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1 Problem 1

Q&w Due: Oct. 13 at beginning of class

Analyze the forced response of the pendulum. The forcing, as demonstrated in class, is the sinusoidal
side to side movement of the attachment point.

Assume the lateral motion of the attachment point is of the form

z=bcos(w t)

b is the maximum displacement. The linearized dynamics about the equilibrium at = 0 are

6" (t) + 7520 (8) + £6(t) = =127 (1)

1. Construct a physical pendulum. It can be as simple as the one I used in class, although a rigid rod
would be preferable to an elastic one. Estimate the values of M, L and ¢ and use these values in
your calculations. L = length of the rod; M = mass of the pendulum bob; ¢ =damping coefficient

2. Determine the natural frequency w, and damping ratio ¢ of your pendulum.

3. Determine the general solution (homogeneous plus particular) for the linear pendulum model. You
can use the result I gave in lecture if you know how to obtain it. If you don’t know how to obtain
it, this would be a good opportunity to learn how to.

4. Using the particular solution, construct the Bode plots theta (amplitude and phase angle as func-
tions of the forcing frequency w).

9. Experiment with forcing your pendulum at different frequencies and convince yourself that what
you see corresponds to the predictions from the Bode plots.

6. If you move the attachment point according to
z = cos (wit) + cos (wet) + cos (wst)

where, relative to the natural frequency w, of the pendulum, w; is much less than wy, wq is close
to wp, and ws is greater than w,, describe qualitatively what the 8 response will look like after the
homogeneous solution has died out. Your answer should be based on theory not experiment.

Please turn in all your work except for your pendulum. Bring your pendulum to class if you want to
show it off, but this is optional.



2 Answer

‘w 2.1 Answer parts 1,2

A simple pendulum was used for this experiment.
The Mass M was weighted and found out to be about .5kg

The length L was measured to be 80 cm or 0.8m

To determine the damping coefficient, since

< = 2(wy,

ML
¢ = 2ML{w,

I will first find (.

The method of logarithmic decrement was used. The logarithmic decrement A is the natural logarithm
of the ratio of any two successive amplitudes in the same direction. The pendulum mass is held initially
at an angle 6, = 45% in the positive direction, and then released. The mass will then make one full cycle
by swinging to left and then back to the same side as it started and stop before starting its second cycle
and so on. The angle the mass reach at the end of its first cycle was estimated to be 8; = 40° and the
angle it reached at the end of it second full cycle was estimated to be 8 = 35°

g@r Hence . (-9—1-) ) e
02 1 - C2

The following diagram showing the process and the derivation of the above equation
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To derive the equation
n (01) — 271'C
8 A /]_ — Cz
We utilize the above plot of 8 () for a damped second order system.

In the above diagram
0; = 006-“’"‘

and
0, = Hoe_cu“(t"'r” )

where 7, is the time it takes to make one full swing between these 2 successive oscillations.

) Hoe"C“’"‘ Conto
o (0_1) =l (ooe-Cwn(tm) =1In (e"™) = (waT,

But o
T
where wy is the damped natural frequency. Hence 7, = =X hence
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But wy = wyy/1 - (2 hence the above equation becomes

“ In (@) S

01 1-—- C2
Now that this equation is derived, it can be used to estimate ¢, Once ¢ is found then ¢ can be easily
found.

40°  2n¢

R e

square each side and solve for ¢

2 2 2

In @ = in Cg

35 1-¢
0.017831 — 0.017831 (> = dn2(?

% 0.017831
472 +0.017831
¢ =0.02
Next, since w, = \/%Hence, then
wn = /32 = 3.5 rad/sec

QW and since ¢ = 2M L{w,, then

c 2 x 0.5 (kg) x 0.8(m) x 0.02 x 3.5(rad/ sec)

= 2.8 N s/rad



2.2 Answer part 3

First we find an analytical solution € ().

