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1 Problem 1

1.1 Part (a)

Initially, when mass is given velocity 𝑣0 then the equation of motion is

𝑚𝑥̈ + 𝑘2𝑥 = 0

with IC 𝑥̇ (0) = 𝑣0, 𝑥 (0) = 0, hence the solution is

𝑥 (𝑡) = 𝐴 cos𝜔𝑛𝑡 + 𝐵 sin𝜔𝑛𝑡

Where 𝜔𝑛 = �
𝑘2
𝑚 in this case.

1
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From IC 𝑥 (0) = 0 we obtain that 𝐴 = 0 and now

𝑥̇ (𝑡) = 𝐵
�
𝑘2
𝑚

cos
�
𝑘2
𝑚
𝑡

Hence from IC 𝑥̇ (0) = 𝑣0 we obtain that 𝐵 = 𝑣0

�
𝑘2
𝑚

and then we write the solution as

𝑥 (𝑡) =
�

𝑚
𝑘2
𝑣0 sin

�
𝑘2
𝑚
𝑡

The above is the solution for EQM of the mass when it is attached to 𝑘2spring .

Now the mass will move to the right, losing its kinetic energy to the potential energy of the

spring until it stops at the maximum displacement on the right, which will be
�

𝑚
𝑘2
𝑣0. Then

the mass will starts to move to the left again towards the static equilibrium position, gaining
speed as it does and the spring losing potential energy until the mass is back to 𝑥 = 0 where
it will have speed of 𝑣0 but in the left direction. When it hits the left spring 𝑘1, it will move
in an EQM given by

𝑚𝑥̈ + 𝑘1𝑥 = 0

With initial 𝑥 given by static equilibrium position (i.e. 𝑥 = 0) and initial velocity of 𝑣0 but to
the left direction. Hence as before, we obtain

𝑥 (𝑡) =
�

𝑚
𝑘1
𝑣0 sin

�
𝑘1
𝑚
𝑡

The above is the solution for EQM of the mass when it is attached to spring 𝑘1 . We see

that the maximum displacement will be 𝑥 (𝑡) =
�

𝑚
𝑘1
𝑣0 in this case.

Therefore, we conclude the following:

Mass will move to the right of the static equilibrium position a maximum distance of
�

𝑚
𝑘2
𝑣0

and

Mass will move to the left of the static equilibrium position a maximum distance of
�

𝑚
𝑘1
𝑣0

And since 𝑘2 > 𝑘1, then it will move the left a longer distance than to the right.

1.2 Part(b)

From above, the period of motion when the mass is attached to 𝑘2 is found by setting�
𝑘2
𝑚 𝑡 =

2𝜋𝑓𝑡 hence 𝑓 = 1
2𝜋�

𝑘2
𝑚 , therefore 𝑇 = 2𝜋

�
𝑚
𝑘2

sec
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The period of motion when the mass is attached to 𝑘1 is found by setting�
𝑘1
𝑚 𝑡 = 2𝜋𝑓𝑡 hence

𝑓 = 1
2𝜋�

𝑘1
𝑚 , therefore 𝑇 = 2𝜋

�
𝑚
𝑘1

sec

We see that the period when the mass is attached to 𝑘1 is longer than the period when the
mass is attached to 𝑘2.
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2 Problem 2

The Lagrangian which I will call Γ (since I am using 𝐿 for the current length of the band)
is given by 𝑇 − 𝑈, where 𝑇 is the kinetic energy of the system and 𝑈 is the potential energy
of the system.

We take 𝑥 to be from the unstretched length of the rubber band along the length of the
band.

First, we determine the velocity of mass 𝑚. Assume that the length of the rubber band at
any point time is given by 𝐿 (𝑡), then

𝑣2 = 𝑣2ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 + 𝑣2𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙

= �
𝑑
𝑑𝑡
(𝑠ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙)�

2

+ �
𝑑
𝑑𝑡
(𝑠𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙)�

2

= �
𝑑
𝑑𝑡
(𝐿 (𝑡) sin𝜃)�

2

+ �
𝑑
𝑑𝑡
(𝐿 (𝑡) cos𝜃)�

2

= �𝐿̇ (𝑡) sin𝜃 + 𝐿 (𝑡) cos (𝜃) 𝜃̇�
2
+ �𝐿̇ (𝑡) cos𝜃 − 𝐿 (𝑡) sin (𝜃) 𝜃̇�

2

= 𝐿̇2 (𝑡) sin2 𝜃 + 𝐿2 (𝑡) cos2 (𝜃) 𝜃̇2 + 2𝐿̇ (𝑡) sin (𝜃) 𝐿 (𝑡) cos (𝜃) 𝜃̇
+ 𝐿̇2 (𝑡) cos2 𝜃 + 𝐿2 (𝑡) sin2 (𝜃) 𝜃̇2 − 2𝐿̇ (𝑡) cos (𝜃) 𝐿 (𝑡) sin (𝜃) 𝜃̇
= 𝐿̇2 (𝑡) �sin2 𝜃 + cos2 𝜃� + 𝐿2 (𝑡) 𝜃̇2 �cos2 (𝜃) + sin2 (𝜃)�

= 𝐿̇2 (𝑡) + 𝐿2 (𝑡) 𝜃̇2

Therefore, the system kinetic energy is

𝑇 =
1
2
𝑚𝑣2

=
1
2
𝑚 �𝐿̇2 (𝑡) + 𝐿2 (𝑡) 𝜃̇2�

Now we find 𝑈, the potential energy for the mass, with the help of this diagram
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𝑈𝑚𝑎𝑠𝑠 = −𝑚𝑔 (𝐿 cos𝜃 − 𝑙)
Where the minus sign at the front since the mass has lost PE as it is assume 𝑥 has stretched
the band and hence the mass is lower than its static position.

