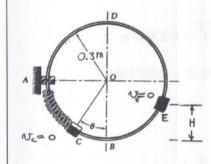


A thin circular rod is supported in a vertical plane by a bracket at A. Attached to the bracket and loosely wound around the rod is a spring of constant k = 40 N/m and undeformed length equal to the arc of circle AB. A 200-g collar C, not attached to the spring, can slide without friction along the rod. Knowing that the collar is released from rest when $\theta = 30^{\circ}$, determine (a) the maximum height above point B reached by the collar, (b) the maximum velocity of the collar.

(a) Maximum height



 $\theta = 30^\circ = \frac{\pi}{6}$ rad $R = 0.3 \, {\rm m}$

Above B is reached when the velocity at E is zero

$$T_C = 0$$
$$T_E = 0$$
$$V = V_e + V_g$$

$$\Delta L_{BC} = (0.3 \text{ m}) \left(\frac{\pi}{6} \text{ rad}\right)$$
$$\Delta L_{BC} = \frac{\pi}{20} \text{ m}$$

$$V_C)_e = \frac{1}{2}k(\Delta L_{BC})^2 = \frac{1}{2}(40 \text{ N/m})\left(\frac{\pi}{20}\text{ m}\right)^2 = 0.4935 \text{ J}$$

 $(V_C)_g = WR(1 - \cos\theta) = (0.2 \text{ kg} \times 9.81 \text{ m/s}^2)(0.3 \text{ m})(1 - \cos 30^\circ)$

 $\left(V_C\right)_g = 0.07886 \,\mathrm{J}$

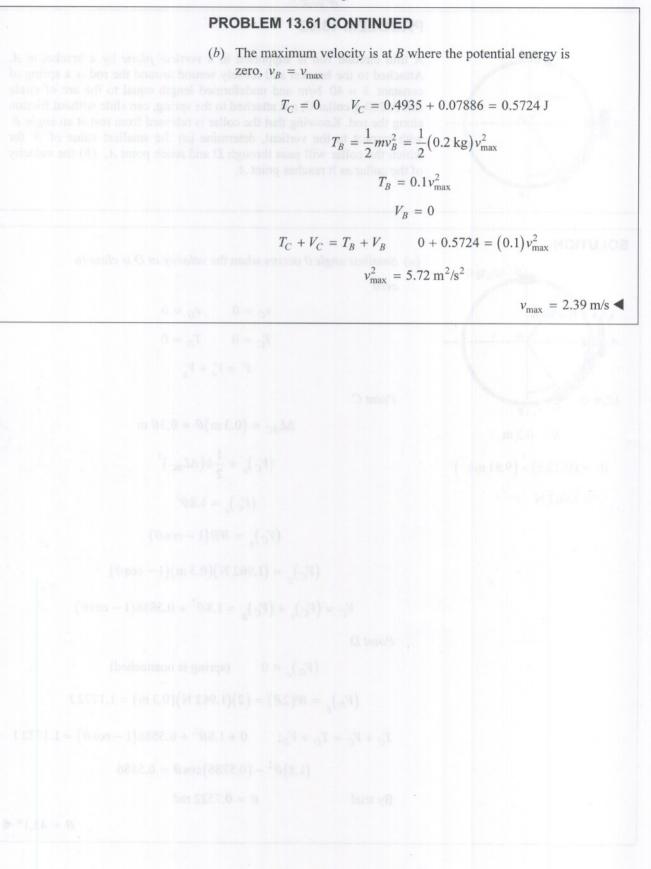
 $\left(V_E\right)_e = 0$ (spring is unattached)

$$(V_E)_{\alpha} = WH = (0.2 \times 9.81)(H) = 1.962H(J)$$

 $T_C + V_C = T_E + V_E$

0 + 0.4935 + 0.07886 = 0 + 0 + 1.962H

H = 0.292 m

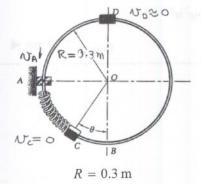


HW#3

A C B

A thin circular rod is supported in a vertical plane by a bracket at A. Attached to the bracket and loosely wound around the rod is a spring of constant k = 40 N/m and undeformed length equal to the arc of circle AB. A 200-g collar C, not attached to the spring, can slide without friction along the rod. Knowing that the collar is released from rest at an angle θ with respect to the vertical, determine (a) the smallest value of θ for which the collar will pass through D and reach point A, (b) the velocity of the collar as it reaches point A.

