]=28 \Delta
$$

Hence we repeat the above procedure and we gel:

$$
\begin{aligned}
& w(-i)=32 / 64 \\
& W(0)=-30 / 64 \\
& W(1)=28 / 64 \\
& W(2)=-26 / 64 \\
& w(3)=24 / 64 \\
& W(4)=-23 / 644 \\
& W(5)=22 / 64 \\
& W(6)=-21 / 64 \\
& W(7)=20 / 64 \\
& W(8)=-19 / 64 \\
& W(9)=18 / 64 \\
& W(10)=-17 / 64 \\
& W(11)=16 / 64 \\
& W(12)=-15 / 64 \\
& W(13)=14 / 64 \\
& W(14)=-13 / 64 \\
& W(15)=12164
\end{aligned}
$$

11.1

$$
C_{x x}(m)=\frac{1}{N} \sum_{n=0}^{N-|m|-1} x(n) x(n+m) \quad|m| \leqslant N-1
$$

show that

$$
\overbrace{N-1}^{x(n)} n
$$

or

$$
\begin{aligned}
& I_{N}(w)=\sum_{m=-(N-1)}^{N-1} C_{x+}(m) e^{-j w m} \\
& =\sum_{m=-(N-1)}^{N-1}\left[\frac{1}{N} \sum_{n=0}^{N-|m|-1} x(n) x(n+m)\right] e^{-j \omega m} \\
& =\frac{1}{N} \sum_{n=0}^{N-l m-1} x(n) \sum_{m=-1 N-1)}^{N-1} x(n+m) e^{-j \omega m} \\
& =\frac{1}{N} \sum_{n=0}^{N-\ln (-1} x(n) \sum_{l=n-(N-1)}^{n+(N-1)} x(l) e^{-j w \ell} e^{j w n} \\
& =\frac{1}{N} \sum_{n=0}^{N-(m)-1} x(n) e^{j \omega n} \sum_{l=n-(N-1)}^{n+(N-1)} x(l) e^{-j \omega l} \\
& =\frac{1}{N} \sum_{n=0}^{N-1} x(n) e^{j w n} \sum_{l=0}^{N-1} x(l) e^{-j w l} \quad \text { since } x(n)=0 \text { for }
\end{aligned}
$$

$$
\begin{aligned}
& I_{N}(\omega)=\frac{1}{N}\left|\nabla\left(e^{j \omega}\right)\right|^{2} \\
& I_{N}-i(\omega)=\sum_{m=-(N-1)}^{N-1} C_{x_{x}(m)} e^{-j \omega m} \\
& \text { Sol. } \\
& C_{x x}(m)=\frac{1}{N} \quad x(n) * x(-n) \\
& x(-n) \xrightarrow{\underset{X}{\sim}} X\left(e^{-j \omega}\right)=Z^{*}\left(\boldsymbol{e}^{j \omega}\right) \text { For } x(n) \text { real } \\
& \Rightarrow I_{N}\left(e^{j \omega}\right)=\frac{1}{N} 8\left(e^{j \omega}\right) \bar{X}^{*}\left(e^{j \omega}\right)=\frac{1}{N}\left|8\left(e^{j \omega}\right)\right|^{2}
\end{aligned}
$$

$$
\begin{aligned}
I_{N}(w) & =\frac{1}{N}\left[\sum_{n=0}^{N-1} x(n) e^{-j w n}\right]^{*} \sum_{l=0}^{N-1} x(\ell) e^{-j \psi l} \\
& =\frac{1}{N}\left|\unlhd\left(e^{j w}\right)\right|^{2}
\end{aligned}
$$

$11,2 S_{x+}(w)=\sum_{m=-(M-1)}^{M-1} C_{x_{x}}(m) w(m) e^{-j \omega m}$
w.(m) of length $2 M-1$

$$
\left\{\begin{array}{l}
W(m)=0 \quad|m| \geqslant 2 M \\
C_{x+(m)}=0 \text { for }|m| \geqslant M
\end{array}\right.
$$

Kinownig these we can say

$$
\begin{aligned}
S_{x_{x}}(w) & =\sum_{m=-\infty}^{\infty} C_{x_{x}}(m) W(m) e^{-j w m} \\
& =\mathcal{F}\left\{C_{\left.x_{x}(m) w(m)\right\}}\right. \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi} \tilde{f}\left\{c_{x x}(m)\right\} W\left(e^{j(w-\theta)}\right) d \theta \text { cow } \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi} I_{N}(\theta) W\left(e^{j(w-\theta)}\right) d \theta \\
E\left\{S_{x x}(w)\right\} & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} E\left\{I_{N}(\theta)\right\} W\left(e^{j(w-\theta)}\right) d \theta
\end{aligned}
$$

