HW 5. Problem 25.1 MAE 185.

Nasser M. Abbasi

May 14, 2003

Problem

Solve the initial value $\frac{d y}{d x}=y x^{2}-1.2 y$ analytically over the interval from $x=0$ to 2 . where $y(0)=1$.Plot the solution.

Answer
This ODE is solved by separation of variables. Move all terms in x to one side, and all terms in y to the other side:

$$
\begin{aligned}
\frac{d y}{d x} & =y\left(x^{2}-1.2\right) \\
d y & =y\left(x^{2}-1.2\right) d x \\
\frac{1}{y} d y & =\left(x^{2}-1.2\right) d x \\
\int \frac{1}{y} d y & =\int\left(x^{2}-1.2\right) d x \\
\ln (y)+k_{1} & =\frac{x^{3}}{3}-1.2 x+k_{2}
\end{aligned}
$$

Where k_{1} and k_{2} are the constants of integration.

$$
\ln (y)=\frac{x^{3}}{3}-1.2 x+\left(k_{2}-k_{1}\right) \quad \text { Let }\left(k_{2}-k_{1}\right)=C
$$

Where C is a new constant

$$
\ln (y)=\frac{x^{3}}{3}-1.2 x+C
$$

Applying initial conditions to find C. Since $y(0)=1$ then

$$
\begin{aligned}
\ln (1) & =\frac{0^{3}}{3}-1.2(0)+C \\
\ln (1) & =C \\
C & =0
\end{aligned}
$$

Therefore the analytical solution is

$$
\begin{aligned}
\ln (y) & =\frac{x^{3}}{3}-1.2 x \\
y & =\exp \left(\frac{x^{3}}{3}-1.2 x\right) \\
y & =\exp \left(x\left(\frac{x^{2}}{3}-1.2\right)\right)
\end{aligned}
$$

Using matlab to plot the above function from $x=0 \cdots 2$

```
y='exp(x*(x^2/3 - 1.2))';
ezplot(y,0,2)
title('plot of solution of dy/dx= yx^2 - 1.2 y')
ylabel('y')
```