SOLUTION



 $W = (0.2 \text{ kg}) \times (9.81 \text{ m/s}^2)$

= 1.962 N

(a) Smallest angle θ occurs when the velocity at D is close to zero

$$v_C = 0 \qquad v_D = 0$$
$$T_C = 0 \qquad T_D = 0$$
$$V = V_0 + V_0$$

Point C

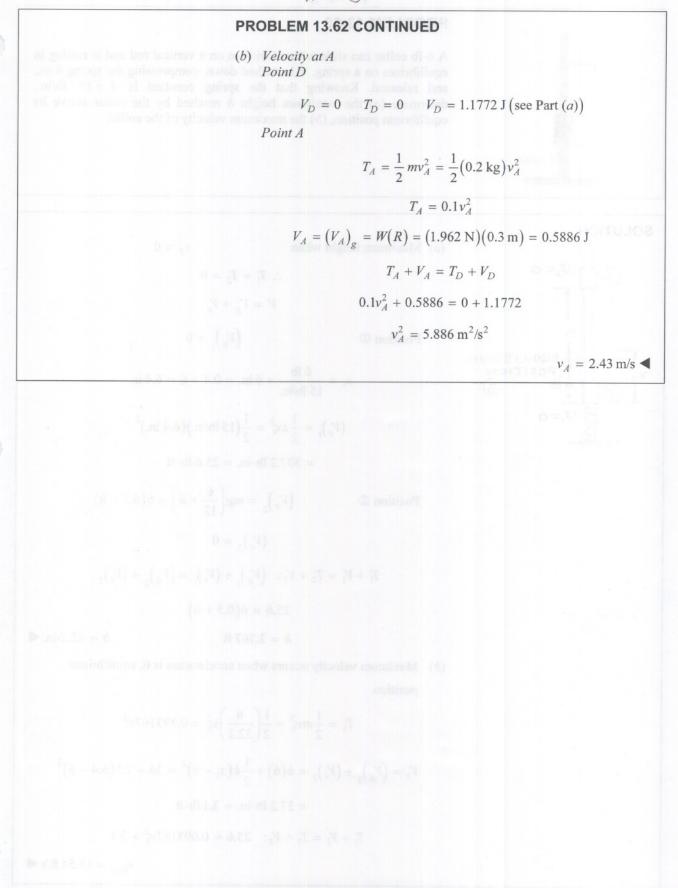
$$\Delta L_{BC} = (0.3 \text{ m})\theta = 0.3\theta \text{ m}$$
$$(V_C)_e = \frac{1}{2}k(\Delta L_{BC})^2$$
$$(V_C)_e = 1.8\theta^2$$
$$(V_C)_g = WR(1 - \cos\theta)$$
$$V_C)_g = (1.962 \text{ N})(0.3 \text{ m})(1 - \cos\theta)$$

 $V_C = (V_C)_e + (V_C)_g = 1.8\theta^2 + 0.5886(1 - \cos\theta)$

Point D

$$(V_D)_e = 0$$
 (spring is unattached)
 $(V_D)_g = W(2R) = (2)(1.962 \text{ N})(0.3 \text{ m}) = 1.1772 \text{ J}$
 $T_C + V_C = T_D + V_D;$ $0 + 1.8\theta^2 + 0.5586(1 - \cos\theta) = 1.1772 \text{ J}$
 $(1.8)\theta^2 - (0.5886)\cos\theta = 0.5886$
By trial $\theta = 0.7522 \text{ rad}$

 $\theta = 43.1^{\circ} \blacktriangleleft$

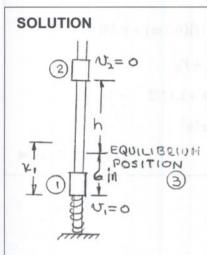


HW#3

HW#3

PROBLEM 13.63

A 6-lb collar can slide without friction on a vertical rod and is resting in equilibrium on a spring. It is pushed down, compressing the spring 6 in., and released. Knowing that the spring constant is k = 15 lb/in., determine (a) the maximum height h reached by the collar above its equilibrium position, (b) the maximum velocity of the collar.



