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1 Problem 1

Find the equation of motion for the following system

Solution

Assume initial conditions are x (0) = x; and X (0) = 0. Assume that x;, was positive (i.e. to the
right of the static equilibrium position, and also assume that kxy > N ptg.). This second
requirement is needed to enable the mass to undergo motion by overcoming static friction.
The normal force N is given by

N =mgcos 0
And the dynamic friction force f. due to the dynamic friction is defined as follows
-uN x>0
fe= 0 x=0
uN x<0

But since N = mgcos 0, then the above becomes
—umgcos@ x>0
umg cos 6 <0

Where p is the coefficient of dynamic friction. Now we can obtain the Lagrangian

L=T-U
1

T = —mi?
me
1

U = —kx?
2x

Hence
1 1

L = —mx?% — —kx?
2 2



and
JdL _
57 = m¥
d JL .
priE il
JdL
i —kx
Then the EQM is
dJdL JL _
diox ax Je
mX +kx = f,

Where f, is given by (1). Since f, sign depends in the mass is moving to the left or to the
right, we will generate 2 equation of motions, one for each case.

When mass is moving to the left, EOM 1 is
mX + kx = umg cos 0 (2)
When mass is moving to the right, EQM 2 is
mX + kx = —umg cos 0 (3)
So, for the first move, starting from x; and moving to the left, we have
k
X+ X = HgCos 0

%+ w3x = ugcos 6

x=x,+x,
50 .
Guess x, = X, hence w2X = ugcos O or X = Hg:—(;, and x;, = Acosw,t + Bsinw,t, therefore,

the solution to EQOM 1 is

ug cos 0

W}

x(t) = Acosw,t + Bsinw,t +



x(0)=xp=A+ “g;i;e hence A = xy - %(;6, then
x(f) = (xo - ‘ug(i%@) cosw,t + Bsinw,t + yg;:)%@
i i
and
x(t) = -w, (xo - pg:‘:)%G) sin w,t + w,, B cos w,t
b
¥(0)=1v9=0=w,B
Hence B =0, then EQOM is (for 0 <t < a%)
Xpeft () = (xo - ‘ug;:)%@) cos w,t + %ZSQ (4)
i i

The mass will move according to the above equation (4) until the velocity is zero, then it
will turn and start moving to the right. To find the time this happens:

0
() = -, ( : Hg_) sin
a)l’l
Now solve for t when x (t) =0, i.e.,
0
0=-w, (xo _ =Y CZS ) sin w,,t (5)
Wy

Hence w,t = nm, where n =0,+1,+2,---The case for n = 0 do not apply since this implies
t =0, then consider the next time this can happen, which is n =1, which implies
b=— (6)
a)Vl
Now we need to determine x () at this time #; since this will become the initial x for the
second equation of motion going to the right in the second leg of the journey. Using (4) and
(6) we obtain

x(l) _ (xo— pgcos@)coswni N pg cos 0

a)Tl a)% a)Vl Cl)%
2ug cos 0
w3 0

Notice that in the above equation, x is a positive number, since we assumed that the initial
conditions x; was to the right of the static equilibrium position, and we are assume the right

of the static equilibrium position to be positive. This also implied that x (f) will be negative
number (which is what we expect, as the mass will by the end of its first trip be on the left
of the static equilibrium position).

Now we can use right equation of motion (EQM 2) to solve for the mass moving to the right.

. e eps s . . 2 50
Notice that the initial conditions for this motion are x; = ygcf > —xpand f = g
Wi n



The equation of motion is now
mx + kx = —umg cos 0

¥+ wix = —pgcosO

(7)

With the general solution
cos 6
x(t) = Acosw,t + Bsinw,t - yg—z

a)n

2ugcos 0
a — Xp, hence from the above

Tt
Att= w—n,x(t) ==
2 0 0
—ygc;)s —Xg = Acosa)nl + Bsina)ni - —ygczs
a)i’l a}l’l wl’l a)l’l
A yg(:(;s 0
wl’l
3 0
pmry B
w
n
Hence (7) becomes
3 0 o
X)) = ( - #8_)“ + Bsina,t - K850
n a)n
And
3 0
x(t) = —~w, (xo - @) sin w,t + w, B cos w,t
Wy

Butx(t)=0att= g, hence the above becomes

3ugcosOy . Tt Tt
sin w,— + w,, B cos w,,—

n n a)Tl
= -w,B
Hence B = 0, then the EQM for the right move is, for LAY
Wy Wy
3 0 0
HE oo ) cosw,t — chzs

Wy

Xright (t) = (xO T2

This diagram below summarize this



Now, we would like to have one equation to express the motion with for any time instance
when the mass is moving to the left, or to the right. Looking at the above 2 equation of
motion, we see immediately that we can write the equation of motion as follows

(2n-1)ug cos 0 n+1 ugcoso@
x, (t) = (xo - |cos wut +(-1) .
n n

Where 7 above is the number of the trip. So, the first trip, going from x;, and moving to the
left, will have n =1, and then second trip, moving from x; and going to the right will have
n =2, and so on. As for the time during which trip travels, this is found by the following
equation
-1
n-lm <t, < i
a)n 0)1’1
What the above is saying is that for first trip (n = 1), we have
O<t<—
wn

And for the second trip, we have

etc...

