
University Course

EGEE 518
Digital Signal Processing I

California State University, Fullerton
Fall 2008

My Class Notes

Nasser M. Abbasi

Fall 2008

Contents

1 introduction 1

2 Final project 3

3 Study notes 5
3.1 DSP notes . 5

4 HWs 7
4.1 HW2 . 7
4.2 HW3 . 14
4.3 HW4, Some floating points computation 30
4.4 HW5 . 40

ii

Chapter 1

introduction

I took this course in Fall 2008 at CSUF to learn more about DSP.

This course was hard. The textbook was not too easy, The instructor Dr Shiva has
tremendous experience in this subject, and he would explain some difficult things with
examples on the board which helped quite a bit. The final exam was hard, it was 7
questions and I had no time to finish them all. It is a very useful course to take to learn
about signal processing.

Instructor is professor Shiva, Mostaf, Dept Chair, EE, CSUF.

1

course_info.png

Chapter 2

Final project

final project

3

/my_notes/EE518_CT_project/index.htm

Chapter 3

Study notes

3.1 DSP notes
For fourier transform in mathematica, use these options

From Wikipedia. Discrete convolution

Autocorrelaton

� �
1 function nma_show_fourier
2
3 t=-4:.1:4;
4 N=4;
5 T=2;

5

3.1. DSP notes CHAPTER 3. STUDY NOTES

6 plot(t,y(t,-N,N,T));
7
8
9 end

10
11 %------------------
12 function v=c(k,T)
13 term=pi*k/2;
14 v=(1/T)*sin(term)/term;
15 end
16
17 %---------------------
18 function v=y(t,from,to,T)
19
20 coeff=zeros(to-from+1,1);
21 k=0;
22 for i=from:to
23 k=k+1;
24 coeff(k)=c(i,T);
25 end
26
27 v=zeros(length(t),1);
28 for i=1:length(t)
29 v(i)=0;
30 for k=from:to
31 v(i)=v(i)+coeff(k)*exp(sqrt(-1)*2*pi/T*k*t(i));
32 end
33 end
34 end� �

6

Chapter 4

HWs

4.1 HW2

Local contents
4.1.1 Problem 1 . 7
4.1.2 Problem 2 . 8
4.1.3 graded HW2 . 10

4.1.1 Problem 1
Compute an appropriate sampling rate and DFT size N = 2v to analyze a single with no
significant frequency content above 10khz and with a minimum resolution of 100 hz

4.1.1.1 Solution

From Nyquist sampling theory we obtain that sampling frequency is

fs = 20000 hz

Now, the frequency resolution is given by

∆f = fs

N

where N is the number of FFT samples. Now since the minimum ∆f is 100 hz then we
write

fs

N
= ∆f ≥ 100

or

fs

N
≥ 100

Hence

N ≤ 20, 000
100

≤ 200 samples

Therefore, we need the closest N below 200 which is power of 2, and hence

N = 128

7

4.1. HW2 CHAPTER 4. HWS

4.1.2 Problem 2
sketch the locus of points obtained using Chirp Z Transform in the Z plane for M =
8, W0 = 2, φ0 = π

16 , A0 = 2, θ0 = π
4

Answer:

Chirp Z transform is defined as

X (zk) =
N−1∑
n=0

x [n] z−n
k k = 0, 1, · · · , M − 1 (1)

Where
zk = AW −k

and A = A0e
jθ0 and W = W0e

−jφ0

Hence

zk =
(
A0e

jθ0
) (

W0e
−jφ0

)−k

= A0

W k
0

ej(θ0+kφ0)

Hence

|zk| = A0

W k
0

= 2
2k

and

phase of zk = θ0 + kφ0

= π

4 + k
π

16

Hence

k |zk| = 2
2k phase of zk = π

4 + k π
16 phase of zk in degrees

0 2
1 = 2 π

4 + 0 × π
16 = π

4 45
1 2

2 = 1 π
4 + 1 × π

16 = 5
16π 56.25

2 2
4 = 1

2
π
4 + 2 × π

16 = 3
8π 67.5

3 2
8 = 1

4
π
4 + 3 × π

16 = 7
16π 78.75

4 2
16 = 1

8
π
4 + 4 × π

16 = 1
2π 90

5 2
32 = 1

16
π
4 + 5 × π

16 = 9
16π 101.25

6 2
64 = 1

32
π
4 + 6 × π

16 = 5
8π 112.5

7 2
128 = 1

64
π
4 + 7 × π

16 = 11
16π 123.75

8

4.1. HW2 CHAPTER 4. HWS

In[]:= z[k_, W0_, A0_, θ0_, ϕ0_] := A0 Exp[I θ0] (W0 Exp[-I ϕ0])-k

W0 = 2;

A0 = 2;

θ0 = Pi/ 4;

ϕ0 = Pi/ 16;

m = 8;

zValues = Table[z[k, W0, A0, θ0, ϕ0], {k, 0, m - 1}];

arg = Arg[zValues]

abs = Abs[zValues]

data = Transpose[{arg, abs}];

p1 = ListPolarPlot[data, AxesOrigin → {0, 0}, PlotRange → All, Joined → False, PlotMarkers → Automatic,