(a) Maximum height when $v_2 = 0$ $\therefore T_1 = T_2 = 0$ $V = V_g + V_e$ $\left(V_g\right)_1 = 0$ Position ① $x_1 = \frac{6 \text{ lb}}{15 \text{ lb/in.}} + 6 \text{ in.} = 0.4 + 6 = 6.4 \text{ in.}$ $(V_e)_1 = \frac{1}{2}kx_1^2 = \frac{1}{2}(15 \text{ lb/in.})(6.4 \text{ in.})^2$ $= 307.2 \text{ lb} \cdot \text{in.} = 25.6 \text{ lb} \cdot \text{ft}$ $\left(V_g\right)_2 = mg\left(\frac{6}{12} + h\right) = 6\left(0.5 + h\right)$ Position 2 $(V_e)_2 = 0$ $T_1 + V_1 = T_2 + V_2$: $(V_g)_1 + (V_e)_1 = (V_g)_2 + (V_e)_2$ 25.6 = 6(0.5 + h) $h = 3.767 \, \text{ft}$ h = 45.2 in. (b) Maximum velocity occurs when acceleration is 0, equilibrium

position

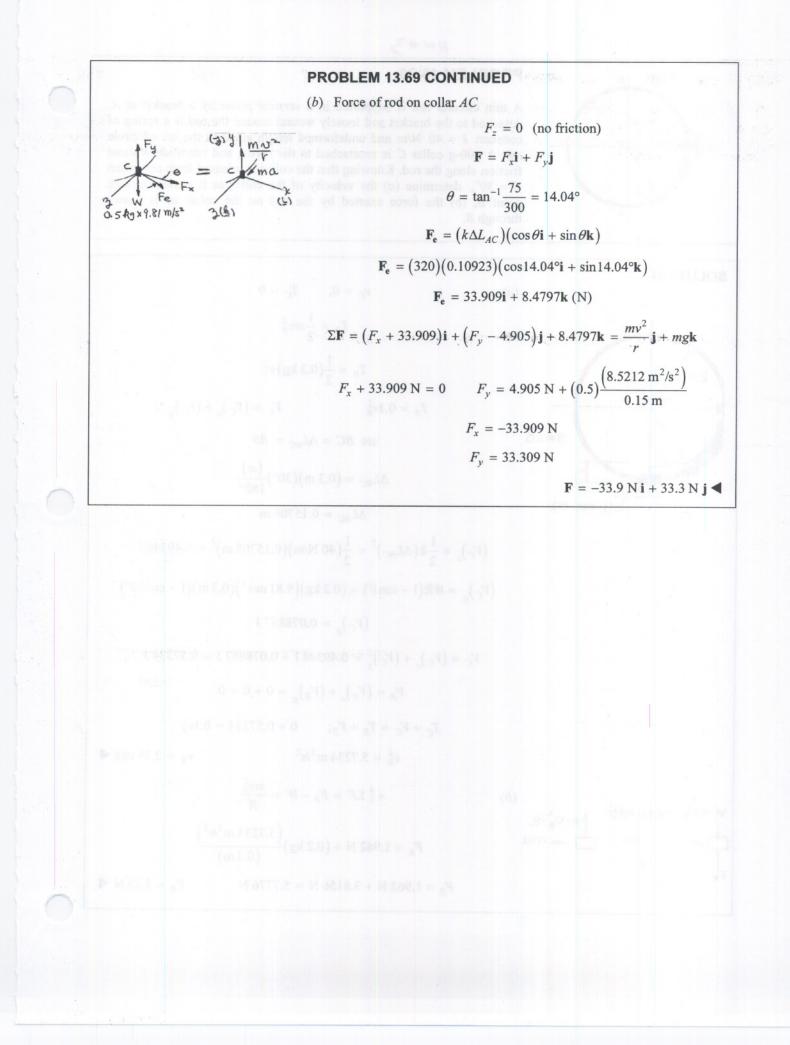
$$T_{3} = \frac{1}{2}mv_{3}^{2} = \frac{1}{2}\left(\frac{6}{32.2}\right)v_{3}^{2} = 0.093167v_{3}^{2}$$