Now that we have one equation, and we have the time during which each equation is valid,
we can now plot the equation of motion vs. time. The following is a plot for some values for
k,g,m. Please see the appendix for the Matlab code which generated this simulation.



Observation found on this problem: Changing the angle of inclination 6 causes no change
in results. In other words, the same oscillation will occur for flat plane (6 = 0) or for 6 = 45°
or any other angle. The reason is because x, the initial position, is measured from the
static equilibrium position, and this static equilibrium position will be different as the angle
changes, but the effect of the angle change is already accounted for by this change and will
not be reflected in the actual displacement x (f).



2 Problem 2

1 0, |3 -1 0
Given [O 4] X +[ 11 ]X = [0] , m : kg, k : N/m, use modal analysis to calculate the solution

0 . 0
of this given X (0) = ) mm, X (0) = lo mmj sec also calculate the eigenvalues of the system

and the normalized eigenvectors.
Answer

Since this is a 2 ODE’s that are coupled, we use modal analysis to de-couple the system first
in order to obtain 2 separate ODE’s which we can then solve easily.

Let

1
M= 0andletK:
0 4

], then the above system becomes

MX +KX =0 1)
1 1
Let X = M 2q, then X = M 2jj and the above equation becomes
1 1
MM 24+KM 2q=0
1
premultiply by M 2 we obtain
1 1 1 1
M MM 2§+M 2KM 2q =0
Ij+Kg=0 (2)
1 1
Where K = M 2KM 2
Let g = ve'®!, then § = ~w?ve! and (2) becomes
~w?e®'Tv + Kve®t = 0
(R-aw?l)v=0
Let A = w? then we have
(R-Ano=0 (3)
For v # 0, we requires that |K - AI| = 0 But

K=M:2KM 2
= =
|12 3 -1f|17 0
0 4z||-1 1|0 4z
1
3 -
= 1 12]
T2 1




Hence

|K-All=0
3 -1 1 0]
1 12 -A =0
2 1 01
1
3-4  -=
1 1 ZA =0
- 1A
1 1
3-A)|=--A]-=-=0
( >(4 ) :
13 1
A=A +==0
4 2
Hence
A_—b+\/b2—4ac
2a 2a
2
13
13 (Z) -2
— +
8 2
_13+1 37
878
Hence

M= {13‘?3—7, 13+TV13_7} = {0.16191,3.0881)

From (3) we then have

When A = A; = 0.1619 we obtain
30 -05| [o1619 0 ])[4]

[[—0.5 0.25] ) [ 0 0161 9” b|
2.8381 05 |[a]
~0.5 0.088 1}

=EREES

Hence

2.8381a-05b=0

-0.52-0.09416 =0
-2.8381

Leta=1, thenb =

= 5.6762, hence the second eigenvector is

1
01 =
[5. 676 2]
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o1l = V1 + 5.6762%2 = 5.763 6, hence normalized v, is

o 1
Y17 57636 |5.6762

0.1735
01 =
0.984 84

When A = A, = 3.0881 we obtain
30 -05| [3.0881 0 |)[a]
[[—0.5 025| [ 0 3.0881]) b|
[—0.0881 -0.5 ] 4]
~05 -2.8381

o o o O

Hence

-0.0881a-0.5b =0
-0.5a4-2.8381b =0

0081 _ 0176 2, hence the first eigenvector is

Let 2 =1 in the first equation above, then b =

1
Uy =
[—0.176 2]

llosll = V1 4+ 0.176 22 = 1.0154, hence normalized v, is

1 1
%27 1.0154 [-01762

Uy =
-0.17353

_ [ 0.984 83 }

Then the P matrix
[Pl =01 vy

| ]01735 098483
1 10.98484 -0.17353

Now let g = Pr, then equation (2) above becomes
Ij+Kg=0
IP# + KPr =0
Premultiply by PT
PIIP# + PTKPr =0
I#+ PTKPr=0
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Let A = PTKP then the above becomes
IFr+Ar=0 (4)
Now find
A = PTKP
(01735  0.98483 ! 3.0 -0.5([01735 0.98483
- 098484 -0.173 53] [—0.5 0.25] [0.984 84 -0.173 53]

0.16191 0
0 3.0881

Hence (4) becomes

7+
0 3.0881

016191 0 }
r=0
Which can be written as 2 equations
i, [o16191n] _|o0
| [3.0881r,| |0

#1 +0.16191r, = 0 (5)
7, +3.0881r, = 0

or

With IC given as
0

X(0) =
(0) )

and

X (0) = 8

Now X=M‘%q and g=Pr, hence X=M‘%Pr, then

1
r(0) = PTM2X (0)
r 1T T
71 (0) 01735 0.98483 | [1 0[]0
7, (0)] 098484 -017353] [0 2|1

1 (0] [ 1.9697
7, (0)] |-0.34706

now need to find #(0) ,but since X (0) = 0, then #(0) = 0 as well.

