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Figure 1: Initial state of system

Problem 29.2

Detrmine the distrubtion of heat flux for the shown hearted plate. Assume the plate is

40 × 40 cm and is made of aluminum (k
′

= 0.49 cal/(s.cm.C0).

Solution

The heat flux vector is found as follows.

For each point in the grid, the x-component of the vector originating at the point is found

by taking the difference of the solution T values located at the adjacent 2 points along the

x-direction, divided by the distance between those 2 points. Similarly, the y-component is

found, but now we consider the 2 points along the y-directions, one above and one below.

Once the x and y component is found, the vector slope is determined.

The final solution from problem 29.1 is found to be:

A =

77.6961 74.8137 69.2085

60.4724 53.6169 51.4969

46.6481 29.1632 33.9286
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Figure 2: Method of calcuating heat flux

And the above is what will be used to find the flux.

The following diagram shows how the flux vector is calculated for one point T2. These

calculation are made for each point and the final flux vector field is plotted.

Since this is a 40cm square, the x and y distance between any 2-points is

10-cm.

Calculations of flux follows.

i = 1, j = 1

qx = −0.49
Ti+1,j−Ti−1,j

2∆x
= −0.49

T2,1−T0,1

2∆x
= −0.4929.163−75

2(10)
= 1.1230 cal

cm2 sec
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qy = −0.49
Ti,j+1−Ti,j−1

2∆y
= −0.49

T1,2−T1,0

2∆y
= −0.4960.4724−0

2(10)
= −1.4816 cal

cm2 sec

length of flux vector at this point is
√

q2
x + q2

y =
√

1.12302 + (−1.4816)2 = 1.8591

The angle the vector makes with the x-direction is

θ = arctan
(

qy

qx

)

= arctan
(

−1.4816
1.1230

)

= −52.83920

This process is repeated for each point.

It is clear then how the flux vector field is calculated.

To display the final result, I wrote a matlab fucntion called nma getFlux1 which accepts

as input the matrix (solution T ), and the distance between each x-point, and the distance

between each y-point. It reurns a matrix which contains the length of the flux at each grid

point, and another matrix which contains the angle of the flux at each grid point.

This below is the result of running this function. First obtain the Solution:

>> A=nma_laplaceRectDirchlet(xpoints, ypoints, bottom, right, top, left, lambda, 1);

A =

75.0000 100.0000 100.0000 100.0000 50.0000

75.0000 77.6961 74.8137 69.2085 50.0000

75.0000 60.4724 53.6169 51.4969 50.0000

75.0000 46.6481 29.1632 33.9286 50.0000

0 0 0 0 50.0000

epsilonA =

0.1517

Now pass the solution to the flux calculation function. use k = 0.49, dx = 10, dy = 10.

>> [flux,beta]=nma_getFlux1(A,0.49,10,10)

flux =

3



0 0 0 0 0

0 0.9684 1.1553 1.3348 0

0 0.9236 1.1399 0.8689 0

0 1.8591 1.3501 1.3610 0

0 0 0 0 0

beta =

0 0 0 0 0

0 -89.7300 -79.6302 -62.9061 0

0 -55.4445 -78.8768 -84.1464 0

0 -52.8386 -76.6545 -112.0294 0

0 0 0 0 0

The above shows the solution. It shows the magntude of the flux at each internal grid

point, and the angle to the x-axis of the vector. I plot (approximatly) by hand the above

flux at each point. The result shown in the diagram
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Figure 3: Plot of heat flux

Source code:

function [flux,beta]=nma_getFlux1(A,k,dx,dy)

TRUE = 1;

FALSE = 0;

[row,col]=size(A);

flux = zeros(row,col);

beta = zeros(row,col);

nx=row-2;

ny=col-2;

for(i=2+nx-1:-1:2)

for(j=2:1:2+ny-1)

qx=-k*(A(i,j+1)-A(i,j-1))/(2*dx);

qy=-k*(A(i-1,j)-A(i+1,j))/(2*dy);

flux(i,j)=sqrt(qx^2+qy^2);

beta(i,j)=atan2(qy,qx)*180/pi;
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end

end

end
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