HW5, Problem 25.4.
Nasser Abbasi, UCI. May 15, 2003
Problem: Use midpoint method with $\mathrm{h}=0.5$ and $\mathrm{h}=0.25$ to solve $\frac{d y}{d x}=y x^{2}-$ $1.2 y$ over the interval $x=0$ to 2 with $y(0)=1$.

Solution:
I illustrate the method, then write a matlab function to implement it.
Recall that in Euler method, we obtain an estimate to future value of y (at next step) by using the value for the rate of change of y at the current step. i.e. $y_{i+1}=y_{i}+h y_{i}^{\prime}$. i.e. we assume that the rate of change of y has remained the same over the duration of the step size.

In midpoint method the rate of change of y (which is used to make an h Euler step to estimate the future value of y) is taken to be the rate of change of y at the mid-point between the start and end of the x -step.

To find the rate at the mid-point, an $\frac{h}{2}$ Euler step is first used to estimate y at the mid-point.

Using this midpoint value for y^{\prime}, we now obtain the future value of y.
In otherwords, $y_{i+1}=y_{i}+h f\left(x_{i+\frac{h}{2}}, y_{i+\frac{h}{2}}\right)$
Algorithm

```
Find derivative of y at start of current step. Use initial
    conditions for y at start of first step.
Use this derivative to make a h/2 Euler step to find y at half-way
Find derivative of y at this half-way y value, and at x=x_start_step+h/2
Use this new mid-point derivative to make a full h Euler step from the
    start of the step to find y at end of current step.
repeat the above for each step.
```

I show how this is done for one step, then run the matlab function I wrote to fully solve the mid-point method.

Let $h=0.5$
First step, $\mathrm{i}=0$:
First find the rate at start of the step:
$y_{0}^{\prime}=y_{0}\left(x_{0}^{2}-1.2\right)=1(0-1.2)=-1.2$
Now, find the mid-point:
$y_{\text {mid-point }}=y_{0}+\frac{h}{2} y_{0}^{\prime}=1+\frac{0.5}{2}(-1.2)=0.7$
Now Use $y_{\text {mid-point }}$ to find the rate of change at the mid-point of the step:
$y_{\text {mid-point }}^{\prime}=y_{\text {mid-point }}\left(\left(x_{0}+\frac{h}{2}\right)^{2}-1.2\right)=0.7\left(\left(0+\frac{0.5}{2}\right)^{2}-1.2\right)=-0.7962$
Now, use this rate at the mid-point to make a full Euler step to find y at the end of the step
$y_{1}=y_{0}+h y_{\text {mid-point }}^{\prime}=1+0.5(-0.7962)=0.6019$
Continue the above process for all the steps.

