HW1, MAE 200A. Fall 2005. UCI

Nasser Abbasi

January 21, 2008

1 Problem 1

Given this simple pendulum, compute the equilibrium points and determine the linearized dynamics at each equilibrium point

Answer

part(1)
The system equation is given by

$$
m l^{2} \ddot{\theta}=-c \dot{\theta}-m g l \sin \theta
$$

Since this is a second order ODE, there are 2 state variables. Convert this to state space formulation: Let $x_{1}=\theta$ and $x_{2}=\dot{\theta}$, hence

$$
\dot{x}=\left[\begin{array}{c}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{c}
x_{2} \\
\ddot{\theta}
\end{array}\right]=\left[\begin{array}{c}
x_{2} \\
\frac{-c x_{2}}{m l^{2}}-\frac{g}{l} \sin x_{1}
\end{array}\right]
$$

At the equilibrium points we must have,

$$
\begin{aligned}
\dot{x} & =0 \\
{\left[\begin{array}{c}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right] } & =0
\end{aligned}
$$

Hence we obtain 2 equations

$$
\begin{aligned}
x_{2} & =0 \\
\frac{-c x_{2}}{m l^{2}}-\frac{g}{l} \sin x_{1} & =0
\end{aligned}
$$

Solving these equations, we obtain

$$
\frac{g}{l} \sin x_{1}=0
$$

or $x_{1}=n \pi$ for $n=0,1,2, \ldots$
Since the period is 2π, then $x_{1}=0$ or π, but x_{1} is state variable that represents the angle θ hence equilibrium occurs at $\theta=0$ and $\theta=\pi$
note: equilibrium at $\theta=0$ is stable, while at $\theta=\pi$ is unstable.
part(2)
starting with the nonlinear system equation

$$
m l^{2} \ddot{\theta}=-c \dot{\theta}-m g l \sin \theta
$$

Near the equilibrium points, we express the nonlinear term in taylor series.
Suppose the penulium is at angle θ near the angle $\theta_{e q}$ so it is a distance $\triangle \theta=\theta-\theta_{e q}$ Hence now

$$
\begin{align*}
\sin \theta= & \sin \theta_{e q}+\left.\left(\theta-\theta_{e q}\right) \frac{d \sin \theta}{d \theta}\right|_{\theta=\theta_{e q}}+\left.\frac{\left(\theta-\theta_{e q}\right)^{2}}{2!} \frac{d^{2} \sin \theta}{d \theta^{2}}\right|_{\theta=\theta_{e q}} \\
& +\left.\frac{\left(\theta-\theta_{e q}\right)^{3}}{3!} \frac{d^{3} \sin \theta}{d \theta^{3}}\right|_{\theta=\theta_{e q}}+\left.\frac{\left(\theta-\theta_{e q}\right)^{4}}{4!} \frac{d^{4} \sin \theta}{d \theta^{4}}\right|_{\theta=\theta_{e q}}+\cdots \\
= & \sin \theta_{e q}+\left.\left(\theta-\theta_{e q}\right) \cos \theta\right|_{\theta=\theta_{e q}}-\left.\frac{\left(\theta-\theta_{e q}\right)^{2}}{2!} \sin \theta\right|_{\theta=\theta_{e q}} \\
& -\left.\frac{\left(\theta-\theta_{e q}\right)^{3}}{3!} \cos \theta\right|_{\theta=\theta_{e q}}+\left.\frac{\left(\theta-\theta_{e q}\right)^{4}}{4!} \sin \theta\right|_{\theta=\theta_{e q}}+\cdots \tag{1}
\end{align*}
$$

For the first equilibrium point, $\theta_{e q}=0$ so the above becomes

$$
\begin{aligned}
\sin \theta & =0+\theta-0-\frac{\theta^{3}}{3!}+\cdots \\
& =\theta-\frac{\theta^{3}}{3!}-\cdots
\end{aligned}
$$

For the first equilibrium point, $\theta_{e q}=\pi$ so equation (1) becomes

$$
\begin{aligned}
\sin \theta & =\sin \pi+\left.(\theta-\pi) \cos \theta\right|_{\theta=\pi}-\left.\frac{(\theta-\pi)^{2}}{2!} \sin \theta\right|_{\theta=\pi}-\left.\frac{(\theta-\pi)^{3}}{3!} \cos \theta\right|_{\theta=\pi}+\left.\frac{(\theta-\pi)^{4}}{4!} \sin \theta\right|_{\theta=\pi}+\cdots \\
& =0-(\theta-\pi)+\frac{\left(\theta-\theta_{\pi}\right)^{3}}{3!}+\cdots \\
& =-(\theta-\pi)+\frac{(\theta-\pi)^{3}}{3!}+\cdots
\end{aligned}
$$

Hence near $\theta_{e q}=0$, the linearized system equation is

$$
m l^{2} \ddot{\theta}=-c \dot{\theta}-m g l\left(\theta-\frac{\theta^{3}}{3!}-\cdots\right)
$$

and near $\theta_{e q}=\pi$ the system equation is

$$
m l^{2} \ddot{\theta}=-c \dot{\theta}-m g l\left(-(\theta-\pi)+\frac{(\theta-\pi)^{3}}{3!}+\cdots\right)
$$