IThis can also be found more quickly by noting that A = diag(A;, A,)



Now we can solve for r; (t) and 7, () since we have the IC. From (5) above
7 +0.16191r, = 0
r(t) = Acosw,, t + Bsinw,, t

Att=0,7,(0) =1.9696, hence 1.9696 = A, then

r1(t) =1.969 6 cos w,, t + Bsinw,, t

i1 (t) = =1.969 6w,,, sin w,, t + @,1B cos w,,, t
Att=0

i (t) =0=w,B
Hence B = 0, then
r1(£) =1.969 6 cos wy,, t

But w,, = v0.16191 = 0.402 38, hence

r1 (t) =1.969 6 cos (0.402 38t)

Similarly we find r; (t)
7o +3.0881r, =0
1o (t) = Acos w,,t + Bsinw,,t

At t=0,7r,(0) = -0.346 98, hence —0.34698 = A, then

12 (£) = —0.346 98 cOS Wy, t + Bsin w,,, t

i (t) = 0.346 98w, sin wy,t + w,,, B cos wy,t
Att=0

() =0=w,,B
Hence B =0, then
1o (t) = —0.346 98 cos w,,, t

But w,, = v3.0881 =1.757 3, hence

7, (£) = —0.346 98 cos (1. 757 3)

Now that we found the solution in the r space, we switch back to the original x space

1
X(t) = M 2Pr(t)
Then

" 1 0|[01735 0.98483 |[ 1.969 6 cos (0.402 38¢)
“lo 05|[0.98484 -0.17353||-0.34698 cos (1. 757 3t)

Hence

B 0.969 87 cos 0.402 38t + 0.03010 6 cos 1. 757 3t

x1 (1) 0.341 73 cos 0.402 38t — 0.341 72 cos 1. 757 3t
xp (t)

12



13

This is a plot of the solutions

Observation on final result: Notice that power of the harmonic w, =1.757 3 rad/sec. in the
motion x;, (f) is small (amplitude is only 0.03) hence the dominant harmonic present in x; (t)
is w, = 0.40238 rad/sec. and this reflects in the plot where it appears that x, (t) contain one
harmonic. In the case of x; (f) we see from the solution that both frequencies contribute
equal amount of power, hence the plot for x; (¢) reflects this.
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3 Problem 3

Solution Use as generalized coordinates 0y, 0,,. Assume that the spring remain horizontal,
and assume that 6, > 6,

-u

Il
=

2 1 . 1\2
277’11 (L@l) + Emz (LGZ)
Ugravity = m1gL (1 = cos 61) + mpgL (1 — cos 0,)

L
T

1
U, Ek (asin 0, — asin 6;)°

pring =

Hence

1 2 1 2 1 . . 2
L= 5™ (L@l) + M2 (LQZ) — [m1gL (1 = cos O7) + mpgL (1 — cos 6,) + Ek(a sin 6, — asin 6,)
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Now determine the Lagrangian equation

JdL :
- = LZH
70, myL=0,
d JL N
—_— = LZ
atge, ~ mLo
JdL :
- = LZH
90, myL=0p
ii = mszéz
dt 90,
JdL
&_61 = —mygL sin 0, + ak (asin 0, — asin 61) cos O,
JdL
8_62 = —m gL sin O, — ak (asin 6, — asin O;) cos O,
Hence the EQM for m, is
d dL JL
dt 06, 90;

m1L?0; + mygLsin 01 — ak (asin 0, — asin 01) cos 01 = 0
Now apply small angle approximation. sin @ = 6 and cos 6 = lhence
m 120, + migLO; — ak (a0, —a6y) = 0
m1L20, + mgLO; — a’k0, + a’k0; = 0

myL20; + (gL + a?k) 01 - a%k0, = 0 1)
And the EQM for mj, is
d JL L
dt 96, 90,

myL?0, + migL sin 0, + ak (asin 6, — asin 0;) cos 0, = 0
Now apply small angle approximation. sin @ = 0 and cos = lhence
myL?0, + m1gLO, + ak (a0, — ab) = 0
myL20, + m1gLO, + a?k0, — a’k0; = 0
Therefore
myL20, + 0, (ngL + azk) —a’k0; =0
Now we write the system as M6 + KO = 0
[mle 0 |6, N [mlgL + a’k —a’k

0  myl?||6, —-a’k mygL + a’k

Al
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Substitute numerical values for the above quantities, we obtain

[10 X 0.52 0 [9’1] N [10 X9.8% 0.5+ 0.12 x 20 —a2 % 20 61] _ H
0 10 % 0.5% |6, -0.1%x 20 10x9.8x0.5+0.12x20([6,] |0
[2. 5 0 ] [él] N [49. 2 —0.2] [el} _ H
0 2.5(|6,] [-02 49.2||6,| |0
The above can be written as
MO + KO =0

