Problem 4, HW 4. MAE 185.

Nasser M. Abbasi

May 24, 2003
problem Employee a two-through six-points Gauss-Legendre formulas to solve $\int_{-3}^{3} \frac{2}{1+2 x^{2}} d x$ Answer
$f(x)=\frac{2}{1+2 x^{2}}$ This function is an even function:

$\mathrm{f}(\mathrm{x})$
hence

$$
\begin{aligned}
\mathbf{I} & =\int_{-3}^{3} \frac{2}{1+2 x^{2}} d x \\
& =2 \int_{0}^{3} \frac{2}{1+2 x^{2}} d x \\
& =4 \int_{0}^{3} \frac{1}{1+2 x^{2}} d x
\end{aligned}
$$

First transform the integral to be inside the limits of -1 to +1 . Let $x=k_{1} y+k_{2}$

$$
\begin{aligned}
(0) & =k_{1}(-1)+k_{2} \\
(+3) & =k_{1}(+1)+k_{2}
\end{aligned}
$$

Solve for k_{1}, k_{2}. Adding the above 2 equations gives $2 k_{2}=3 \Longrightarrow k_{2}=1.5$
Hence, $0=-k_{1}+1.5 \Longrightarrow k_{1}=1.5$
hence the transformation is $x=1.5+1.5 y$ and $d x=1.5 d y$
Using the above transformation, the integral becomes

$$
\begin{aligned}
\mathbf{I} & =\int_{-3}^{3} \frac{2}{1+2 x^{2}} d x \\
& =4 \int_{0}^{+3} \frac{1}{1+2 x^{2}} d x \\
& =4 \int_{-1}^{+1} \frac{1}{1+2(1.5+1.5 y)^{2}}(1.5 d y) \\
& =6 \int_{-1}^{+1} \frac{1}{5.5+9 y+4.5 y^{2}} d y
\end{aligned}
$$

Hence $g(y)=\frac{1}{5.5+9 y+4.5 y^{2}}$
2 points Gauss
$c_{0}=1, c_{1}=1, x_{0}=-\frac{1}{\sqrt{3}}, x_{1}=+\frac{1}{\sqrt{3}}$

$$
\begin{aligned}
& g\left(x_{0}\right)=\frac{1}{5.5+9\left(-\sqrt{\frac{1}{3}}\right)+4.5\left(-\sqrt{\frac{1}{3}}\right)^{2}}=\frac{1}{1.804}=0.554 \\
& g\left(x_{1}\right)=\frac{1}{5.5+9\left(\sqrt{\frac{1}{3}}\right)+4.5\left(\sqrt{\frac{1}{3}}\right)^{2}}=\frac{1}{12.196}=0.0820
\end{aligned}
$$

Hence

$$
\begin{aligned}
\mathbf{I} & =6\left[c_{0} g\left(x_{0}\right)+c_{1} g\left(x_{1}\right)\right] \\
& =3.818
\end{aligned}
$$

3 points Gauss

$c_{0}=5 / 9, c_{1}=8 / 9, c_{2}=5 / 9, x_{0}=-\sqrt{0.6}, x_{1}=0.0, x_{2}=\sqrt{0.6}$

$$
\begin{aligned}
& g\left(x_{0}\right)=\frac{1}{5.5+9(-\sqrt{0.6})+4.5(-\sqrt{0.6})^{2}}=\frac{1}{1.223}=0.814 \\
& g\left(x_{1}\right)=\frac{1}{5.5+9(0)+4.5(0)^{2}}=\frac{1}{5.5}=0.182 \\
& g\left(x_{2}\right)=\frac{1}{5.5+9(\sqrt{0.6})+4.5(\sqrt{0.6})^{2}}=\frac{1}{15.171}=0.066
\end{aligned}
$$

Hence

$$
\begin{aligned}
\mathbf{I} & =6\left[c_{0} g\left(x_{0}\right)+c_{1} g\left(x_{1}\right)+c_{2} g\left(x_{2}\right)\right] \\
& =6[(5 / 9) 0.814+(8 / 9) 0.182+(5 / 9) 0.066] \\
& =3.902
\end{aligned}
$$

4 points Gauss

$c_{0}=0.3478548, c_{1}=0.6521452, c_{2}=0.6521452, c_{3}=0.3478548$
$x_{0}=-0.861136312, x_{1}=-0.339981044, x_{2}=0.339981044, x_{3}=0.861136312$

$$
\begin{aligned}
& g\left(x_{0}\right)=\frac{1}{5.5+9(-0.861)+4.5(-0.861)^{2}}=\frac{1}{1.0868}=0.920 \\
& g\left(x_{1}\right)=\frac{1}{5.5+9(-0.340)+4.5(-0.340)^{2}}=\frac{1}{2.960}=0.338 \\
& g\left(x_{2}\right)=\frac{1}{5.5+9(0.340)+4.5(0.340)^{2}}=\frac{1}{9.080}=0.110 \\
& g\left(x_{4}\right)=\frac{1}{5.5+9(0.861)+4.5(0.861)^{2}}=\frac{1}{16.587}=0.060
\end{aligned}
$$

so

$$
\begin{aligned}
\mathbf{I} & =6\left[c_{0} g\left(x_{0}\right)+c_{1} g\left(x_{1}\right)+c_{2} g\left(x_{2}\right)+c_{3} g\left(x_{3}\right)\right] \\
& =6 *(0.3478548) 0.920+(0.6521452) 0.338+(0.6521452) 0.110+(0.348) 0.060 \\
& =3.780
\end{aligned}
$$

