my post-mortem EE420 first midterm solution California State University, Fullerton Spring 2010

Contents

1 Question 1 2
2 Question 2 3
3 Question 3 4
4 Question 4 5

1 Question 1

(20) 1. The input output relation of a system is given below, is this system
(6) a) Linear
(6) b) Shift Invariant
(4) c) Causal
(4) d) Stable

$$
y(n)=\sum_{k=n-5}^{n+N} x(k)
$$

Note: Prove your answers, just stating an answer has no credit
(a) Let operator $T[\cdot] \equiv \sum_{n-5}^{n+N} x(k)$, hence we need to show that, for any α, β, the following

$$
\begin{equation*}
\alpha T\left[x_{1}(n)\right]+\beta T\left[x_{2}(n)\right] \stackrel{?}{=} T\left[\alpha x_{1}(n)+\beta x_{2}(n)\right] \tag{1}
\end{equation*}
$$

Start by finding the RHS of (1). Let

$$
\hat{x}(n)=\alpha x_{1}(n)+\beta x_{2}(n)
$$

Hence

$$
\begin{align*}
T[\hat{x}(n)] & =\sum_{n-5}^{n+N} \hat{x}(k) \\
& =\sum_{n-5}^{n+N}\left(\alpha x_{1}(k)+\beta x_{2}(k)\right) \\
& =\sum_{n-5}^{n+N} \alpha x_{1}(k)+\sum_{n-5}^{n+N} \beta x_{2}(k) \quad \text { By linearity of summation } \\
& =\alpha \sum_{n-5}^{n+N} x_{1}(k)+\beta \sum_{n-5}^{n+N} x_{2}(k) \quad \text { since } \alpha, \beta \text { do not depend on } k \tag{2}
\end{align*}
$$

Now consider LHS of (1), which is

$$
\alpha T\left[x_{1}(n)\right]+\beta T\left[x_{2}(n)\right]=\alpha \sum_{n-5}^{n+N} x_{1}(k)+\beta \sum_{n-5}^{n+N} x_{2}(k)
$$

We see that is the same as (2). Hence LHS is the same as RHS in (1). Hence $T[\cdot]$ is linear
(2) Delay the input $x(n)$ by an amount β and see if a delayed output by the same amount is the same or not.

Let delayed input be $x(n-\beta)$, hence the output is

$$
T[x(n-\beta)]=\sum_{k=n-5}^{n+N} x(k-\beta)
$$

Let $k^{\prime}=k-\beta$, so when $k=n-5$, then $k^{\prime}=(n-5)-\beta$, and when $k=n+N$, then $k^{\prime}=(n+N)-\beta$, hence the above becomes

$$
T[x(n-\beta)]=\sum_{k^{\prime}=(n-5)-\beta}^{(n+N)-\beta} x\left(k^{\prime}\right)
$$

Since k^{\prime} is dummy variable, we can rename it to be k

$$
\begin{equation*}
T[x(n-\beta)]=\sum_{k=(n-5)-\beta}^{(n+N)-\beta} x(k) \tag{1}
\end{equation*}
$$

Now let us consider what a delayed output will be. The output due to $x(n)$ is $T[x(n)]=\sum_{k=n-5}^{n+N} x(k)$, hence a delayed output is where we delay any occurrence of n in the RHS of the above to become $n-\beta$, hence a delayed output is

$$
\begin{equation*}
\sum_{k=(n-\beta)-5}^{(n-\beta)+N} x(k) \tag{2}
\end{equation*}
$$

We see that (1) and (2) are the same, hence shift invariant. (3) A system is causal if its output at time n does not depend on future values of the input. i.e on values larger than n. From the definition

$$
y(n)=\sum_{n-5}^{n+N} x(k)
$$

We see that $y(n)$ will depend on future values on the input $x(n)$ only if $N>0$. Therefore, the system is causal for $N \leq 0$, and not causal otherwise.
(4) To show stability, use the BIBO approach. Let M the absolute value of the largest possible value of the input which will be finite. Hence the output magnitude

$$
\begin{aligned}
|y(n)| & =\left|\sum_{n-5}^{n+N} x(k)\right| \\
& \leq \sum_{n-5}^{n+N}|x(k)| \\
& \leq \sum_{n-5}^{n+N} M \\
& =M \sum_{n-5}^{n+N} 1 \\
& =M((N+n)-(n-5)+1) \\
& =M(N+6)
\end{aligned}
$$

Hence if $N<\infty$, then $|y(n)|<\infty$ and the system is BIBO stable.