And the potential energy for the band is

𝑈𝑏𝑎𝑛𝑑 =
1
2
𝑘𝑥2 (𝑡)

Hence, the Lagrangian Γ is

Γ = 𝑇 − 𝑈

=
1
2
𝑚 �𝐿̇2 (𝑡) + 𝐿2 (𝑡) 𝜃̇2� − �

1
2
𝑘𝑥2 (𝑡) − 𝑚𝑔 (𝐿 cos𝜃 − 𝑙)�

But 𝐿 = 𝑙 + 𝑥 (𝑡), hence the above becomes

Γ =
1
2
𝑚
⎡
⎢⎢⎢⎢⎣�
𝑑
𝑑𝑡
(𝑙 + 𝑥 (𝑡))�

2

+ (𝑙 + 𝑥 (𝑡))2 𝜃̇2
⎤
⎥⎥⎥⎥⎦ − �

1
2
𝑘𝑥2 (𝑡) − 𝑚𝑔 [(𝑙 + 𝑥 (𝑡)) cos𝜃 − 𝑙]�

Hence

Γ = 1
2𝑚�𝑥̇

2 (𝑡) + �𝑙2 + 𝑥2 (𝑡) + 2𝑙𝑥 (𝑡)� 𝜃̇2� − 1
2𝑘𝑥

2 (𝑡) + 𝑚𝑔 [𝑙 (cos𝜃 − 1) + 𝑥 (𝑡) cos𝜃]

Hence EQM is now found. For 𝜃 we have

𝑑
𝑑𝑡
𝜕Γ
𝜕𝜃̇

−
𝜕Γ
𝜕𝜃

= 0

𝑑
𝑑𝑡 �

1
2
𝑚 �2 �𝑙2 + 𝑥2 (𝑡) + 2𝑙𝑥 (𝑡)� 𝜃̇�� − 𝑚𝑔 [−𝑙 sin𝜃 − 𝑥 (𝑡) sin𝜃] = 0

𝑚 �(2𝑥 (𝑡) 𝑥̇ (𝑡) + 2𝑙𝑥̇ (𝑡)) 𝜃̇ + �𝑙2 + 𝑥2 (𝑡) + 2𝑙𝑥 (𝑡)� 𝜃̈� + 𝑚𝑔 [𝑙 sin𝜃 + 𝑥 (𝑡) sin𝜃] = 0
�𝑙2 + 𝑥2 (𝑡) + 2𝑙𝑥 (𝑡)� 𝜃̈ + (2𝑥 (𝑡) 𝑥̇ (𝑡) + 2𝑙𝑥̇ (𝑡)) 𝜃̇ + 𝑔 sin𝜃 [𝑙 + 𝑥 (𝑡)] = 0

�𝑙2 + 𝑥2 (𝑡) + 2𝑙𝑥 (𝑡)� 𝜃̈ + (𝑙 + 𝑥 (𝑡)) 2𝑥̇ (𝑡) 𝜃̇ + 𝑔 sin𝜃 [𝑙 + 𝑥 (𝑡)] = 0

The above can be simplified more if we observer that �𝑙2 + 𝑥2 (𝑡) + 2𝑙𝑥 (𝑡)� = [𝑙 + 𝑥 (𝑡)]2 = 𝐿2
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and 𝑙 + 𝑥 (𝑡) = 𝐿, hence EQM becomes

𝐿2𝜃̈ + 2𝐿𝑥̇𝜃̇ + 𝑔𝐿 sin𝜃 = 0
Or

𝐿𝜃̈ + 2𝑥̇𝜃̇ + 𝑔 sin𝜃 = 0

Using small angle approximation, sin𝜃 ≃ 𝜃 and 𝜃̇ can be neglected, we obtain

𝐿𝜃̈ + 𝑔𝜃 = 0

𝜃̈ +
𝑔
𝐿
𝜃 = 0

Hence, the e�ective sti�ness is 𝑔
𝐿 and 𝜔𝑛𝜃 = �

𝑔
𝐿 = �

𝑔
𝑙+𝑥(𝑡)Hence we observe that as the band

is stretched more, 𝜔𝑛 becomes smaller and the period becomes longer. Now we derive the
EQM in the 𝑥 direction
1
2𝑚�𝑥̇

2 (𝑡) + �𝑙2 + 𝑥2 (𝑡) + 2𝑙𝑥 (𝑡)� 𝜃̇2� − 1
2𝑘𝑥

2 (𝑡) + 𝑚𝑔 [𝑙 (cos𝜃 − 1) + 𝑥 (𝑡) cos𝜃]

𝑑
𝑑𝑡
𝜕Γ
𝜕𝑥̇

−
𝜕Γ
𝜕𝑥

= 0

𝑑
𝑑𝑡
(𝑚𝑥̇ (𝑡)) + 𝑘𝑥 (𝑡) = 0

Hence EQM is

𝑥̈ (𝑡) + 𝑘
𝑚𝑥 (𝑡) = 0

Hence, the e�ective sti�ness is 𝑘
𝑚 and 𝜔𝑛𝑥 = �

𝑘
𝑚 The solutions can now be given easily as

𝜃 (𝑡) = 𝐴 cos𝜔𝑛𝜃𝑡 + 𝐵 sin𝜔𝑛𝜃𝑡
𝑥 (𝑡) = 𝐶 cos𝜔𝑛𝑥𝑡 + 𝐷 sin𝜔𝑛𝑥𝑡

or

𝜃 (𝑡) = 𝐴 cos
�

𝑔
𝑙 + 𝑥 (𝑡)