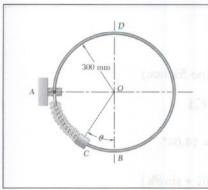
$$V_{3} = \left(V_{g}\right)_{3} + \left(V_{e}\right)_{3} = 6\left(6\right) + \frac{1}{2}k\left(x_{1} - 6\right)^{2} = 36 + 7.5\left(6.4 - 6\right)^{2}$$

$$= 37.2 \text{ lb} \cdot \text{in.} = 3.1 \text{ lb} \cdot \text{ft}$$

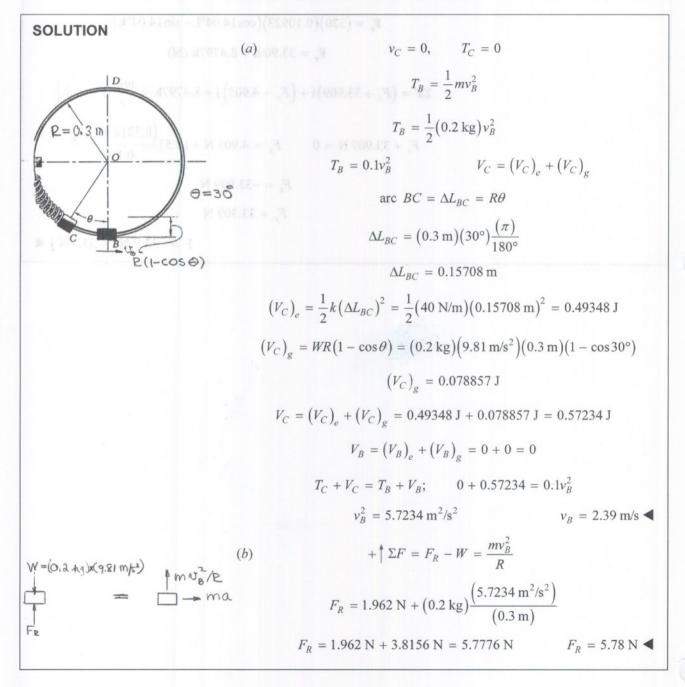
$$T_{1} + V_{1} = T_{3} + V_{3}: \quad 25.6 = 0.093167v_{3}^{2} + 3.1$$

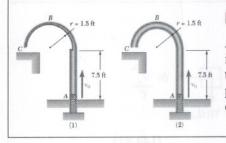
$$v_{\text{max}} = 15.54 \text{ ft/s} \blacktriangleleft$$





A thin circular rod is supported in a *vertical plane* by a bracket at A. Attached to the bracket and loosely wound around the rod is a spring of constant k = 40 N/m and undeformed length equal to the arc of circle AB. A 200-g collar C is unattached to the spring and can slide without friction along the rod. Knowing that the collar is released from rest when $\theta = 30^{\circ}$, determine (a) the velocity of the collar as it passes through point B, (b) the force exerted by the rod on the collar as is passes through B.