Let 0 = M_%q, then 6 = M_%ij and the above equation becomes
MM 26 + KM 20 = 0
premultiply by M_% we obtain
M_%MM_%Q + M_%KM_%G =0
16+K0=0 (2)
Where K = M 2KM™>
Let g = v, then § = —w?ve! and (2) becomes

~w?e“![y + Kot = 0

(I~< - a)zl) v=0
Let A = @? then we have
(R-Al)v=0 (3)
For v # 0, we requires that |I~< - AI| =0 But
1 1
K=M72KMz
[ 1 - 1
|25z 0 |[49.2 -02|[252 0
0 25:|[02 499.2]| ¢ 257
| [19.68 -0.08]
| [-0.08 19.68]
Hence
|K-A1l=0
19.68 -0.08] [1 0]
-1 =0
-0.08 19.68 0 1
19.68-1  -0.08 || _ .
~0.08  19.68-A|

(19.68 — 1) (19.68 — 1) — 0.082 = 0
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Hence the characteristic equation is

A?-39.36 A +387.30 =0

Hence

/\]/2 =109. 6, 19.76

Hence the natural frequencies are
w, = {V19.6,V19.76)

{4.4272,4.445 2} rad/sec

}_

From (3) we then have

(K-Al)o=0

19.68 -0.08( (A O 0
0=
-0.08 19.68 0 A

When A = A; =19.6 we obtain

19.68 -0.08] [19.6 0 [\[a] [o]
U—o.os 19.68]_[ 0 19.6<]th " o]
0.08 -0.08|[a] [o]
[—0.08 0.08 ] | |o
Hence
0.0842 - 0.08b = 0
~0.082 + 0.08b = 0
Hence a = b then
1 [1] [o.70711
T2 _1] ) [0.70711}
When A = A, =19.76 we obtain
19.68 -0.08] [19.76 0 [\[a] [0]
[[—0.08 19.68] 1o 19.76]) b| B 0]
~0.08 -0.08|[a] [0]
[—0.08 —0.08] | |0
Hence a = -b, then
1 [-1] [-0.70711]
vZ:EL]:[o.mmy

Now that we have obtained the eigenvectors of the de-coupled system, we can plot the mode
shapesﬂ I will use a diagram similar to that shown in the textbook Engineering Vibration

2The book also calls the S matrix as the shape matrix, so I better show this as well, which is defined as



by Inman on page 313)

1
S =M 2P, hence

C1fasr 0 |14
V2| 0 25|t 1

031623 -0.31623
V2
031623 0.31623

| (044722 -0.44722
0.44722 0.44722

18
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4 Problem 4

Mx+Kx=0

1

1
Where K = Let X = M 24, then X = M 2§ and the above equation

27 -3 9 0
M =
-3 3 01

becomes
1 1
MM 24§+ KM 2g=0

1
premultiply by M 2 we obtain

M_%MM_%Q + M_%KM_%q =0
Ij+Kg=0 (2)
Where K = M_%KM_%
Let g = ve®t, then § = —w?ve! and (2) becomes
~w?e“[y + Kvet = 0
(I~< - a)zl) v=0
Let A = w? then we have
(K-An)o=0 (3)



For v # 0, we requires that |I~< - AI| =0 But

1 1
K=M2KM 2

[30 -10
|10 30
Hence
[K-All=0
30 -1.0 1 0
-A =0
10 30| [0 1
3-1 1]
=0
13-4
B-1>-1=0
Hence the characteristic equation is
A2-6A+8=0
Hence
Mo =1{2,4}
Then the natural frequencies are
oefi2
From (3) we then have
(K-Al)o=0
30 -10] [r o]} _ .
-1.0 30| |0 A|)
When A = A; = 2 we obtain
30 -10] [2 o]\[a] [o]
-1.0 30| [0 2|J[p] |0
1 -1][a] 0]
-1 1|[p] |o

Hence




Then a = b, hence

V2|1

1 [1]1 [oz0711
V1= — =
! 0.70711

When A = A, = 4 we obtain

(25 2516 Dl
A

Hence a = -b, then
1 [ 1 ] [ 0.70711
Uy = —(= =

Then the matrix
[Pl =01 ]

-0.70711

_ 11070711 0.70711
0.70711 -0.70711

|

Now let g = Pr, then equation (2) above becomes

I§+Kg=0
IP#+ KPr=20
Premultiply by PT
PTIP# + PTKPr=0
I# + PTKPr=0
Let A = PTKP then the above becomes
F+Ar=0
Now find A
A =PTKP
T

oS o O O

21

(4)
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Hence (4) becomes

2 0]
Iy + r=0
0 4_
Which can be written as 2 equations
.o 2 ]
71 + 71 _ 0
?2 41’2< 0
or
'7;1 + 27"1 =0 (5)
'7;2 + 41’2 = O (6)