4.4 HW5

Local contents

4.4.1 Problem 11.1 . 45
4.4.2 Problem 11-2 . 46

4.4.1 Problem 11.1

1. Let $X\left(e^{j \omega}\right)$ be the Fourier transform of a real finite-length sequence $X(n)$ that is zero outside the interval $0 \leq n \leq N-1$. The periodogram $I_{N}(\omega)$ is defined in Eq. (11.24) as the Fourier transform of the $2 N-1$ point autocorrelation estimate

$$
c_{x x}(m)=\frac{1}{N} \sum_{n=0}^{N-|m|-1} x(n) x(n+m) \quad|m| \leq N-1
$$

Show that the periodogram is related to the Fourier transform of the finite length sequence as follows:

$$
I_{N}(\omega)=\frac{1}{N}\left|X\left(e^{j \omega}\right)\right|^{2}
$$

Figure 4.2: the Problem statement

$$
\begin{aligned}
& I_{N}(\omega)=\sum_{m=-(N-1)}^{N-1} c_{x x}(m) e^{-j \omega m} \\
&\left|X\left(e^{j \omega}\right)\right|^{2}=X\left(e^{j \omega}\right) X^{*}\left(e^{j \omega}\right) \\
&=\left(\sum_{m=0}^{N-1} x(m) e^{-j \omega m}\right)\left(\sum_{n=0}^{N-1} x(n) e^{-j \omega n}\right)^{*} \\
&=\left(\sum_{m=0}^{N-1} x(m) e^{-j \omega m}\right)\left(\sum_{n=0}^{N-1} x^{*}(n) e^{j \omega n}\right) \\
&=\sum_{m=0}^{N-1 N-1} \sum_{n=0} x(m) x^{*}(n) e^{-j \omega m} e^{j \omega n}
\end{aligned}
$$

But

$$
e^{-j \omega m} e^{j \omega n}=e^{-j \omega(m-n)}
$$

and

$$
x(m) x^{*}(n)=x(m) x^{*}(m+(n-m))
$$

So

$$
\left|X\left(e^{j \omega}\right)\right|^{2}=\sum_{m=0}^{N-1 N-1} \sum_{n=0} x(m) x^{*}(m+(n-m)) e^{-j \omega(m-n)}
$$

Let $n-m=\tau$ then above can be rewritten as

$$
\left|X\left(e^{j \omega}\right)\right|^{2}=\sum_{m=0}^{N-1 N-1} \sum_{n=0} x(m) x^{*}(m+\tau) e^{j \omega \tau}
$$

When $n=0, m=-\tau$ and when $n=N-1, m=N-\tau-1$, hence the above becomes

$$
\begin{aligned}
\left|X\left(e^{j \omega}\right)\right|^{2} & =\sum_{m=0}^{N-1} \sum_{m=-\tau}^{N-\tau-1} x(m) x^{*}(m+\tau) e^{j \omega \tau} \\
& =\sum_{m=0}^{N-1}\left(\sum_{m=-\tau}^{-1} x(m) x^{*}(m+\tau) e^{j \omega \tau}+\sum_{m=0}^{N-|\tau|-1} x(m) x^{*}(m+\tau) e^{j \omega \tau}\right) \\
& =\sum_{m=0}^{N-1}\left(\sum_{m=-1}^{-\tau} x(m) x^{*}(m+\tau) e^{j \omega \tau}+N c_{x x}(m) e^{j \omega \tau}\right)
\end{aligned}
$$

I made another attempt at the end,

4.4.2 Problem 11-2

2. The smoothed spectrum estimate $S_{x x}(\omega)$ is defined as

$$
S_{x x}(\omega)=\sum_{m=-(M-1)}^{M-1} c_{x x}(m) w(m) e^{-j \omega m}
$$

where $w(m)$ is a window sequence of length $2 M-1$. Show that

$$
E\left[S_{x x}(\omega)\right]=\frac{1}{2 \pi} \int_{-\pi}^{\pi} E\left[I_{N}(\theta)\right] W\left(e^{i(\omega-\theta)}\right) d \theta
$$

where $W\left(e^{j \omega}\right)$ is the Fourier transform of $w(n)$.

Figure 4.3: the Problem statement

We see that $S_{x x}(\omega)$ is the Fourier transform of $c_{x x}(m) w(m)$. i.e.

$$
S_{x x}(\omega)=\digamma\left[c_{x x}(m) w(m)\right]
$$

Where \digamma is the Fourier transform operator. Using modulation property

$$
S_{x x}(\omega)=\frac{1}{2 \pi}\left(\digamma\left[c_{x x}(m)\right] \otimes \digamma[w(m)]\right)
$$

But $I_{N}(\omega)=\digamma\left[c_{x x}(m)\right]$ and let $W(\omega)=\digamma[w(m)]$, then the above becomes

$$
\begin{aligned}
S_{x x}(\omega) & =\frac{1}{2 \pi}\left(I_{N}(\omega) \otimes W(\omega)\right) \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi} I_{N}(\theta) W(\omega-\theta) d \theta
\end{aligned}
$$

Hence, taking expectation of LHS, and since only $I_{N}(\theta)$ is random, then the above becomes (after moving expectation inside the integral in the RHS)

$$
E\left[S_{x x}(\omega)\right]=\frac{1}{2 \pi} \int_{-\pi}^{\pi} E\left[I_{N}(\theta)\right] W(\omega-\theta) d \theta
$$