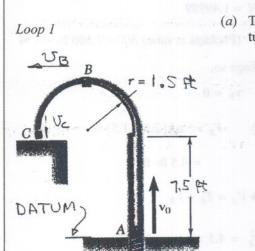




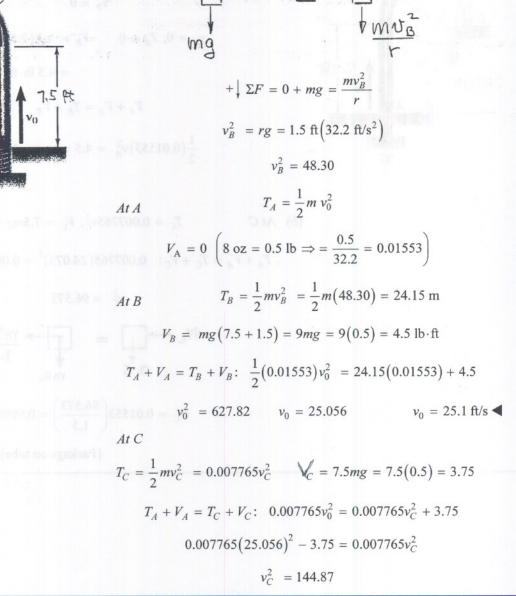
4w#2

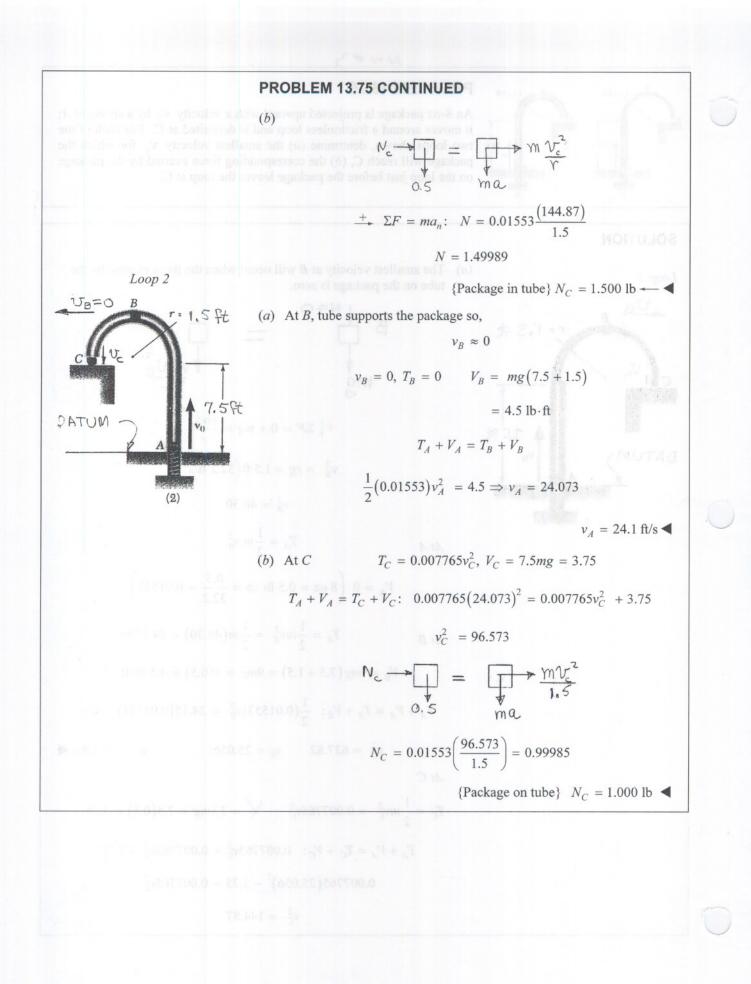
An 8-oz package is projected upward with a velocity \mathbf{v}_0 by a spring at A; it moves around a frictionless loop and is deposited at C. For each of the two loops shown, determine (a) the smallest velocity \mathbf{v}_0 for which the package will reach C, (b) the corresponding force exerted by the package on the loop just before the package leaves the loop at C.

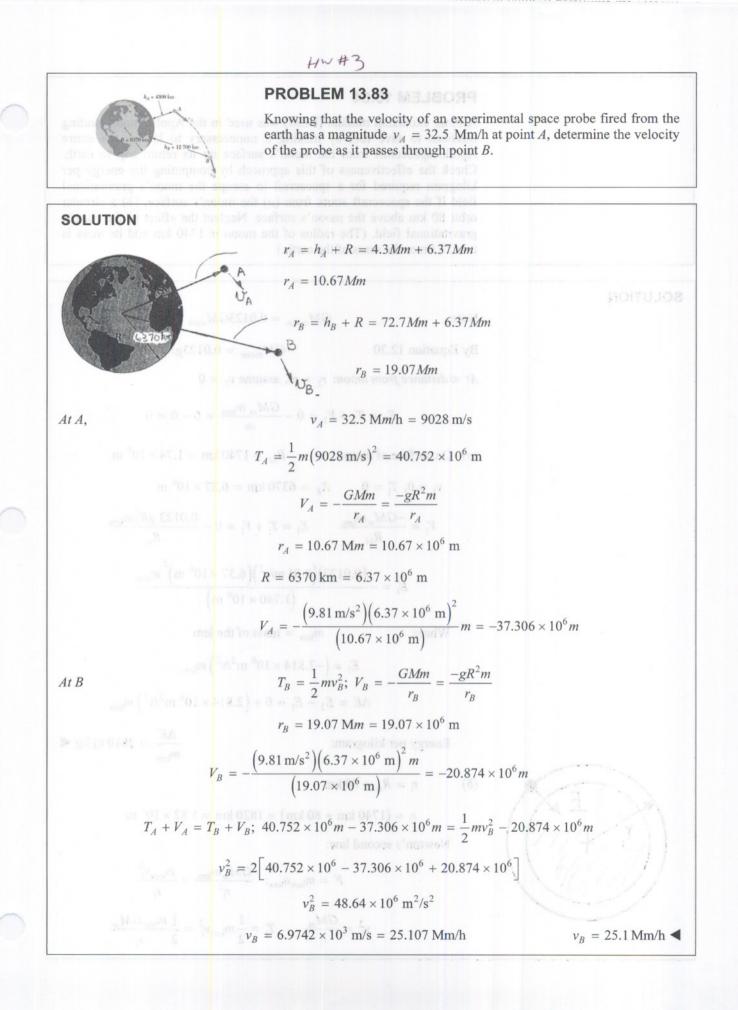
SOLUTION



(a) The smallest velocity at B will occur when the force exerted by the tube on the package is zero.