𝑡 + 𝐵 sin
�

𝑔
𝑙 + 𝑥 (𝑡)

𝑡

𝐿 (𝑡) = 𝑙 + 𝐶 cos
�
𝑘
𝑚
𝑡 + 𝐷 sin

�
𝑘
𝑚
𝑡

Where 𝐴,𝐵, 𝐶,𝐷 can be obtained from initial conditions.
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3 Problem 3

EQM is given by

𝜃̈ + 𝜔2
0 �𝜃 −

𝜃3

6 �
= 0

The above can be put in the form

𝜃̈ = 𝑓 (𝜃) (1)

Where

𝑓 (𝜃) = 𝜔2
0 �
𝜃3

6
− 𝜃�

Hence, this is an autonomous di�erential equation since 𝑓 (𝜃) does not depend on the
independent variable 𝑡 explicitly.

Now, Let 𝑥1 = 𝜃 and 𝑥2 = 𝜃̇, then
𝑑𝑥1
𝑑𝑡 = 𝑥2 and using the new state variables we can rewrite

the di�erential equation as

𝑑𝑥2
𝑑𝑡

+ 𝜔2
0 �𝑥1 −

𝑥31
6 �

= 0

𝑑𝑥2
𝑑𝑥1

𝑑𝑥1
𝑑𝑡

= −𝜔2
0 �𝑥1 −

𝑥31
6 �

𝑑𝑥2
𝑑𝑥1

𝑥2 = −𝜔2
0 �𝑥1 −

𝑥31
6 �

𝑥2𝑑𝑥2 = −𝜔2
0 �𝑥1 −

𝑥31
6 �

𝑑𝑥1

Integrate both side

𝑥22
2
= −𝜔2

0��𝑥1 −
𝑥31
6 �

𝑑𝑥1 + 𝐶1

𝑥22 = −2𝜔2
0 �
𝑥21
2
−
𝑥41
24�

+ 𝐶1

But 𝑥2 = 𝜃̇ and 𝑥1 = 𝜃, then the above becomes

𝜃̇2 = −2𝜔2
0 �
𝜃2

2
−
𝜃4

24�
+ 𝐶1 (2)
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We are told that when 𝜃 = 𝜃0 then 𝜃̇ = 0, hence from the above

0 = −2𝜔2
0 �
𝜃20
2
−
𝜃40
24�

+ 𝐶1

𝐶1 = 𝜔2
0 �𝜃20 −

𝜃40
12 �

Then (2) becomes

𝜃̇2 = −2𝜔2
0 �
𝜃2

2
−
𝜃4

24�
+ 𝜔2

0 �𝜃20 −
𝜃40
12 �

or

𝜃̇2 = 𝜔2
0 �

1
12
𝜃4 − 𝜃2� + 𝜔2

0 �𝜃20 −
𝜃40
12 �

Therefore

𝜃̇ = 𝜔0
�

1
12
𝜃4 − 𝜃2 + 𝜃20 −

𝜃40
12

𝑑𝜃
𝑑𝑡

=
𝜔0

√12�
𝜃4 − 12𝜃2 + 12𝜃20 − 𝜃40

=
𝜔0

2√3�
𝜃2 �𝜃2 − 12� + 𝜃20 �12 − 𝜃20�

Hence integrating the above we obtain

�
1

�𝜃
2 �𝜃2 − 12� + 𝜃20 �12 − 𝜃20�

𝑑𝜃 =
𝜔0

2√3
�𝑑𝑡 + 𝐶2

�
1

�𝜃
2 �𝜃2 − 12� + 𝜃20 �12 − 𝜃20�

𝑑𝜃 =
𝜔0

2√3
𝑡 + 𝐶2

We can stop here. What remains is to evaluate the integral above by some analytical method
to obtain an expression for 𝜃 (𝑡). The constant 𝐶2 can be found if we are given the position
initial condition.
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4 Problem 3, di�erent method

EQM is given by

𝜃̈ + 𝜔2
0 �𝜃 −

𝜃3

6 �
= 0

The above can be put in the form

𝜃̈ = 𝑓 (𝜃) (1)

Where

𝑓 (𝜃) = 𝜔2
0 �
𝜃3

6
− 𝜃�

Hence, this is an autonomouse di�erential equation since 𝑓 (𝜃) does not depend on the
independent variable 𝑡 explicility.