0 (t) =0, (t)+0,(t)

where 6}, () is the homogenous solution (due to initial conditions) and 6, (t) is the particular solution
(due to the forcing function). To find 8}, (¢), looking at the ODE

¢ g
0" (t)+—=0"(t)+=0(t)=0
We see this is a standard second order system. Let 15 = 2wy, £ = w3, hence we can write the above as

the solution is
B (t) = g ~¢wnt {A sin (wnt\ /1 — g2> + B cos (wntq /1 — Cz)}

where the damped natural frequency be wy = w,/1 — ¢* hence the above can be written as

Op (t) = e “n*[Asin (wqt) + B cos (wqt)] (1)
Now we can find the particular solution. Since the forcing function is a sinusoidal, we c_an"i:ry
: '
0, = Gysinwt + G coswt \_// (2)

This particular solution will take care of the case when the forcing function is out of phase with the
response, that is why both a sin and a cos function are present. Substitute 6, into the dynamic equation
that represents the linearized pendulum given by

0" (t) + 2(wn 6
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and since
z (t) = beos (wt)

then z” (t) = —bw? cos (wt) hence the above equation becomes
i ’ 9 buw?
03 (£) + 2Gun 6, (1) + 122 By (1) = 2~ cos (wt) (4)
Now
0,(t) = Gwcoswt — Gowsinwt
o,(t) = —Gw?sinwt — Gow? cos wt
Hence (4) becomes
5 ) _ 4 _ buw?
—Ghw’sinwt — Gaw” coswt + 2(w, (Giw coswt — Gow sinwt) + w? (G sinwt + Gacoswt) = T cos (wt)
5 buw?
cos (wt) (—Gaw® + 2(w,G 1w + w? G,) + sinwt (—G1w? — 2w, Gow + Giwy) = [ Tom (wt)
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compare coefficients of cos (wt) we get

o bw?
—G2w2 + 2Qw,wG, + w,';Gg = T
bus?

Ga (wf, - w2) + chanl = T (5)

and

—G1w® = 2w,Gaw + Gw? = 0
G (W —w?) — 2€wnGow = 0 (6)

Need to solve (5) and (6) for G;, G, , first divide (5) and (6) by w? and call the ratio o = f3 which is
the response ratio, to obtain new expressions for (5) and (6)

G2 (1 - 52) + 2(,3G1 = %,32 (5&)
Gy (1-8%) ~2¢GaB=0 (62)
from (6a)
_ 2Gop
Gl = (1 _ ,32) (7)
e Plug (7) into (5a) we obtain
G (1= ) + 202 = 6
2
e |-+ ) - 2
b_ B (1-8
Gy = — 8
S I- )+ By ©

Substitute (8) into (7) to solve for G,

G = _XB b B(-5)
(1-£°) L (1- 4% + (2¢p)?

2b i

L (1-p%%+ (208

(9)
Hence

@ 6 = G)sinwt+ Gycoswt

= /G4 G3cos (wt ~ tan™! %)

2
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Where G}, G5 are as given above. Hence

2b (s
T

: - 33 201 _ 22 2 V==
Op = ' . -;gzlj = |+ —h- i Eln F) — | cos | wt — tan™? ¢ f) 'I(;j)
VAL (1= 6%+ (2 L(1-8)"+ (28 g S (1-7)

L (1-82)"+(2¢8)?

B (2¢B)? il

0, = % -~ = & e 7 Co8 (m‘—tan—l 12@52)
\ ((1—,;3-’) +(24,.-3)-) ((1—.--3-’)'+(2C.3)') o

203
5~ COS (wf — tan™! li;)

b B ( -1 28 )
= — =% 5 COs | wi — tan 5
LY (1-8%)"+ (2¢8)? 1-5

L 3 2(53
= cos | wt — tan™? 5 N
)2 1 é

L \/ (1-8%%+ (25 '

Hence the general solution 6 (t) = 6, () + g, (t) is

0 (t) = e~ (Asin (wqt) + B cos (wqt)) + ;_:\/(1;32‘;2”2( = cos (wt - E-Ian'"’l %)

state solution (not the transient solution), we do not need to find thes constants for the purpose of this

Where A, B, can now be determined from initial conditions. Howeve&\s;ince we are interested in steady
solution.

The first term in the solution (the 6, (t)) term, will damp down quickly with time since it has the inverse
exponential term in it. What is left then is the particular solution.