2 Question 2

(30) 2. The input, $x(n)$, and the unit sample response, $h(n)$, of a LSI system are given

D
below. 'a' is a real number less than one.

$$
x(n)=a^{n}[U(n)-U(n-21)] \quad|a|<1
$$

$$
h(n)= \begin{cases}1 & 0 \leq n \leq 20 \\ 0 & \text { otherwise }\end{cases}
$$

Find the output of the system, $y(n)$, as a function of ' n ', using the convolution sum $y(n)=x(n) * h(n)=\sum_{k=-\infty}^{\infty} x(k) h(n-k)$

Use graphical approach

First region: $n<0 \rightarrow y(n)=0$ since no overlapping
second region: $0 \leq n \leq 20$ i.e. partial overlap from the left end of $x(n)$

$$
y(n)=\sum_{k=0}^{n} a^{k}=\frac{1-a^{n+1}}{1-a}
$$

Third region: $20 \leq n \leq 40$

$$
\begin{aligned}
y(n) & =\sum_{k=n-20}^{20} a^{k}=\sum_{k=0}^{20} a^{k}-\sum_{k=0}^{n-19} a^{k} \\
& =\frac{1-a^{21}}{1-a}-\frac{1-a^{n-20}}{1-a} \\
& =\frac{\left(1-a^{21}\right)-\left(1-a^{n-20}\right)}{1-a} \\
& =\frac{a^{n-20}-a^{21}}{1-a}
\end{aligned}
$$

Fourth region: $n>40 \rightarrow y(n)=0$ since no overlapping.

3 Question 3

(25) 3. Consider a discrete-time LSI system with unit-sample response

$$
h(n)=\left\{\begin{array}{lc}
1 & n=1 \\
-1 & n=-1 \text { and } 3 \\
0 & \text { otherwise }
\end{array}\right.
$$

Compute $\mathrm{H}\left(\mathrm{e}^{\mathrm{j} \omega}\right)$ and plot its magnitude and phase for $\omega \varepsilon[-\pi, \pi]$. On the plots, label all frequencies and amplitudes of importance, and keep the phase between π and $-\pi$.

$$
\text { NOTE: DTFT: } \quad H\left(e^{j \omega}\right)=\sum_{n=-\infty}^{\infty} h(n) e^{-j \omega n}
$$

$$
\begin{aligned}
H\left(e^{j \omega}\right) & =\sum_{n=-\infty}^{\infty} h(n) e^{-j \omega n} \\
& =h(-1) e^{-j \omega(-1)}+h(1) e^{-j \omega(1)}+h(3) e^{-j \omega(3)} \\
& =-e^{j \omega}+e^{-j \omega}-e^{-3 j \omega}
\end{aligned}
$$

Collect complex exponential with same coefficients

$$
\begin{aligned}
H\left(e^{j \omega}\right) & =\left(-e^{j \omega}-e^{-3 j \omega}\right)+e^{-j \omega} \\
& =-e^{-j \omega}\left(e^{2 j \omega}+e^{-2 j \omega}\right)+e^{-j \omega} \\
& =-e^{-j \omega}(2 \cos 2 \omega)+e^{-j \omega} \\
& =e^{-j \omega}(1-2 \cos 2 \omega)
\end{aligned}
$$

Hence

$$
\left|H\left(e^{j \omega}\right)\right|=|1-2 \cos 2 \omega|
$$

And

$$
\operatorname{phase}\left(H\left(e^{j \omega}\right)\right)=-\omega
$$

Now carefully plotting these we obtain

(25) 4. A function, $x_{a}(t)$, has Fourier transform $X(f)$ given by

$$
\omega=\Omega T
$$

(15) a) This function is sampled with sampling period $T=0.05$ Sec. to form the sequence $x(n)=x_{a}(n T)$, plot the Fourier transform the sampled signal, $X\left(e^{j \omega}\right)$, for $-2 \pi<\omega<2 \pi$. (Note: label all amplitudes and frequencies of importance)
(10) b) Describe if $x_{a}(t)$ can be reconstructed from the samples $x(n)$. If yes describe the characteristics of the reconstruction filter, assuming ideal filters are available. (Note: characteristics can be shown using a graph, if desired)

Maximum frequency in the signal can be seen to be 20 Hz . Hence Nyquist frequency is twice this, which is 40 Hz .
However we are told that sampling frequency $f_{s}=\frac{1}{T}=20 \mathrm{~Hz}$. Hence this system is undersampled.
Another observation to make: Since $X(f)$ is not zero at the maximum frequency 20 Hz . one should use a sampling frequency slightly over Nyquist.
Now, to plot the DTFT of the sampled signal. Make copies of $X(f)$ centered at multiplies of the the sampling frequency. We obtain the following diagram

Duplicate at each multiple of sampling frequency, and scale

DTFT of sampled signal $\mathrm{x}(\mathrm{n})$

Bandpass filter required to reconstruct $\mathrm{xa}(\mathrm{t})$ is