To solve (1), we first write

𝜃̈ =
𝑑
𝑑𝑡 �

𝑑𝜃
𝑑𝑡 �

= �
𝑑
𝑑𝜃 �

𝑑𝜃
𝑑𝑡 ��

𝑑𝜃
𝑑𝑡

=
⎡
⎢⎢⎢⎢⎣
𝑑
𝑑𝜃

⎛
⎜⎜⎜⎜⎝�
𝑑𝑡
𝑑𝜃�

−1⎞⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎦ �
𝑑𝑡
𝑑𝜃�

−1

(2)

But

𝑑
𝑑𝜃

⎛
⎜⎜⎜⎜⎝�
𝑑𝑡
𝑑𝜃�

−1⎞⎟⎟⎟⎟⎠ = − �
𝑑𝑡
𝑑𝜃�

−2 𝑑2𝑡
𝑑𝜃2 �

𝑑𝑡
𝑑𝜃�

−1

Substitute the above into (2) we obtain

𝜃̈ = − �
𝑑𝑡
𝑑𝜃�

−2 𝑑2𝑡
𝑑𝜃2 �

𝑑𝑡
𝑑𝜃�

−1

= − �
𝑑𝑡
𝑑𝜃�

−3 𝑑2𝑡
𝑑𝜃2

(3)

But

1
2
𝑑
𝑑𝜃

⎛
⎜⎜⎜⎜⎝�
𝑑𝑡
𝑑𝜃�

−2⎞⎟⎟⎟⎟⎠ = − �
𝑑𝑡
𝑑𝜃�

−3 𝑑2𝑡
𝑑𝜃2

(4)

Compare (4) and (3) we see that (3) can be written as
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𝜃̈ =
1
2
𝑑
𝑑𝜃

⎛
⎜⎜⎜⎜⎝�
𝑑𝑡
𝑑𝜃�

−2⎞⎟⎟⎟⎟⎠

THerefore, we use this expression for 𝜃̈ in (1) and obtain

1
2
𝑑
𝑑𝜃

⎛
⎜⎜⎜⎜⎝�
𝑑𝑡
𝑑𝜃�

−2⎞⎟⎟⎟⎟⎠ = 𝑓 (𝜃)

Substitute the expression for 𝑓 (𝜃) we obtain

1
2

𝑑
𝑑𝜃 ��

𝑑𝑡
𝑑𝜃
�
−2
� = 𝜔2

0 �
𝜃3

6 − 𝜃�

Integrate we obtain

1
2 �

𝑑𝑡
𝑑𝜃�

−2

= �𝜔2
0 �
𝜃3

6
− 𝜃� 𝑑𝜃 + 𝐶1

�
𝑑𝑡
𝑑𝜃�

2

=
1

2∫𝜔2
0 �

𝜃3

6 − 𝜃� 𝑑𝜃 + 𝐶1

=
1

2𝜔2
0 �

𝜃4

4×6 −
𝜃2

2
� + 𝐶1

Hence

𝑑𝑡
𝑑𝜃

=
1

�
2𝜔2

0 �
𝜃4

4×6 −
𝜃2

2
� + 𝐶1

Integrate again, we obtain
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𝑡 = ��2𝜔2
0 �
𝜃4

24
−
𝜃2

2 �
+ 𝐶1�

−1
2
𝑑𝜃 + 𝐶2

= 𝐶2 +�
1

�
2𝜔2

0 �
𝜃4

24 −
𝜃2

2
� + 𝐶1

𝑑𝜃

= 𝐶2 +�
1

�
𝜃4

12 − 𝜔
2
0𝜃2 + 𝐶1

𝑑𝜃

= 𝐶2 +�
√12

�𝜃
4 − 12𝜔2

0𝜃2 + 𝐶3

𝑑𝜃

Where 𝐶3 = 12𝐶1, a new constant. Hence

𝑡 = 𝐶2 + 2√3∫
1

�𝜃4−12𝜔2
0𝜃2+𝐶3

𝑑𝜃

second approach

Let
𝑥1 = 𝜃
𝑥2 = 𝜃̇

⎫⎪⎪⎬
⎪⎪⎭

𝑥̇1 = 𝑥2
𝑥̇2 = −𝜔2

0 �𝑥1 −
𝑥31
6
�
, hence using the new state variables we can rewrite the

di�erential equation as

𝜃̈ + 𝜔2
0 �𝜃 −

𝜃3

6 �
= 0

𝑑𝑥2
𝑑𝑡

+ 𝜔2
0 �𝑥1 −

𝑥31
6 �

= 0

𝑑𝑥2
𝑑𝑥1

𝑑𝑥1
𝑑𝑡

= −𝜔2
0 �𝑥1 −

𝑥31
6 �

𝑑𝑥2
𝑑𝑥1

𝑥2 = −𝜔2
0 �𝑥1 −

𝑥31
6 �

𝑥2𝑑𝑥2 = −𝜔2
0 �𝑥1 −

𝑥31
6 �

𝑑𝑥1

Integrate both side
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𝑥22
2
= −𝜔2

0��𝑥1 −
𝑥31
6 �

𝑑𝑥1 + 𝐶1

𝑥22 = −2𝜔2
0 �
𝑥21
2
−
𝑥41
24�

+ 𝐶1

But 𝑥2 = 𝜃̇ and 𝑥1 = 𝜃, then the above becomes

𝜃̇2 = −2𝜔2
0 �
𝜃2

2
−
𝜃4

24�
+ 𝐶1 (2)

We are told that when 𝜃 = 𝜃0 then 𝜃̇ = 0, hence from the above

0 = −2𝜔2
0 �
𝜃20
2
−
𝜃40
24�

+ 𝐶1

𝐶1 = 𝜔2
0 �𝜃20 −

𝜃40
12 �

Then (2) becomes

𝜃̇2 = −2𝜔2
0 �
𝜃2

2
−
𝜃4

24�
+ 𝜔2

0 �𝜃20 −
𝜃40
12 �

or

𝜃̇2 = −𝜔2
0 �𝜃2 −

1
12
𝜃4� + 𝜔2

0 �𝜃20 −
𝜃40
12 �

𝜃̇ =
�
𝜔2
0 �

1
12
𝜃4 − 𝜃2� + 𝜔2

0 �𝜃20 −
𝜃40
12 �

= 𝜔0
�

1
12
𝜃4 − 𝜃2 + 𝜃20 −

𝜃40
12

=
𝜔0

2√3�
𝜃4 − 12𝜃2 + 12𝜃20 − 𝜃40

Hence integrating the above we obtain
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𝜃 (𝑡) =
𝜔0