1
With IC given as X (0) = % H X (0) = [g , but

1 1
X =M 2q and g = Pr, hence X = M 2Pr, then

£(0) = PTM2X (0)
1 17 es ol 1 [2
1 oz 0| 1[5
r<o>-ﬁ[1 _1] [0 1] ZH

1 (0) 1
[rz «»W ] H
And since X (0) = 0, then #(0) = 0, now we have found IC for 7 (t) we can solve the ODEs
r (£) = Aq cos V2t + B sin V2t
5 (t) = Ay cos 2t + B, sin 2t
r1(0) =1 hence A; =1, and B; = 0, similarly, A, =0, and B; = 0, hence
rq (t) = cos V2t
r(t) =0
But
X(t) = M_%Pr(t)

92 O] 1 [1 1 ]r(t)

Then

X (1) =
O=1"0 1%L «

% % COS\/Et
e

ik



Hence

g

3

X1 (t) — h
Xy (1) (cos \/Et)

= (cos \/Et)]

&l

2

Here is a plot of the solution
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5 Problem 5 (not correct, left here to check something)

m:3,c:6,k:12,hencea)n:\/E:E:Zrad/secandézi: < 6 -

= = -, hence
c 2w,m  2x2x3 2

2
the system is underdamped and w; = w, V1 - &% = 24/1 - % = /3 rad/sec

Let the response to 36 (f) be x,, (t) and let the response to 6 (¢ — 1) be x,,, (f) hence the response
of the system becomes

X (8) = x5, (£) + xp, (£) = xp, (£) @)

Where
xp, = e¢¥nt (A cos wyt + Bsin w,t) (2)
And
3 _T to:
Xp, () = ——e = sin wyt (3)
mawy
and

1
X, (H) = m—e‘&""(t‘l) sinwy (t-1)D(t-1)
OF

Hence, substitute (2),(3) into (1)

3
x (t) = e=nt (A cos wyt + Bsin wyt) + ——e*@nt sin w,t
mwg

1
+ ——e D gin @, (t-1) P (t - 1) (4)
mawy

Now using IC to find A, B. Note, we use only x (f) = x;, (f) + x,, (f) for the purpose of finding
A, B from I.C’s since the response to the delayed impulse is not active at ¢ = 0. We find

1
0)=—=4
*(0) = 155
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And for the derivative

X (£) = %y (£) + %, (£)
= —Ew, et (A cos wyt + Bsinwyt) + e 9nt (= Awy sin w,t + Bwy cos w,t)

3éw

3 .
+ ——e @t cos wyt — ———e~nt sin wt

mawg, mawgy
Hence
3
x(0)=1=-8w,A+ Bw; + p
1= ! +Bw; +1
= Tq00 T
Hence

1

100v3

Therefore the solution is, by substituting values found for A, B into the general solution from
above equation (4), we obtain

X(t)_ﬁ cos V3t + 0\/_Sln\/_f \/36 sm\/—t—( \/ge ~(t 1)Sln\/_(t—l)cp(f—l)) (%)

The following is a plot of the solution for up to t =6



6 Problem 5 (again, correct solution)

26

6

m:3,c:6,k:12,hencea)n:\/E:E:Zrad/secandézi: <

C

2
the system is underdamped and w; = w, V1 - &% = 24/1 - % = /3 rad/sec

2o,m  2x2x3 2

, hence

Let the response to 36 (f) be x,, (t) and let the response to 6 (¢ — 1) be x,,, (f) hence the response

of the system becomes

X (8) = x5, (£) + xp, (£) = xp, (£)

Where
xp, = et (A cos wyt + Bsin wgyt)
And
3 —Ewyt o3
Xy, (£) = Ee =@nt gin w4t
d
and

1
X, (H) = m—e‘&""(t‘l) sinwy (t-1)D(t-1)
OF

To find A, B use only xj, (f) At t = 0. We find
1

— A
100

x(0) =
And for the derivative
X (t) =, (t)
= —Ew, et (A cos wyt + Bsinwyt) + e 9nt (= Awy sin wyt + Bwy cos w,t)
Hence

x(0)=1=-8w,A + Bwy

1
1=——+B
100 © P

(1)

(2)

(3)
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Hence

1
B:1+ﬁ

V3

101
100v3
Therefore the solution is, by substituting values found for A, B into the general solution from

above equation (4), we obtain

-t 101 1 1
x(t) = °_(cos V3t + 0 sin V3t | + —=et sin \/gt—(—e‘(t‘l) sin\@(t—l)(‘b(t—l)) (5)

100 1003 \3 33

The following is a plot of the solution forup to t =6
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7 Problem 6