5 points Gauss

$c_{0}=0.2369269, c_{1}=0.4786287, c_{2}=0.568889, c_{3}=0.4786287, c_{4}=0.2369269$
$x_{0}=-0.906179846, x_{1}=-0.538469310, x_{2}=0.0, x_{3}=0.53846931, x_{4}=0.906179846$

$$
\begin{aligned}
& g\left(x_{0}\right)=\frac{1}{5.5+9(-0.906)+4.5(-0.906)^{2}}=\frac{1}{1.0396}=0.962 \\
& g\left(x_{1}\right)=\frac{1}{5.5+9(-0.538)+4.5(-0.538)^{2}}=\frac{1}{1.959}=0.511 \\
& g\left(x_{2}\right)=\frac{1}{5.5+9(0)+4.5(0)^{2}}=\frac{1}{5.5}=0.182 \\
& g\left(x_{3}\right)=\frac{1}{5.5+9(0.538)+4.5(0.538)^{2}}=\frac{1}{11.651}=0.0858 \\
& g\left(x_{4}\right)=\frac{1}{5.5+9(0.906)+4.5(0.906)^{2}}=0.0576
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\mathbf{I} & =6\left[c_{0} g\left(x_{0}\right)+c_{1} g\left(x_{1}\right)+c_{2} g\left(x_{2}\right)+c_{3} g\left(x_{3}\right)+c_{4} g\left(x_{4}\right)\right] \\
& =6 * 0.237(0.962)+0.479(0.511)+0.569(0.182)+0.479(0.0858)+0.237(0.0576) \\
& =3.783
\end{aligned}
$$

6 points Gauss

$c_{0}=0.171, c_{1}=0.361, c_{2}=0.468, c_{3}=0.468, c_{4}=0.3607616, c_{5}=0.1713245$
$x_{0}=-0.932, x_{1}=-0.661, x_{2}=-0.239, x_{3}=0.239, x_{4}=0.661 x_{5}=0.93$

$$
\begin{aligned}
& g\left(x_{0}\right)=\frac{1}{5.5+9(-0.932)+4.5(-0.932)^{2}}=0.980 \\
& g\left(x_{1}\right)=\frac{1}{5.5+9(-0.661)+4.5(-0.661)^{2}}=0.660 \\
& g\left(x_{2}\right)=\frac{1}{5.5+9(-0.239)+4.5(-0.239)^{2}}=0.277 \\
& g\left(x_{3}\right)=\frac{1}{5.5+9(0.239)+4.5(0.237)^{2}}=0.127 \\
& g\left(x_{4}\right)=\frac{1}{5.5+9(0.661)+4.5(0.661)^{2}}=0.075 \\
& g\left(x_{5}\right)=\frac{1}{5.5+9(0.932)+4.5(0.932)^{2}}=0.056
\end{aligned}
$$

Hence

$$
\begin{aligned}
\mathbf{I} & =6\left\{c_{0} g\left(x_{0}\right)+c_{1} g\left(x_{1}\right)+c_{2} g\left(x_{2}\right)+c_{3} g\left(x_{3}\right)+c_{4} g\left(x_{4}\right)+c_{5} g\left(x_{5}\right)\right\} \\
& =6 * 0.171(0.980)+0.361(0.660)+0.468(0.277)+0.468(0.127)+0.361(0.075)+0.171(0.056) \\
& =3.787
\end{aligned}
$$

summary: This table shows the relative error normalized to the true value for value of number of points n, starting with $n=2$ up to $n=6$. Analytically,

$$
\int \frac{2}{1+2 x^{2}} d x=\sqrt{2} \arctan (\sqrt{2} x)
$$

hence

$$
I_{\text {analytical }}=2 \int_{0}^{3} \frac{2}{1+2 x^{2}} d x=2[\sqrt{2} \arctan (\sqrt{2}(3))-\sqrt{2} \arctan (\sqrt{2}(0))]=2[1.894]=3.788
$$

So $\varepsilon_{t}=\left|\frac{\text { true-approx }}{\text { true }}\right| 100 \%$

n	\mathbf{I}	ε_{t}
2	3.818	$\left\|\frac{3.788-3.818}{3.788}\right\|=0.792$
3	3.902	$\left\|\frac{3.788-3.902}{3.788}\right\|=3.017$
4	3.799	$\left\|\frac{3.788-3.780}{3.788}\right\|=0.287$
5	3.783	$\left\|\frac{3.788-3.783}{3.788}\right\|=0.144$
6	3.787	$\left\|\frac{3.788-3.787}{3.788}\right\|=0.035$

As number of points increases, the acurracy increases.
observation: I am able to find why the $\mathrm{n}=3$ case seems to have some abnormality. ε_{t} should decrease as n increases, but for $\mathrm{n}=3$ it did not. Checked the calculations but not able to see if I did some arithmitic error.