2√3
��𝜃

4 − 12𝜃2 + 12𝜃20 − 𝜃40𝑑𝑡

= �
𝜔0

2√3�
𝜃4 − 12𝜃2 + 12𝜃20 − 𝜃40� 𝑡 + 𝐶2
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5 Problem 4

The nonlinear equation is

𝑥̈ + 0.1 �𝑥2 − 1� 𝑥̇ + 𝑥 = 0

Let

𝑥1 = 𝑥
𝑥2 = 𝑥̇

⎫⎪⎪⎬
⎪⎪⎭
𝑥̇1 = 𝑥̇
𝑥̇2 = −0.1 �𝑥2 − 1� 𝑥̇ − 𝑥

⎫⎪⎪⎬
⎪⎪⎭
𝑥̇1 = 𝑥2
𝑥̇2 = −0.1 �𝑥21 − 1� 𝑥2 − 𝑥1

Hence ⎛
⎜⎜⎜⎜⎝
𝑥̇1
𝑥̇2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

𝑥2
−0.1 �𝑥21 − 1� 𝑥2 − 𝑥1

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
𝑔 (𝑥1, 𝑥2)
𝑓 (𝑥1, 𝑥2)

⎞
⎟⎟⎟⎟⎠

Solve for

⎛
⎜⎜⎜⎜⎝
𝑥̇1
𝑥̇2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠ for equilibrium. Hence 𝑥2 = 0 and therefore 𝑥1 = 0 as well. Now we

obtain the linearized state matrix 𝐴 at the equilibrium point found. First we note that
𝜕𝑔
𝜕𝑥1

= 0, 𝜕𝑔
𝜕𝑥2

= 1, 𝜕𝑓
𝜕𝑥1

= 𝜕
𝜕𝑥1

�−0.1𝑥21𝑥2 + 0.1𝑥2 − 𝑥1� = −0.2𝑥1𝑥2 − 1 and
𝜕𝑓
𝜕𝑥2

= −0.1𝑥21 + 0.1, hence

𝐴 =

⎛
⎜⎜⎜⎜⎜⎜⎝

𝜕𝑔
𝜕𝑥1

𝜕𝑔
𝜕𝑥2

𝜕𝑓
𝜕𝑥1

𝜕𝑓
𝜕𝑥2

⎞
⎟⎟⎟⎟⎟⎟⎠
𝑥1=0,𝑥2=0

=
⎛
⎜⎜⎜⎜⎝

0 1
−0.2𝑥1𝑥2 − 1 −0.1𝑥21 + 0.1

⎞
⎟⎟⎟⎟⎠
𝑥1=0,𝑥2=0

=
⎛
⎜⎜⎜⎜⎝
0 1
−1 0.1

⎞
⎟⎟⎟⎟⎠

Find the eigenvalues, we obtain

�
−𝜆 1
−1 0.1 − 𝜆

� = 0

−0.1𝜆 + 𝜆2 + 1 = 0

Hence

𝜆1,2 = {0.05 + 0.998 75𝑖, 0.05 − 0.998 75𝑖}

This is of the form

𝜆 = 𝛼 ± 𝛽𝑖



15

With 𝛼 > 0, hence unstable, and spiral out. So. now we can draw the phase portrait near

(0, 0) as shown below.

Side QUESTION:

If I wanted to draw the phase plot itself, I am getting this. How to finish this last step? It is
not separable?

To obtain phase plane plot, we need to express 𝑥2 as function of 𝑥1. Looking at the original
nonlinear di�erential equation again and rewrite using the state variables, we obtain

𝑥̈ + 0.1 �𝑥2 − 1� 𝑥̇ + 𝑥 = 0
𝑑𝑥2
𝑑𝑡

+ 0.1 �𝑥21 − 1� 𝑥2 + 𝑥1 = 0

𝑑𝑥2
𝑑𝑥1

𝑑𝑥1
𝑑𝑡

+ 0.1 �𝑥21 − 1� 𝑥2 + 𝑥1 = 0

𝑑𝑥2
𝑑𝑥1

𝑥2 + 0.1 �𝑥21 − 1� 𝑥2 + 𝑥1 = 0

𝑑𝑥2
𝑑𝑥1

𝑥2 + 0.1𝑥21𝑥2 − 0.1𝑥2 + 𝑥1 = 0

𝑑𝑥2
𝑑𝑥1

= 0.1 − 0.1𝑥21 −
𝑥1
𝑥2
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6 Problem 5

The equation is

𝜃̈ + 0.5𝜃̇ + sin𝜃 = 0.8
Let

𝑥1 = 𝜃
𝑥2 = 𝜃̇

⎫⎪⎪⎬
⎪⎪⎭
𝑥̇1 = 𝜃̇
𝑥̇2 = 0.8 − 0.5𝜃̇ − sin𝜃

⎫⎪⎪⎬
⎪⎪⎭
𝑥̇1 = 𝑥2
𝑥̇2 = 0.8 − 0.5𝑥2 − sin 𝑥1

Hence ⎛
⎜⎜⎜⎜⎝
𝑥̇1
𝑥̇2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

𝑥2
0.8 − 0.5𝑥2 − sin 𝑥1

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
𝑔 (𝑥1, 𝑥2)
𝑓 (𝑥1, 𝑥2)

⎞
⎟⎟⎟⎟⎠

Solve for

⎛
⎜⎜⎜⎜⎝
𝑥̇1
𝑥̇2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠ for equilibrium. Hence 𝑥2 = 0 and therefore 𝑥1 = sin−1 (0.8).