Let the response by x (). Hence x(t) = x; (t) + x, (t), where x, () is the particular solution,
which is the response due the the above forcing function. Using convolution

t
%, () :ff(T)h(t—T)dT
0
Where F (t) is the unit impulse response of a second order underdamped system which is
1
h(t) = ——e™@nt sin w4t
m

wy
hence

t
F
x, () = m_c‘id f sin (7) €= gin (w, (¢ - 7)) d
0

Foe—éa)nt t
= fe‘f“’"T sin (1) sin (w, (t - 7)) dt
0

mawg

[cos (A —B) —cos(A + B)] then

N =

Using sin AsinB =

sin (7) sin (wy (t — 7)) = % [cos (T —wy (t—1)) —cos(T+ wy (t—1))]

Then the integral becomes
t

t
[feéw” cos (T —wy (t—1))dt - fegwﬂ cos (T +wy (t - 1))dt
0

0

Foe_éw”t
med

x, (t) =
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Consider the first integral I; where

t
I = f 50T 00 (T — wy (f = 1)) dr
0

SaopT
Integrate by parts, where fudv = uv - fvdu, Let dv = " — v = ng and let u =
cos(T—wy(t—1)) > du=-(1+wy)sin(t —wy (t — 7)), hence
Ewy,T ¢ teéa)n'r
I = [cos (T—wy (t—1)) - [- 1+ wy)sin(t —wy (t—1))]dt
cwy | . Ewy
t
Eant 1] @ i
= [cos (t—wy(t-1)) ¢ —cos(0—wy (t-10)) ] + d+wq) e=“nTsin (T — wy (t — 1)) dt
ga)n 50)11 ga)n i
t
1 ¢
= — [cos (e’ - cos (wat)] + UH @) s i (7 — oy (¢ - 7)) de 1)
50}1’[ a)l’l

Integrate by parts again the last integral above, where f udv = uv - f vdu, Let dv = e@n™ —

e‘f“’ﬂ T

T and let u = sin(t —wy (t— 7)) = du = (1 + wy) cos (1t — wy (t — 7)), hence

0=

t éwnT t t &un’[
feé“’ﬂ sin(t—wy (t—1))dt = [Sin (T—wy(t-1)) ¢ ] - f ¢ 1+ wy)cos(t—wy(t—1))dr
0 éa)n o 0 Ea)n

¢
= Si)n [sin () ef@nt 4+ sin (a)dt)] - (1;:‘1) J; etnT cos (T — wy (t — 7)) dt
(2)

Substitute (2) into (1) we obtain

I = Fo [cos (t) e@nt — cos (a)dt)] +
1 1 1 t
o (57 sin 05 s wa] - S22 e cos (e~ 0t~ 0) dT)
1 A+wy)r . : (A+wp’
- ) eont _ t ) etont t|- =t —wg(t-1)d
Fo [cos( )e cos (wy )] + (Ea)n)Z [Sln( )e + sin (wy )] (&un)z ; e cos (T —wy (t = 1)) dt
. (1 + wy . . (1 + wd)z
— ¢ Ewpt _ t t cwnt f)|-
7 [cos( & cos (wy )] + o) [sm( ) et@nt + sin (wy )] o) 1
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Hence
2
I + (1(; w;iz) I = 0 [cos (f) e@“nt — cos (a)dt)] + (d+ a))';) [Sin (t) e@“nt + sin (wdt)]
wy n Wy
Ew,)’ + A+ wy) 1 . A+ . o ey
11( @ o Ld J: o [cos (t) e5@nt — cos (a)dt)]+ a):))'; [Sln (t) ec@nt + sin (wdt)]
(Ewy)? 1 " Qg o s
I = ((&un)z :)(1 " a)d)z] (cfa)n [cos (t) e£@nt — cos (wdt)] + (5a):))§ [sm (t) e£@nt + sin (wdt)])

_ Lw, [cos (f) e@nt — cos (a)dt)] + (1 + wy) [Sin (t) e@nt + sin (a)dt)]

(Ewp) + (1 +wy)

Now consider the second integral I, where
t
I = f 50T 08 (T + oy (= 7)) d
0

efwnt

and let u =

Integrate by parts, where fudv = uv — fvdu, Let dv = et — v = -

cos(T+wy(t—1)) = du=-(1-wy)sin(t + wy (t — 7)), hence

I, = [cos (T + wy (t— 1)) [- 1 -wy)sin(t + wy (t - T))]dt

e&un’r f teéa)n'r
cwy | . cwy

Swyt
= [COS (t+wy(t-1))
w

n

t
—cos(0+ wy (t-0)) éi)n ] + (15_0)6:‘1) !e‘fwﬂ sin (7t + wy (t—1))dt

t
1 [cos () et - cos (wat) ] + (- wa) f 5T gin (T + wy (t - 7)) dt (3)
n wn O

w &

Integrate by parts again the last integral above, where f udv = uv - f vdu, Let dv = @™ —

eéa)n T

Ewy

v= and let u = sin(t + wy (t — 1)) = du = (1 — wy) cos (t + wy (t — 7)), hence

f e&un'[ t eéa),,r
f 50T i (7 + wy (- 7)) dt = [sm (T +ay (t—1)) ] - f (1= ay) cos (T + wy (E— 1)) dr
0 Cfa’n o 0 ‘Sa)n