2.3 Answer part 4

Since

0, (t) = wt — tan~1 25 )

b g?
= == Cos
L \/(1_132)"“*'{203)2 ( 1-3

Hence in the above equation we can write it as

0, (t) = Acos (wt + @)
Where amplitude ‘
52

A=
\/ (1-5%° + (2¢8)°

2
L

and phase

2 13
¢ = —tan™? d =
1— 8

To make amplitude in degrees instead of radians, convert the above by multiplying by 180/7

and f =2 =2 L =0.8,(=0.02, and for let b = 0.05 meters.

[ 3.57

Now we are ready to generate the needed plots. I will show the following plot where the x-axis will show
the input frequency w in rad/sec, and the y-axis will show the amplitude A in angles.

<} {Figure 1
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{W/ 24 Parth
Now I changed the forcing frequency to be close to the natural frequency of the pendulum (3.5 radians
per second), and observed largest oscillation at that frequency. (note: input force is lateral, at the joint,
so input frequency needs to be converted from cycles per second to radiance per second).
This is in agreement with the above plot.
2.5 Part 6

Now assume z = cos (w;t) + cos (wat) + cos (wst) .

For a linear system, the total response will be the same as the sum of the response to each of the above
signals individually. (at each instance of time).

In addition, the response will have the same frequency but different amplitude and phase.

Hence the steady state amplitude will be the sum of the individual amplitudes, and the steady state
phase shift will be the sum of the individual phase shifts. (at each instance of time).

’ This can be answered by looking at the analytical solution found above for B, () (steady state solution)
M and taking the limit of 2 as it approaches 0 or 1 or oc and see what happens to the amplitude and the

phase in each case.

Since we found

0, (t) = L '8; cos (wt — tan~! Lﬂz)
L=+ acap =5

Where 8 = £
n

Hence for the case when w; <« wy,, then B — 0, hence the limit of the solution will be 05 (t) — 0, i.e. in
stead state, the displacement goes to zero. For the phase we see that the phase tan™! 1—2_%; will also go to
zero, hence response will be in-phase with the input.

For the case when w; > w,,, then we see 3 becomes very large. We see that the phase term goes to zero
since it goes like % in the limit. Hence the response in steady state when the input frequency is much
larger than w, will be in phase. To see what happens to the amplitude, take the limit of the amplitude
as 3 — oo
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So when forcing frequency is much larger than w,, the steady state response will be fixed and will be

proportional to the maximum amplitude b.
response 1s steady at large w. For the phase we see that the phase tan

This agrees with the plot shown above where we see the

=1 ——7'5; will also go to zero. hence

response will be in-phase with the input. This agrees with the phase plot shown.

For the case when w ~ w,,, then 7 — 1, hence

3= . b 1
= 1111 —
Yo L\/(l 18 000"
b b 1

Hence the smaller the damping ratio ¢, the larger the amplitude. This means the smaller the damping coef-

ficient ¢ the larger the amplitude. This is called resonance. For the phase, we see that lims_.; tan

=] 228 —
1-3°

—7% hence at resonance, the phase is 90° from the input. This agrees with the plot shown.”
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« 2.6 Appendix

$escript to solve HW3, MAE 200A, by Nasser Abbasi
clear all: close all;

omaga=(0.01:0.1:15);
L=0.8; zeta=0.02: b=0.05; beta=zomega./3.5;

num=b*beta.*2;

den=L*sqrt( (l-bata.”2).~2+(2%zata.*bata).*2 );
A=num. /den;

A=A .*180./pi;

subplot(2,1,1):

%senmilogx (omega,20*10gl0(A})); %second
plot{omega A): %first

grid;

title('bode plot');

xlabel ('forcing freq, rad/sec'); tfirst

$xlabel ('forcing freq, log scale, rad/sec'):
tylabel ('amplitude magnitude in db°); %second
ylabel {'amplitude magnitude in degrees'); %first

subplot(2,1,2):

phase=atan{ (2*zeta.*beta)./(l1-beta.~2}) ):;
plot (omega,phaser180/pi) Sfirst
%oomilogx (omega,phasa*180/pi} %aacond

grid;

title('phase plot'}):

xlabel (' forcing freq, rad/sec'); tfirst
$xlabel (' forcing freq, log scale, rad/sec');
ylabel ('angle degrees');
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