Now we obtain the linearized state matrix 𝐴 at the equilibrium point found. First we note

that 𝜕𝑔
𝜕𝑥1

= 0, 𝜕𝑔
𝜕𝑥2

= 1, 𝜕𝑓
𝜕𝑥1

= 𝜕
𝜕𝑥1

(0.8 − 0.5𝑥2 − sin 𝑥1) = − cos 𝑥1 and
𝜕𝑓
𝜕𝑥2

= −0.5, hence

𝐴 =

⎛
⎜⎜⎜⎜⎜⎜⎝

𝜕𝑔
𝜕𝑥1

𝜕𝑔
𝜕𝑥2

𝜕𝑓
𝜕𝑥1

𝜕𝑓
𝜕𝑥1

⎞
⎟⎟⎟⎟⎟⎟⎠
𝑥1=sin−1(0.8),𝑥2=0

=
⎛
⎜⎜⎜⎜⎝

0 1
− cos 𝑥1 −0.5

⎞
⎟⎟⎟⎟⎠
𝑥1=sin−1(0.8),𝑥2=0

=
⎛
⎜⎜⎜⎜⎝

0 1
− cos �sin−1 (0.8)� −0.5

⎞
⎟⎟⎟⎟⎠

=
⎛
⎜⎜⎜⎜⎝

0 1
− cos (0.927295) −0.5

⎞
⎟⎟⎟⎟⎠

=
⎛
⎜⎜⎜⎜⎝
0 1

−0.6 −0.5

⎞
⎟⎟⎟⎟⎠

Hence find the eigenvalues, we obtain

�
−𝜆 1
−0.6 −0.5 − 𝜆

� = 0

𝜆2 + 0.5𝜆 + 0.6 = 0
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Hence

𝜆1,2 = {−0.25 + 0.733 14𝑖, −0.25 − 0.733 14𝑖}

This is of the form

𝜆 = 𝛼 ± 𝛽𝑖

With 𝛼 < 0, , Hence stable, spiral in.
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7 Problem 6

The equation is

𝜃̈ + 𝑐𝜃̇ + sin𝜃 = 0
With IC 𝜃 (0) = 𝜃0,and 𝜃̇ (0) = 0 Let

𝑥1 = 𝜃
𝑥2 = 𝜃̇

⎫⎪⎪⎬
⎪⎪⎭
𝑥̇1 = 𝜃̇
𝑥̇2 = −𝑐𝜃̇ − sin𝜃

⎫⎪⎪⎬
⎪⎪⎭
𝑥̇1 = 𝑥2
𝑥̇2 = −𝑐𝑥2 − sin 𝑥1

Hence ⎛
⎜⎜⎜⎜⎝
𝑥̇1
𝑥̇2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

𝑥2
−𝑐𝑥2 − sin 𝑥1

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
𝑔 (𝑥1, 𝑥2)
𝑓 (𝑥1, 𝑥2)

⎞
⎟⎟⎟⎟⎠

Now, we are told to consider the initial condition 𝜃̇ = 0, but this is the same as 𝑥̇1 = 0. But
if speed is zero, then acceleration must also be zero, hence 𝜃̈ = 0 or 𝑥̇2 = 0. Therefore we

need to solve for

⎛
⎜⎜⎜⎜⎝
𝑥̇1
𝑥̇2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠ or

⎛
⎜⎜⎜⎜⎝

𝑥2
−𝑐𝑥2 − sin 𝑥1

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

Therefore 𝑥2 = 0 and then sin 𝑥1 = 0 or 𝑥1 = 𝑛𝜋 for 𝑛 = 0, ±1, ±2,⋯.

Now we obtain the linearized state matrix 𝐴 at the equilibrium point found. First we note

that 𝜕𝑔
𝜕𝑥1

= 0, 𝜕𝑔
𝜕𝑥2

= 1, 𝜕𝑓
𝜕𝑥1

= − cos 𝑥1 and
𝜕𝑓
𝜕𝑥2

= −𝑐, hence

𝐴 =

⎛
⎜⎜⎜⎜⎜⎜⎝

𝜕𝑔
𝜕𝑥1

𝜕𝑔
𝜕𝑥2

𝜕𝑓
𝜕𝑥1

𝜕𝑓
𝜕𝑥2

⎞
⎟⎟⎟⎟⎟⎟⎠
𝑥1=𝑛𝜋,𝑥2=0

=
⎛
⎜⎜⎜⎜⎝

0 1
− cos 𝑥1 −𝑐

⎞
⎟⎟⎟⎟⎠
𝑥1=𝑛𝜋,𝑥2=0

=
⎛
⎜⎜⎜⎜⎝

0 1
− cos (𝑛𝜋) −𝑐

⎞
⎟⎟⎟⎟⎠
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Hence find the eigenvalues, we obtain