PlotStyle → Red];

p2 = ListPolarPlot[data, AxesOrigin → {0, 0}, PlotRange → All, Joined → True];

p3 = PolarPlot[1, {t, 0, 2 Pi}];

Show[p1, p2, p3]

Out[]=
π

4
,
5 π

16
,
3 π

8
,
7 π

16
,

π

2
,
9 π

16
,
5 π

8
,
11 π

16

Out[]= 2, 1,
1

2
,
1

4
,
1

8
,

1

16
,

1

32
,

1

64

Out[]=

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

1.5

Figure 4.1: plot of the above contour

This is Mathematica notebook used to make plot of the Chirp Z transform contour. This
is my graded HW2

9

HWs/HW2/HWs/HW2/second_prob.nb

4.1. HW2 CHAPTER 4. HWS

4.1.3 graded HW2

10

4.1. HW2 CHAPTER 4. HWS

11

4.1. HW2 CHAPTER 4. HWS

12

4.1. HW2 CHAPTER 4. HWS

13

4.2. HW3 CHAPTER 4. HWS

4.2 HW3

Local contents
4.2.1 my solution . 14
4.2.2 key solution . 23

4.2.1 my solution

14

4.2. HW3 CHAPTER 4. HWS

15

4.2. HW3 CHAPTER 4. HWS

16

4.2. HW3 CHAPTER 4. HWS

17

4.2. HW3 CHAPTER 4. HWS

18

4.2. HW3 CHAPTER 4. HWS

19

4.2. HW3 CHAPTER 4. HWS

20

4.2. HW3 CHAPTER 4. HWS

21

4.2. HW3 CHAPTER 4. HWS

22

4.2. HW3 CHAPTER 4. HWS

4.2.2 key solution

23

4.2. HW3 CHAPTER 4. HWS

24

4.2. HW3 CHAPTER 4. HWS

25

4.2. HW3 CHAPTER 4. HWS

26

4.2. HW3 CHAPTER 4. HWS

27

4.2. HW3 CHAPTER 4. HWS

28

4.2. HW3 CHAPTER 4. HWS

29

4.3. HW4, Some floating points computation CHAPTER 4. HWS

4.3 HW4, Some floating points computation

Local contents
4.3.1 my solution, First Problem . 30
4.3.2 my solution, second problem . 31
4.3.3 key solution . 32

4.3.1 my solution, First Problem
Looking at 2 floating points problems. The first to illustrate the problem when adding
large number to small number. The second to illustrate the problem of subtracting 2
numbers close to each others in magnitude.

Investigate floating point errors generated by the following sum
N∑

n=1

1
n2 , compare the result

to that due summation in forward and in reverse directions.

4.3.1.1 Analysis

When performing the sum in the forward direction, as in 1 + 1
4 + 1

16 + · · · + 1
N2 we

observe that very quickly into the sum, we will be adding relatively large quantity to
a very small quantity. Adding a large number of a very small number leads to loss
of digits as was discussed in last lecture. However, we adding in reverse order, as in

1
N2 + 1

(N−1)2 + 1
(N−2)2 + · · · + 1, we see that we will be adding, each time, 2 quantities that

are relatively close to each other in magnitude. This reduces floating point errors.

The following code and results generated confirms the above. N = 20, 000 was used. The
computation was forced to be in single precision to be able to better illustrate the problem.

4.3.1.2 Computation and Results

This program prints the result of the sum in the forward direction
1 PROGRAM main
2 IMPLICIT NONE
3 REAL :: s
4 INTEGER :: n,MAX
5
6 s = 0.0;
7 MAX = 20000;
8 DO n = 1,MAX
9 s = s + (1./n**2);

10 END DO
11
12 WRITE(*,1) s
13 1 format('sum = ', F8.6)
14 END PROGRAM main
15
16
17 sum = 1.644725

now compare the above result with that when performing the sum in the reverse direction
1 PROGRAM main
2 IMPLICIT NONE
3 REAL :: s
4 INTEGER :: n,MAX
5
6 s = 0.0;
7 MAX = 20000;
8 DO n = MAX,1,-1
9 s = s + (1./n**2);

10 END DO
11
12 WRITE(*,1) s
13 1 format('sum = ', F8.6)

30

4.3. HW4, Some floating points computation CHAPTER 4. HWS

14 END PROGRAM main
15
16 sum = 1.644884

The result from the reverse direction sum is the more accurate result. To proof this, we
can use double precision and will see that the sum resulting from double precision agrees
with the digits from the above result when using reverse direction sum

1 PROGRAM main
2 IMPLICIT NONE
3 DOUBLE PRECISION :: s
4 INTEGER :: n,MAX
5
6 s = 0.0;
7 MAX = 20000;
8 DO n = 1,MAX
9 s = s + (1./n**2);

10 END DO
11
12 WRITE(*,1) s
13 1 format('sum = ', F18.16)
14 END PROGRAM main
15
16 sum = 1.6448840680982091

4.3.1.3 Conclusion

In floating point arithmetic, avoid adding a large number to a very small number as
this results in loss of digits of the small number. The above trick illustrate one way to
accomplish this and still perform the required computation.

