

Figure 1: Initial state of system

Problem 29.2

Detrmine the distrubtion of heat flux for the shown hearted plate. Assume the plate is $40 \times 40 \mathrm{~cm}$ and is made of aluminum $\left(k^{\prime}=0.49 \mathrm{cal} /\left(\mathrm{s} . \mathrm{cm} . \mathrm{C}^{0}\right)\right.$.

Solution

The heat flux vector is found as follows.
For each point in the grid, the x-component of the vector originating at the point is found by taking the difference of the solution T values located at the adjacent 2 points along the x -direction, divided by the distance between those 2 points. Similarly, the y-component is found, but now we consider the 2 points along the y-directions, one above and one below. Once the x and y component is found, the vector slope is determined.

The final solution from problem 29.1 is found to be:
$\mathrm{A}=$

77.6961	74.8137	69.2085
60.4724	53.6169	51.4969
46.6481	29.1632	33.9286

Figure 2: Method of calcuating heat flux
And the above is what will be used to find the flux.
The following diagram shows how the flux vector is calculated for one point T_{2}. These calculation are made for each point and the final flux vector field is plotted.

Since this is a 40 cm square, the x and y distance between any 2 -points is $10-\mathrm{cm}$.

Calculations of flux follows.
$i=1, j=1$
$q x=-0.49 \frac{T_{i+1, j}-T_{i-1, j}}{2 \Delta x}=-0.49 \frac{T_{2,1}-T_{0,1}}{2 \Delta x}=-0.49 \frac{29.163-75}{2(10)}=1.1230 \frac{\mathrm{cal}}{\mathrm{cm}^{2} \mathrm{sec}}$
$q y=-0.49 \frac{T_{i, j+1}-T_{i, j-1}}{2 \Delta y}=-0.49 \frac{T_{1,2}-T_{1,0}}{2 \Delta y}=-0.49 \frac{60.4724-0}{2(10)}=-1.4816 \frac{\mathrm{cal}}{\mathrm{cm}^{2} \mathrm{sec}}$
length of flux vector at this point is $\sqrt{q_{x}^{2}+q_{y}^{2}}=\sqrt{1.1230^{2}+(-1.4816)^{2}}=1.8591$
The angle the vector makes with the x -direction is
$\theta=\arctan \left(\frac{q_{y}}{q_{x}}\right)=\arctan \left(\frac{-1.4816}{1.1230}\right)=-52.8392^{0}$
This process is repeated for each point.
It is clear then how the flux vector field is calculated.
To display the final result, I wrote a matlab fucntion called nma_getFlux1 which accepts as input the matrix (solution T), and the distance between each x-point, and the distance between each y-point. It reurns a matrix which contains the length of the flux at each grid point, and another matrix which contains the angle of the flux at each grid point.

This below is the result of running this function. First obtain the Solution:

```
>> A=nma_laplaceRectDirchlet(xpoints, ypoints, bottom, right, top, left, lambda, 1);
A =
\begin{tabular}{rrrrr}
75.0000 & 100.0000 & 100.0000 & 100.0000 & 50.0000 \\
75.0000 & 77.6961 & 74.8137 & 69.2085 & 50.0000 \\
75.0000 & 60.4724 & 53.6169 & 51.4969 & 50.0000 \\
75.0000 & 46.6481 & 29.1632 & 33.9286 & 50.0000 \\
0 & 0 & 0 & 0 & 50.0000
\end{tabular}
epsilonA =
    0.1517
```

Now pass the solution to the flux calculation function. use $k=0.49, d x=10, d y=10$.
>> [flux, beta]=nma_getFlux1 (A $0.49,10,10$)
flux =

0	0	0	0	0
0	0.9684	1.1553	1.3348	0
0	0.9236	1.1399	0.8689	0
0	1.8591	1.3501	1.3610	0
0	0	0	0	0
beta $=$				
0				0
0	-89.7300	-79.6302	-62.9061	0
0	-55.4445	-78.8768	-84.1464	0
0	-52.8386	-76.6545	-112.0294	0
0	0	0	0	0

The above shows the solution. It shows the magntude of the flux at each internal grid point, and the angle to the x -axis of the vector. I plot (approximatly) by hand the above flux at each point. The result shown in the diagram

Figure 3: Plot of heat flux

Source code:
function [flux,beta]=nma_getFlux1(A,k,dx,dy)

TRUE = 1;
FALSE $=0$;
[row,col]=size(A);
flux = zeros(row,col);
beta $=$ zeros(row,col);
nx=row-2;
ny=col-2;

```
for(i=2+nx-1:-1:2)
    for(j=2:1:2+ny-1)
        qx=-k*(A(i,j+1)-A(i,j-1))/(2*dx);
        qy=-k*(A(i-1,j)-A(i+1,j))/(2*dy);
        flux(i,j)=sqrt(qx^2+qy^2);
        beta(i,j)=atan2(qy,qx)*180/pi;
```

end
end
end

