$$
\text { Hw \# } 3
$$

PROBLEM 13.61

A thin circular rod is supported in a vertical plane by a bracket at A. Attached to the bracket and loosely wound around the rod is a spring of constant $k=40 \mathrm{~N} / \mathrm{m}$ and undeformed length equal to the arc of circle $A B$. A 200-g collar C, not attached to the spring, can slide without friction along the rod. Knowing that the collar is released from rest when $\theta=30^{\circ}$, determine (a) the maximum height above point B reached by the collar, (b) the maximum velocity of the collar.

SOLUTION

(a) Maximum height

Above B is reached when the velocity at E is zero

$$
\begin{gathered}
T_{C}=0 \\
T_{E}=0 \\
V=V_{e}+V_{g}
\end{gathered}
$$

Point C

$$
\begin{gathered}
\theta=30^{\circ}=\frac{\pi}{6} \mathrm{rad} \\
R=0.3 \mathrm{~m}
\end{gathered}
$$

$$
\begin{gathered}
\Delta L_{B C}=(0.3 \mathrm{~m})\left(\frac{\pi}{6} \mathrm{rad}\right) \\
\Delta L_{B C}=\frac{\pi}{20} \mathrm{~m} \\
\left(V_{C}\right)_{e}=\frac{1}{2} k\left(\Delta L_{B C}\right)^{2}=\frac{1}{2}(40 \mathrm{~N} / \mathrm{m})\left(\frac{\pi}{20} \mathrm{~m}\right)^{2}=0.4935 \mathrm{~J} \\
\left(V_{C}\right)_{g}=W R(1-\cos \theta)=\left(0.2 \mathrm{~kg} \times 9.81 \mathrm{~m} / \mathrm{s}^{2}\right)(0.3 \mathrm{~m})\left(1-\cos 30^{\circ}\right) \\
\left(V_{C}\right)_{g}=0.07886 \mathrm{~J} \\
\left(V_{E}\right)_{e}=0 \quad(\text { spring is unattached }) \\
\left(V_{E}\right)_{g}=W H=(0.2 \times 9.81)(H)=1.962 \mathrm{H}(\mathrm{~J}) \\
T_{C}+V_{C}=T_{E}+V_{E} \\
0+0.4935+0.07886=0+0+1.962 \mathrm{H}
\end{gathered}
$$

$$
H=0.292 \mathrm{~m}
$$

HW \#3

PROBLEM 13.61 CONTINUED

(b) The maximum velocity is at B where the potential energy is zero, $v_{B}=v_{\text {max }}$

$$
\begin{gathered}
T_{C}=0 \quad V_{C}=0.4935+0.07886=0.5724 \mathrm{~J} \\
T_{B}=\frac{1}{2} m v_{B}^{2}=\frac{1}{2}(0.2 \mathrm{~kg}) v_{\max }^{2} \\
T_{B}=0.1 v_{\max }^{2} \\
V_{B}=0 \\
T_{C}+V_{C}=T_{B}+V_{B} \quad 0+0.5724=(0.1) v_{\max }^{2} \\
v_{\max }^{2}=5.72 \mathrm{~m}^{2} / \mathrm{s}^{2}
\end{gathered}
$$

$$
v_{\max }=2.39 \mathrm{~m} / \mathrm{s}
$$

PROBLEM 13.62

A thin circular rod is supported in a vertical plane by a bracket at A. Attached to the bracket and loosely wound around the rod is a spring of constant $k=40 \mathrm{~N} / \mathrm{m}$ and undeformed length equal to the arc of circle $A B$. A 200-g collar C, not attached to the spring, can slide without friction along the rod. Knowing that the collar is released from rest at an angle θ with respect to the vertical, determine (a) the smallest value of θ for which the collar will pass through D and reach point $A,(b)$ the velocity of the collar as it reaches point A.

SOLUTION

(a) Smallest angle θ occurs when the velocity at D is close to
(a) Smal

$$
\begin{gathered}
v_{C}=0 \quad v_{D}=0 \\
T_{C}=0 \quad T_{D}=0 \\
V=V_{e}+V_{g}
\end{gathered}
$$

Point C

$$
R=0.3 \mathrm{~m}
$$

$$
\begin{aligned}
W & =(0.2 \mathrm{~kg}) \times\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right) \\
& =1.962 \mathrm{~N}
\end{aligned}
$$

$$
\begin{gathered}
\Delta L_{B C}=(0.3 \mathrm{~m}) \theta=0.3 \theta \mathrm{~m} \\
\left(V_{C}\right)_{e}=\frac{1}{2} k\left(\Delta L_{B C}\right)^{2} \\
\left(V_{C}\right)_{e}=1.8 \theta^{2} \\
\left(V_{C}\right)_{g}=W R(1-\cos \theta) \\
\left(V_{C}\right)_{g}=(1.962 \mathrm{~N})(0.3 \mathrm{~m})(1-\cos \theta) \\
V_{C}=\left(V_{C}\right)_{e}+\left(V_{C}\right)_{g}=1.8 \theta^{2}+0.5886(1-\cos \theta)
\end{gathered}
$$

