Problem 30.3 HW\#7

Nasser Abbasi. UCI. MAE 185. May 24, 2003

Use explicit method to solve for the temp distribution of a long thin rod with length 10 cm and $k^{\prime}=0.49 \mathrm{cal} /\left(\mathrm{s} . \mathrm{cm} . \mathrm{C}^{0}\right), \Delta x=2 \mathrm{~cm}$ and $\Delta t=0.05 \mathrm{~s}$. At $\mathrm{t}=0$, the temp. of the rod is $0^{0} \mathrm{C}$ and the boundary conditions fixed for all times at $T(0)=100^{\circ} \mathrm{C}$ and $T(10)=50^{\circ} \mathrm{C}$. note that the rode is aluminum with $\mathrm{C}=0.2147 \mathrm{cal} /\left(\mathrm{g} . \mathrm{C}^{0}\right)$ and $\rho=2.7 \mathrm{~g} / \mathrm{cm}^{3}$. therefor $\mathrm{k}=0.49 /(2.7 \times 0.2174)=0.835$ $\mathrm{cm}^{2} / \mathrm{s}$ and $\lambda=0.835(0.05) / 2^{2}=0.0104375$.

Solution

The only difference between this problem and the example shown is in the time step. This causes λ to change from 0.020875 to 0.0104375
We need to solve a parabolic PDE using the explicit method.
Recall that the solution using the parabolic PDE is written as

$$
T_{i}^{l+1}=T_{i}^{l}+k \frac{\Delta t}{(\Delta x)^{2}}\left(T_{i+1}^{l}-2 T_{i}^{l}+T_{i-1}^{l}\right)
$$

Now apply the PDE solution with the above boundary conditions in place.
Apply one time step. now at time $=0.05$ seconds:

$$
\begin{aligned}
& T_{0}^{1}=100 \\
& T_{1}^{1}=T_{1}^{0}+k \frac{\Delta t}{(\Delta x)^{2}}\left(T_{2}^{0}-2 T_{1}^{0}+T_{0}^{0}\right)=0+0.0104375(0-2(0)+100)=1.04375 \\
& T_{2}^{1}=T_{2}^{0}+k \frac{\Delta t}{(\Delta x)^{2}}\left(T_{3}^{0}-2 T_{2}^{0}+T_{1}^{0}\right)=0+0.0104375(0-2(0)+0)=0 \\
& T_{3}^{1}=T_{3}^{0}+k \frac{\Delta t}{(\Delta x)^{2}}\left(T_{4}^{0}-2 T_{3}^{0}+T_{2}^{0}\right)=0+0.0104375(0-2(0)+0)=0 \\
& T_{4}^{1}=T_{4}^{0}+k \frac{\Delta t}{(\Delta t)^{2}}\left(T_{5}^{0}-2 T_{4}^{0}+T_{3}^{0}\right)=0+0.0104375(50-2(0)+0)=0.521875 \\
& T_{5}^{1}=50
\end{aligned}
$$