�
−𝜆 1

− cos (𝑛𝜋) −𝑐 − 𝜆
� = 0

−𝜆 (−𝑐 − 𝜆) + cos (𝑛𝜋) = 0
𝜆2 + 𝑐𝜆 + cos (𝑛𝜋) = 0

Now, we are asked to evaluate this at the center of the phase portrait, which means at 𝑥1 = 0
and 𝑥2 = 0, in other words, when 𝑛 = 0 (since when 𝑛 = 0, then 𝑥1 = 0). Hence, when 𝑛 = 0,
the characteristic equation becomes

𝜆2 + 𝑐𝜆 + 1 = 0

Hence

𝜆1,2 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− 𝑐
2 +�

𝑐2

4 − 1

− 𝑐
2 − �

𝑐2

4 − 1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

We now consider all the possible values of 𝑐 and see its e�ect on the roots of the characteristic
equation. This is done using a table

𝑐 value roots form Location of roots type of stability at (0, 0)
𝑐 < 0 and |𝑐| < 2 𝛼 ± 𝑖𝛽 where 𝛼 > 0 In RHS complex plane Spiral out, UNSTABLE

𝑐 < 0 and |𝑐| > 2 𝛼 ± 𝛽 where 𝛼 > 0 and 𝛽 < 𝛼 In RHS on the real line Repelling, UNSTABLE

𝑐 > 0 and |𝑐| < 2 𝛼 ± 𝑖𝛽 where 𝛼 < 0 In LHS complex plane Spiral in, STABLE

𝑐 > 0 and |𝑐| > 2 𝛼 ± 𝛽 where 𝛼 < 0 and 𝛽 < 𝛼 In LHS on the real line Attracting, STABLE

Therefore, we conclude that for 𝑐 < 0 the system is unstable at equilibrium point (0, 0) and
for 𝑐 > 0 the system is stable at equilibrium point (0, 0) .

Notice that we did not use the initial condition on the position at all. i.e. knowing that
𝜃 (0) = 𝜃0 was not needed to solve this problem.
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8 Problem 7

EQM is

𝑥̈ + 𝑓
𝑥̇
|𝑥̇|
+ 𝜔2

𝑛𝑥 = 0

We need to determine the phase plane trajectories. The term 𝑥̇
|𝑥̇|will be either +1 or −1

depending on the sign of 𝑥̇

Hence for 𝑥̇ > 0 we have

𝑥̈ + 𝑓 + 𝜔2
𝑛𝑥 = 0

𝑥̈ + 𝜔2
𝑛𝑥 = −𝑓

And for 𝑥̇ < 0 we have

𝑥̈ − 𝑓 + 𝜔2
𝑛𝑥 = 0

𝑥̈ + 𝜔2
𝑛𝑥 = 𝑓

Analyze each case separately. For 𝑥̇ > 0 we have

𝑑
𝑑𝑡
𝑥̇ + 𝜔2

𝑛𝑥1 = −𝑓

𝑑𝑥2
𝑑𝑡

+ 𝜔2
𝑛𝑥1 = −𝑓

𝑑𝑥2
𝑑𝑥1

𝑑𝑥1
𝑑𝑡

+ 𝜔2
𝑛𝑥1 = −𝑓

𝑑𝑥2
𝑑𝑥1

𝑥2 + 𝜔2
𝑛𝑥1 = −𝑓

𝑑𝑥2
𝑑𝑥1

𝑥2 = −𝑓 − 𝜔2
𝑛𝑥1

𝑑𝑥2𝑥2 = �−𝑓 − 𝜔2
𝑛𝑥1� 𝑑𝑥1

Integrating both sides, we obtain

𝑥22
2
= �−𝑓𝑥1 −

𝜔2
𝑛𝑥21
2 � + 𝐶
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Using IC given by 𝑥1 (0) = 10 �
𝑓
𝜔2𝑛
� and 𝑥2 (0) = 0, then the above becomes