. o (1 - wg)
7 [sm (f) e*@nt —sin (a)dt)]— 7

f ' ot cos (1 + wy (¢ — 1) d
0
(4)
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Substitute (4) into (3) we obtain

I, = 51 [cos (t) e5nt — cos (a)dt)] +
Qéfﬁ@;hmméwugm%ﬂ—“;ﬁ{ﬂéwwwu+wa—ﬂwﬁ
2
- 2 om0 - o]+ L iy s - S [t oo
2
_ o [cos () e5@nt — cos (wdt)] + ((15;:))1;) [sin (£) e5@nt + sin (a)dt)] - (1(5_::;12) I,
Hence
2
I + (1(5_0)011);12) I = éi)n [COS (t) 5t — cos (wdt)] " ((15;:))2) [sin () en’ + sin (wdt)]
2 2
I o) +A-aal ) 1 () e5@nt — cos (wyt) | + 00 e, (t) e*“n + sin (wgt)
(Ea) )2 Ewn (560 )2
n (w,)” 1 n - @)
27 ((&un)z + (nl - a)d)zJ (&un [cos (e = cos (wqt)] + (Ea)n)i sin " sin (a)dt)])

 Ewy, [cos (t) eé@nt — cos (a)dt)] +(1-wy) [sin (t) eé@nt 4 sin (a)dt)]

(Ewn)” + (1= w,)°
Using the above expressions for I;, I, we find (and multiplying the solution by (® (t) - ® (t — 7))
since the force is only active from t = 0 to t = 7, we obtain

Foe_éw"t

Zma)d

X, (8) = (I = L) (@ () - D (t - 7))

= (@0 -D(t-m)=

Foe~wnt Ewy, [cos (t) e*¥nt — cos (a)dt)] + 1+ wy) [Sin (t) et@nt + sin (a)dt)]

2may (Ew)” + 1+ wp)
Foe~sont Ewy, [cos (t) eé@nt — cos (a)dt)] +(1-wy) [sin (t) e*@nt + sin (a)dt)] )
- 2may Eaw) + (1 - wa)?

Hence x, (t) = (® (t) - O (t — 7))

[poe—éwnt ( éwn[cos(t)eé“’"‘—cos(wdt)]+(1+a)d)[sin(t)e‘f“’nt+sin(a)dt)] Ewy [Cos(t)eé“]”t—cos(wdt)]+(1—wd)[sin(t)eé“’"t+sin(a)dt)] )]

2mag (Ewnf +(1+wy)? (Ewn)f+(1-wg)?

And

xp, (f) = e ¢9nt (A cos wyt + Bsin wyt)
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Hence the overall solution is
x(t) = e7%“n" (A cos wat + Bsinwgt) + x,, (1)

The above solution is a bit long due to integration by parts. I will not solve the same problem
using Laplace transformation method. The differential equation is

% (1) + 28w,k (t) + w2x (t) = f ()
Take Laplace transform, we obtain (assuming x (0) = xy and  (0) = v)
(2X = 5x(0) = £ (0)) + 2w, (X - x(0) + w2X = F ()
(52X —sxp — vo) + 28w, (sX — xp) + w2 X = F(s) (7)
Now we find Laplace transform of f (¢)

(o]

F(s) = f et (1) di

0
TT

= fe‘StFo sint dt
0

=F, [fe‘“ sin t dt}

0
Integration by parts gives

1+e7
F(s) = Fo| - ®)
Substitute (8) into (7) we obtain
1+e™

(52X — Xy — vo) + 28w, (sX —xo) + w2 X = T ]

Fo(1+¢e7™)
X (Sz + Z(Ea)nS + CL);%) —S5Xg—0g — 2(50.)”3% = T

Fo(1+¢7™)

X (SZ +28w,s + a)z) = O]_T + sxg + vy + 28w, Xg
Fo(1+e7™) + (1 + sz) X + Vg (1 + sz) +28w,xg (1 + 52)

1+ s2
Hence

_ Fo(1+¢e™)+ (1 + 52) SXo + Vg (1 + 52) + 28w, xg (1 + 52)

- (1 + 52) (52 +28w,s + a),zl)

F
Fy +vg + 6705 +5Xg + 520y + 82Xy + 28w, Xg + 25*Ew,x
(1 + 52) (52 +2&w,s + w%)

Now we can use inverse Laplace transform on the above. It is easier to do partial fraction
decomposition and use tables. I used CAS to do this and this is the result. I plot the solution
x (t). I used the following values to be able to obtain a plot £ = 0.5,w, =2,Fy =10,xy = 1,7y =
0
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8 Solving problem shown in class for Vibration 431,
CSUF, Spring 2009

Problem
Solve ¥ + 2x + 4x = 6 (t) — 6 (t — 4) with the IC’s x (0) = 1mm, x (0) = -1mm