In the above, there was 1.644884 − 1.644725 = 1. 59 × 10−4 error in the sum when it was
done in the forward direction as compared to the reverse direction (for 20, 000 steps).In
relative term, this error is 1.644884−1.644725

1.644884 100 which is about 0.01% relative error.

4.3.2 my solution, second problem
Investigate the problem when subtracting 2 numbers which are close in magnitude. If
a, b are 2 numbers close to each others, then instead of doing a − b do the following
(a − b) (a+b)

(a+b) = a2−b2

a+b
. The following program attempts to illustrate this by comparing

result from a − b to that from a2−b2

a+b
for 2 numbers close to each others.

1 PROGRAM main
2 IMPLICIT NONE
3 DOUBLE PRECISION :: a,b,diff
4
5 a = 32.000008;
6 b = 32.000002;
7 diff = a-b;
8 WRITE(*,1), diff
9 diff = (a**2-b**2)/(a+b);

10 WRITE(*,1), diff
11 1 format('diff = ', F18.16)
12 END PROGRAM main
13
14 diff = 0.0000038146972656
15 diff = 0.0000038146972656

I need to look more into this as I am not getting the right 2 numbers to show this problem.

31

4.3. HW4, Some floating points computation CHAPTER 4. HWS

4.3.3 key solution

32

4.3. HW4, Some floating points computation CHAPTER 4. HWS

33

4.3. HW4, Some floating points computation CHAPTER 4. HWS

34

4.3. HW4, Some floating points computation CHAPTER 4. HWS

35

4.3. HW4, Some floating points computation CHAPTER 4. HWS

36

4.3. HW4, Some floating points computation CHAPTER 4. HWS

37

4.3. HW4, Some floating points computation CHAPTER 4. HWS

38

4.3. HW4, Some floating points computation CHAPTER 4. HWS

39

4.4. HW5 CHAPTER 4. HWS

4.4 HW5

Local contents
4.4.1 Problem 11.1 . 40
4.4.2 Problem 11-2 . 41

4.4.1 Problem 11.1

Figure 4.2: the Problem statement

IN (ω) =
N−1∑

m=−(N−1)
cxx (m) e−jωm

∣∣∣X (
ejω
)∣∣∣2 = X

(
ejω
)

X∗
(
ejω
)

=
(

N−1∑
m=0

x (m) e−jωm

)(
N−1∑
n=0

x (n) e−jωn

)∗

=
(

N−1∑
m=0

x (m) e−jωm

)(
N−1∑
n=0

x∗ (n) ejωn

)

=
N−1∑
m=0

N−1∑
n=0

x (m) x∗ (n) e−jωmejωn

But

e−jωmejωn = e−jω(m−n)

and

x (m) x∗ (n) = x (m) x∗ (m + (n − m))

So

∣∣∣X (
ejω
)∣∣∣2 =

N−1∑
m=0

N−1∑
n=0

x (m) x∗ (m + (n − m)) e−jω(m−n)

Let n − m = τ then above can be rewritten as

∣∣∣X (
ejω
)∣∣∣2 =

N−1∑
m=0

N−1∑
n=0

x (m) x∗ (m + τ) ejωτ

When n = 0,m = −τ and when n = N − 1,m = N − τ − 1, hence the above becomes

40

4.4. HW5 CHAPTER 4. HWS

∣∣∣X (
ejω
)∣∣∣2 =

N−1∑
m=0

N−τ−1∑
m=−τ

x (m) x∗ (m + τ) ejωτ

=
N−1∑
m=0

 −1∑
m=−τ

x (m) x∗ (m + τ) ejωτ +
N−|τ |−1∑

m=0
x (m) x∗ (m + τ) ejωτ

=

N−1∑
m=0

 −τ∑
m=−1

x (m) x∗ (m + τ) ejωτ + N cxx (m) ejωτ

I made another attempt at the end,

4.4.2 Problem 11-2

Figure 4.3: the Problem statement

We see that Sxx (ω) is the Fourier transform of cxx (m) w (m). i.e.

Sxx (ω) = z [cxx (m) w (m)]

Where z is the Fourier transform operator. Using modulation property

Sxx (ω) = 1
2π

(z [cxx (m)] ⊗ z [w (m)])

But IN (ω) = z [cxx (m)] and let W (ω) = z [w (m)], then the above becomes

Sxx (ω) = 1
2π

(IN (ω) ⊗ W (ω))

= 1
2π

∫ π

−π
IN (θ) W (ω − θ) dθ

Hence, taking expectation of LHS, and since only IN (θ) is random, then the above becomes
(after moving expectation inside the integral in the RHS)

E [Sxx (ω)] = 1
2π

∫ π

−π
E [IN (θ)] W (ω − θ) dθ

41

	introduction
	Final project
	Study notes
	DSP notes

	HWs
	HW2
	HW3
	HW4, Some floating points computation
	HW5