0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
−𝑓 × 10 �

𝑓
𝜔2
𝑛
� −

𝜔2
𝑛 �10 �

𝑓
𝜔2𝑛
��

2

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ 𝐶

0 = −
10𝑓2

𝜔2
𝑛
− 50𝜔2

𝑛 �
𝑓2

𝜔4
𝑛
� + 𝐶

𝐶 =
10𝑓2

𝜔2
𝑛
+ 50

𝑓2

𝜔2
𝑛

Hence

𝐶 = 60 � 𝑓
𝜔𝑛
�
2

Therefore, the phase portrait is

𝑥22 = −2𝑓𝑥1 − 𝜔2
𝑛𝑥21 + 120 �

𝑓
𝜔𝑛
�
2

Hence

𝑥2 = ±�
120 � 𝑓

𝜔𝑛
�
2
− 2𝑓𝑥1 − 𝜔2

𝑛𝑥21

Given 𝑓 and 𝜔𝑛 we can plot the phase plane. For 𝑥̇ < 0 we have

𝑑
𝑑𝑡
𝑥̇ + 𝜔2

𝑛𝑥1 = 𝑓

𝑑𝑥2
𝑑𝑥1

𝑥2 = 𝑓 − 𝜔2
𝑛𝑥1

𝑑𝑥2𝑥2 = �𝑓 − 𝜔2
𝑛𝑥1� 𝑑𝑥1

Integrating both sides, we obtain

𝑥22
2
= �𝑓𝑥1 −

𝜔2
𝑛𝑥21
2 � + 𝐶

Using IC given by 𝑥1 (0) = 10 �
𝑓
𝜔2𝑛
� and 𝑥2 (0) = 0, then the above becomes

0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
𝑓 × 10 �

𝑓
𝜔2
𝑛
� −

𝜔2
𝑛 �10 �

𝑓
𝜔2𝑛
��

2

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ 𝐶

𝐶 = −
10𝑓2

𝜔2
𝑛
+ 50

𝑓2

𝜔2
𝑛
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Hence

𝐶 = 40 � 𝑓
𝜔𝑛
�
2

Therefore, the phase portrait is

𝑥22
2
= �𝑓𝑥1 −

𝜔2
𝑛𝑥21
2 � + 40 �

𝑓
𝜔𝑛
�
2

𝑥22 = 2𝑓𝑥1 − 𝜔2
𝑛𝑥21 + 80 �

𝑓
𝜔𝑛
�
2

Hence

𝑥2 = ±�
80 � 𝑓

𝜔𝑛
�
2
+ 2𝑓𝑥1 − 𝜔2

𝑛𝑥21

Given 𝑓 and 𝜔𝑛 we can plot the phase plane
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9 Problem 8

𝑑𝑦
𝑑𝑥

=
−𝑐𝑦 − �𝑥 − 0.1𝑥3�

𝑦
From the above phase plane, obtain the di�erential equation, and then convert back to state
space and obtain the system matrix.

Writing it in state space, where we take 𝑦 = 𝑥2 and 𝑥 = 𝑥1, we obtain

𝑑𝑥2
𝑑𝑥1

=
−𝑐𝑥2 − �𝑥1 − 0.1𝑥31�

𝑥2
𝑑𝑥2
𝑑𝑥1

𝑥2 = −𝑐𝑥2 − �𝑥1 − 0.1𝑥31�

𝑑𝑥2
𝑑𝑥1

𝑑𝑥1
𝑑𝑡

= −𝑐𝑥2 − �𝑥1 − 0.1𝑥31�

𝑑𝑥2
𝑑𝑡

= −𝑐𝑥2 − �𝑥1 − 0.1𝑥31�

𝑥̈ = −𝑐𝑥2 − �𝑥1 − 0.1𝑥31�

Hence the ODE is

𝑥̈ + 𝑐𝑥̇ + �𝑥 − 0.1𝑥3� = 0

Therefore

𝑥1 = 𝑥
𝑥2 = 𝑥̇

⎫⎪⎪⎬
⎪⎪⎭
𝑥̇1 = 𝑥̇
𝑥̇2 = −𝑐𝑥̇ − �𝑥 − 0.1𝑥3�

⎫⎪⎪⎬
⎪⎪⎭
𝑥̇1 = 𝑥2
𝑥̇2 = −𝑐𝑥2 − �𝑥1 − 0.1𝑥31�

Hence ⎛
⎜⎜⎜⎜⎝
𝑥̇1
𝑥̇2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

𝑥2
−𝑐𝑥2 − �𝑥1 − 0.1𝑥31�

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
𝑔 (𝑥1, 𝑥2)
𝑓 (𝑥1, 𝑥2)

⎞
⎟⎟⎟⎟⎠

Hence, the linearized system matrix is, which we evaluate at (0, 0) is

𝐴 =

⎛
⎜⎜⎜⎜⎜⎜⎝

𝜕𝑔
𝜕𝑥1

𝜕𝑔
𝜕𝑥2

𝜕𝑓
𝜕𝑥1

𝜕𝑓
𝜕𝑥2

⎞
⎟⎟⎟⎟⎟⎟⎠
𝑥1=0,𝑥2=0
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But 𝜕𝑔
𝜕𝑥1

= 0, 𝜕𝑔
𝜕𝑥2

= 1, 𝜕𝑓
𝜕𝑥1

= −1 + 0.3𝑥21,
𝜕𝑓
𝜕𝑥2

= −𝑐, hence

𝐴 =
⎛
⎜⎜⎜⎜⎝

0 1
−1 + 0.3𝑥21 −𝑐

⎞
⎟⎟⎟⎟⎠
𝑥1=0,𝑥2=0

𝐴 =
⎛
⎜⎜⎜⎜⎝
0 1
−1 −𝑐

⎞
⎟⎟⎟⎟⎠

Hence

�
−𝜆 1
−1 −𝑐 − 𝜆

� = 0

(−𝜆) (−𝑐 − 𝜆) + 1 = 0
𝜆2 − 𝑐𝜆 + 1 = 0

Hence

𝜆1,2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

𝑐
2 +�

𝑐2

4 − 1
𝑐
2 − �

𝑐2

4 − 1

⎞
⎟⎟⎟⎟⎟⎟⎠

We set up the following table

𝑐 value roots form Location of roots type of stability at (0, 0)
𝑐 > 0 and |𝑐| < 2 𝛼 ± 𝑖𝛽 where 𝛼 > 0 In RHS complex plane Spiral out, UNSTABLE

𝑐 > 0 and |𝑐| > 2 𝛼 ± 𝛽 where 𝛼 > 0 and 𝛽 < 𝛼 In RHS on the real line Repelling, UNSTABLE

𝑐 < 0 and |𝑐| < 2 𝛼 ± 𝑖𝛽 where 𝛼 < 0 In LHS complex plane Spiral in, STABLE

𝑐 < 0 and |𝑐| > 2 𝛼 ± 𝛽 where 𝛼 < 0 and 𝛽 < 𝛼 In LHS on the real line Attracting, STABLE

We see that for 𝑐 > 0, system is UNSTABLE and depending on value of 𝑐, it is either Spiral
out or Repelling
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