Answer

m:1,c:2,k:4,hencea)n:\/E:VZ:Zrad/secandE:Ci— < 2 _1 hence

o 2wym 2x2x1 20

2
the system is underdamped and w; = w, V1 — &2 = 24/1 - % = /3 rad/sec

Let the response to 6 (t) be x; (t) and let the response to 0 (f — 4) be x; (t) hence the response
of the system becomes

x (£) = x5 (£) + x1 () — x2 (F) 1)
Where
xp, = et (A cos wyt + Bsin wgyt) (1)
And
x1 () = mia)de‘&”nt sin wyt (3)
and

1
Xo (t) = m—ajde_éa)"(t_@ sin wy (t - 4) D (t - 4)

Hence, substitute (2),(3) ,(4) into (1)

1 1
x () = e¢¥nt (A cos wyt + Bsin wgt) + ——e ¢@nt sin wyt — ——e Ot gin (w, (t — 4)) D (t — 4)
mawy mawgy
(4)
Now using IC to find A, B
x(0)=1=A
and

¥ (t) = —Ew,e~“nt (A cos wyt + Bsinwyt) + e ¢t (= Aw, sin w,t + Bwy cos w,t) +

p— (—Ea)ne‘g“’"t sin wyt + wze~¢@nt cos a)dt) -
e‘gwn(t_4)
m—wd (a)d COS (a)d (t - 4)) ) (t - 4) +6 (t - 4) sin (a)d (t - 4:)) - éa)na)d sin (Cl)d (t - 4)) O (t - 4:))

At t = 0,x(0) = -1, Hence the above becomes (terms with 6 (f —4) and ® (f — 4) vanish at
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t = 0 by definition)
1
-1= —Ea)nA + Ba)d + a

B =

A

Hence (1) becomes

1 1 . . 1 . .
x (f) = e¢wnt (cos wyt — —=sin wdt) + ——e¢@nt sin wyt — ——e @D gin (w, (- 4)) D (t - 4)
mawy

\/5 mawg;

If we substitute the numerical values for the problem parameters, the above becomes

x(t)=et (cos V3t - % sin \/gt) + % sin V3t - %e‘(t“n sin (\/5 (t-— 4)) O (t-4)

=| et cos V3t - %e‘(t“g sin (\/§ (t- 4)) D (t-4)

Compare the above with the solution given in class, which is

x(t)=| et (cos \3t + % sin \/§t) - %e‘(t_‘l) sin (\/5 (t- 4)) O (t-4)

9 Solving problem shown in class for Vibration 431,
CSUF, Spring 2009. Version 2

Problem
Solve X + 2x + 4x = 6 (t) — 6 (t — 4) with the IC’s x (0) = 1mm, x (0) = -1mm

Answer

m:1,c:2,k:4,hencea)n:\/E:VZ:Zrad/secandE:Ci— < 2 _1 hence

o 2wym 2x2x1 20

2
the system is underdamped and w; = w, V1 — &2 = 24/1 - % = /3 rad/sec

Let the response to 6 (t) be x,, (t) and let the response to 6 (f - 4) be x,, (t) hence the response
of the system becomes

x () = xp, (£) + xp, (£) = xp, (£) @)

Where
xp, = et (A cos wyt + Bsin wgyt) (1)
And
1 .
Xp, (t) = m—a)de_éw"t Sin wyt (3)



and
1
Xy, (£) = ——e ol sinw, (t - 4) O (t - 4)
mawg
Hence, substitute (2),(3) ,(4) into (1)
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1 1 :
x (t) = e~¢@nt (A cos wyt + Bsin w,t) + m—e‘*“’ﬂt sin wyt — ——e ==Y gin (wy (t — 4)) D (t — 4)

Wy mawg

Now using IC to find A, B

Hence

(4)

Now take the derivative of the above and evaluate at zero to find B. In doing so, we need to
consider only the x,. The reason is that the particular solution x,, (f) of the delayed pulse

(the second pulse) will have no effect at t = 0 and the first pulse particular solution x,, (f)
will also have no contribution, since its response is assume to occur at 0%, i.e. an infitismal

time after t = 0. Therefore, since we intend to evaluate # () at t = 0, we only need to take x;,

derivative at this point

& (t) = —Ew,e~“nt (A cos wyt + Bsinwyt) + e ¢9nt (= Awy sin wyt + Bwy cos w,t)
At t =0,x%(0) = -1, Hence the above becomes
-1 =-fw,A+ Bwy
~1=-1+BV3
B=0

Hence (1) becomes
1 1
x (1) = e7@nt cos wyt + ——e~¢@nt sin wyt — ——e~*n=D sin (w, (t — 4)) P (t — 4)
mawy mawgy

If we substitute the numerical values for the problem parameters, the above becomes

x(t) = etcos V3t + e—_t sin V3t — %3_(t_4) sin (\/5 (t- 4)) D (t-4)

V3
=| et (cos V3t + % sin ‘/gt) - %E_M) sin(V3(t-4) @t -4)

Which now matches the solution given in class
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