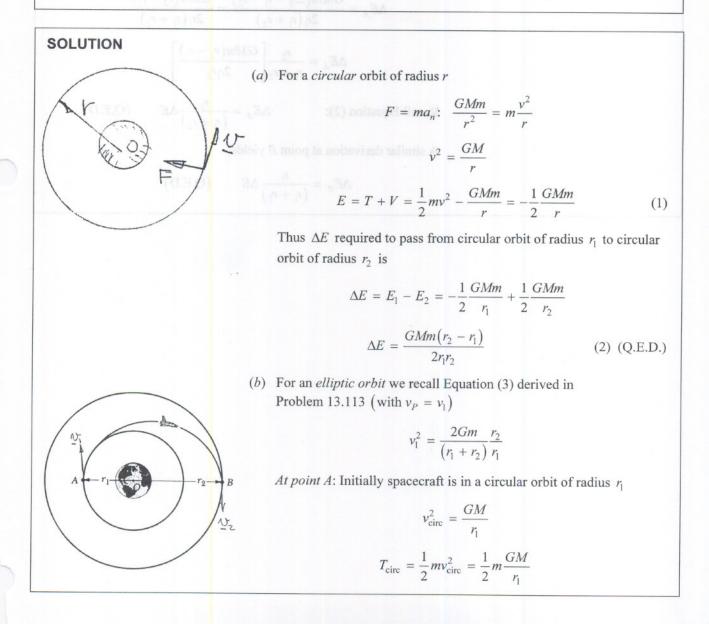
HW#3

A spacecraft of mass *m* describes a circular orbit of radius r_1 around the earth. (*a*) Show that the additional energy ΔE which must be imparted to the spacecraft to transfer it to a circular orbit of larger radius r_2 is

$$\Delta E = \frac{GMm(r_2 - r_1)}{2r_1r_2}$$

where *M* is the mass of the earth. (b) Further show that if the transfer from one circular orbit to the other circular orbit is executed by placing the spacecraft on a transitional semielliptic path *AB*, the amounts of energy ΔE_A and ΔE_B which must be imparted at *A* and *B* are, respectively, proportional to r_1 and r_2 :

$$\Delta E_A = \frac{r_2}{r_1 + r_2} \Delta E \qquad \Delta E_B = \frac{r_1}{r_1 + r_2} \Delta E$$



PROBLEM 13.116 CONTINUED

After the spacecraft engines are fired and it is placed on a semi-elliptic path AB, we recall

$$v_1^2 = \frac{2GM}{(r_1 + r_2)} \cdot \frac{r_2}{r_1}$$

And

And
$$T_{1} = \frac{1}{2}mv_{1}^{2} = \frac{1}{2}m\frac{2GMr_{2}}{r_{1}(r_{1} + r_{2})}$$
At point *A*, the increase in energy is

$$\Delta E_A = T_1 - T_{\text{circ}} = \frac{1}{2}m \frac{2GMr_2}{r_1(r_1 + r_2)} - \frac{1}{2}m \frac{GM}{r_1}$$
$$\Delta E_A = \frac{GMm(2r_2 - r_1 - r_2)}{2r_1(r_1 + r_2)} = \frac{GMm(r_2 - r_1)}{2r_1(r_1 + r_2)}$$
$$\Delta E_A = \frac{r_2}{r_1 + r_2} \left[\frac{GMm(r_2 - r_1)}{2r_1r_2} \right]$$

Recall Equation (2):

A similar derivation at point B yields,

$$\Delta E_B = \frac{r_1}{\left(r_1 + r_2\right)} \Delta E \qquad \left(\text{Q.E.D}\right)$$

 $\Delta E_A = \frac{r_2}{\left(r_1 + r_2\right)} \Delta E$

$$\Delta E = E_1 - E_2 = \frac{1 \ O \ m}{2} + \frac{1 \ O \ m}{2}$$
$$\Delta E = \frac{O \ Mm}{2 \ N}$$

$$Y_{\text{exc}}^2 = \frac{Gh}{2}$$

$$\sum_{\text{care}}^2 = \frac{1}{2}mv_{\text{care}}^2 = -m\frac{GN}{2}$$