Ok, now continue. Let $\mathrm{t}=0.1$ seconds, i.e. $l=2$. Apply the same process as above:
$T_{0}^{2}=100$
$T_{1}^{2}=T_{1}^{1}+k \frac{\Delta t}{(\Delta x)^{2}}\left(T_{2}^{1}-2 T_{1}^{1}+T_{0}^{1}\right)=1.04375+0.0104375(0-2(1.04375)+100)=2.06571171875$
$T_{2}^{2}=T_{2}^{1}+k \frac{\Delta t}{(\Delta x)^{2}}\left(T_{3}^{1}-2 T_{2}^{1}+T_{1}^{1}\right)=0+0.0104375(0-2(0)+1.04375)=0.010894140625$
$T_{3}^{2}=T_{3}^{1}+k \frac{\Delta t}{(\Delta x)^{2}}\left(T_{4}^{1}-2 T_{3}^{1}+T_{2}^{1}\right)=0+0.0104375(0.521875-2(0)+0)=0.0054470703125$
$T_{4}^{2}=T_{4}^{1}+k \frac{\Delta t}{(\Delta x)^{2}}\left(T_{5}^{1}-2 T_{4}^{1}+T_{3}^{1}\right)=0.521875+0.0104375(50-2(0.521875)+0)=1.032855859375$
$T_{5}^{2}=50$
Ok, now continue. Let $\mathrm{t}=0.15$ seconds, i.e. $l=3$. Apply the same process as above:
$T_{0}^{3}=100$
$T_{1}^{3}=T_{1}^{2}+k \frac{\Delta t}{(\Delta x)^{2}}\left(T_{2}^{2}-2 T_{1}^{2}+T_{0}^{2}\right)=$
$2.06571171875+0.0104375(0.010894140625-2(2.06571171875)+100)=3.06645369421387$
$T_{2}^{3}=T_{2}^{2}+k \frac{\Delta t}{(\Delta x)^{2}}\left(T_{3}^{2}-2 T_{2}^{2}+T_{1}^{2}\right)=$
$0.010894140625+0.0104375(0.0054470703125-2(0.010894140625)+2.06571171875)=0.032284445300293$
$T_{3}^{3}=T_{3}^{2}+k \frac{\Delta t}{(\Delta x)^{2}}\left(T_{4}^{2}-2 T_{3}^{2}+T_{2}^{2}\right)=$
$0.0054470703125+0.0104375(1.032855859375-2(0.0054470703125)+0.010894140625)=0.0162275033447266$
$T_{4}^{3}=T_{4}^{2}+k \frac{\Delta t}{(\Delta x)^{2}}\left(T_{5}^{2}-2 T_{4}^{2}+T_{3}^{2}\right)=$
$1.032855859375+0.0104375(50-2(1.032855859375)+0.0054470703125)=1.53322684710693$
$T_{5}^{3}=50$
Ok, now continue. Let $\mathrm{t}=0.2$ seconds, i.e. $l=4$. Apply the same process as above:
$T_{0}^{4}=100$
$T_{1}^{4}=T_{1}^{3}+k \frac{\Delta t}{(\Delta x)^{2}}\left(T_{2}^{3}-2 T_{1}^{3}+T_{0}^{3}\right)=$ $3.06645369421387+0.0104375(0.032284445300293-2(3.06645369421387)+100)=4.04652844224498$
$T_{2}^{4}=T_{2}^{3}+k \frac{\Delta t}{(\Delta x)^{2}}\left(T_{3}^{3}-2 T_{2}^{3}+T_{1}^{3}\right)=$
$0.032284445300293+0.0104375(0.0162275033447266-2(0.032284445300293)+3.06645369421387)=$ 0.0637859925041672
$T_{3}^{4}=T_{3}^{3}+k \frac{\Delta t}{(\Delta x)^{2}}\left(T_{4}^{3}-2 T_{3}^{3}+T_{2}^{3}\right)=$
$0.0162275033447266+0.0104375(1.53322684710693-2(0.0162275033447266)+0.032284445300293)=$
0.0322287783269058
$T_{4}^{4}=T_{4}^{3}+k \frac{\Delta t}{(\Delta x)^{2}}\left(T_{5}^{3}-2 T_{4}^{3}+T_{3}^{3}\right)=$
$1.53322684710693+0.0104375(50-2(1.53322684710693)+0.0162275033447266)=2.02326511123973$
$T_{5}^{4}=50$
Summary:
Using $\nabla t=0.05$ seconds, this is the final value of T
$T_{0}^{4}=100$
$T_{1}^{4}=4.04652844224498$
$T_{2}^{4}=0.0637859925041672$
$T_{3}^{4}=0.0322287783269058$
$T_{4}^{4}=2.02326511123973$
$T_{5}^{4}=50$
Compare that with using $\nabla t=1$ second:
$T_{0}^{4}=100$
$T_{1}^{4}=4.0878$
$T_{2}^{4}=0.043577$
$T_{3}^{4}=0.021788$
$T_{4}^{4}=2.0439$
$T_{5}^{4}=50$
Notice that with $\nabla t=0.05 \mathrm{sec}$, the values of T inside the rod are a little smaller than with $\nabla t=1$ second.

Both solutions are stable (i.e. with $\nabla t=1$ second, and $\nabla t=0.05$ seconds) since in both cases $\lambda \leq 1 / 2$, hence the above difference means that for $\nabla t=0.05$ it is more accurate than for $\nabla t=1$