Point D

$$
\begin{aligned}
& \left.\qquad V_{D}\right)_{e}=0 \quad \text { (spring is unattached) } \\
& \qquad\left(V_{D}\right)_{g}=W(2 R)=(2)(1.962 \mathrm{~N})(0.3 \mathrm{~m})=1.1772 \mathrm{~J} \\
& T_{C}+V_{C}=T_{D}+V_{D} ; \quad 0+1.8 \theta^{2}+0.5586(1-\cos \theta)=1.1772 \mathrm{~J} \\
& \quad(1.8) \theta^{2}-(0.5886) \cos \theta=0.5886 \\
& \text { By trial } \quad \theta=0.7522 \mathrm{rad}
\end{aligned}
$$

PROBLEM 13.62 CONTINUED

(b) Velocity at A Point D

$$
V_{D}=0 \quad T_{D}=0 \quad V_{D}=1.1772 \mathrm{~J}(\text { see Part }(a))
$$

Point A

$$
\begin{gathered}
T_{A}=\frac{1}{2} m v_{A}^{2}=\frac{1}{2}(0.2 \mathrm{~kg}) v_{A}^{2} \\
T_{A}=0.1 v_{A}^{2} \\
V_{A}=\left(V_{A}\right)_{g}=W(R)=(1.962 \mathrm{~N})(0.3 \mathrm{~m})=0.5886 \mathrm{~J} \\
T_{A}+V_{A}=T_{D}+V_{D} \\
0.1 v_{A}^{2}+0.5886=0+1.1772 \\
v_{A}^{2}=5.886 \mathrm{~m}^{2} / \mathrm{s}^{2}
\end{gathered}
$$

$$
v_{A}=2.43 \mathrm{~m} / \mathrm{s}
$$

SOLUTION

(a) Maximum height when $\quad v_{2}=0$

$$
\begin{gathered}
\qquad \therefore T_{1}=T_{2}=0 \\
V=V_{g}+V_{e} \\
\text { Position (1) }\left(V_{g}\right)_{1}=0 \\
x_{1}=\frac{6 \mathrm{lb}}{15 \mathrm{lb} / \mathrm{in} .}+6 \mathrm{in} .=0.4+6=6.4 \mathrm{in} \\
\left(V_{e}\right)_{1}=\frac{1}{2} k x_{1}^{2}=\frac{1}{2}(15 \mathrm{lb} / \mathrm{in} .)(6.4 \mathrm{in} .)^{2} \\
=307.2 \mathrm{lb} \cdot \mathrm{in} .=25.6 \mathrm{lb} \cdot \mathrm{ft}
\end{gathered}
$$

Position (2)

$$
\left(V_{g}\right)_{2}=m g\left(\frac{6}{12}+h\right)=6(0.5+h)
$$

$$
\left(V_{e}\right)_{2}=0
$$

$$
T_{1}+V_{1}=T_{2}+V_{2}:\left(V_{g}\right)_{1}+\left(V_{e}\right)_{1}=\left(V_{g}\right)_{2}+\left(V_{e}\right)_{2}
$$

$$
25.6=6(0.5+h)
$$

$$
h=3.767 \mathrm{ft} \quad h=45.2 \mathrm{in}
$$

(b) Maximum velocity occurs when acceleration is 0 , equilibrium position

$$
\begin{gathered}
T_{3}=\frac{1}{2} m v_{3}^{2}=\frac{1}{2}\left(\frac{6}{32.2}\right) v_{3}^{2}=0.093167 v_{3}^{2} \\
V_{3}=\left(V_{g}\right)_{3}+\left(V_{e}\right)_{3}=6(6)+\frac{1}{2} k\left(x_{1}-6\right)^{2}=36+7.5(6.4-6)^{2} \\
=37.2 \mathrm{lb} \cdot \mathrm{in} .=3.1 \mathrm{lb} \cdot \mathrm{ft} \\
T_{1}+V_{1}=T_{3}+V_{3}: \quad 25.6=0.093167 v_{3}^{2}+3.1
\end{gathered}
$$

$$
v_{\max }=15.54 \mathrm{ft} / \mathrm{s}
$$

PROBLEM 13.69 CONTINUED

(b) Force of rod on collar $A C$

$$
\begin{gathered}
F_{z}=0 \text { (no friction) } \\
\mathbf{F}=F_{x} \mathbf{i}+F_{y} \mathbf{j} \\
\theta=\tan ^{-1} \frac{75}{300}=14.04^{\circ} \\
\mathbf{F}_{\mathbf{e}}=\left(k \Delta L_{A C}\right)(\cos \theta \mathbf{i}+\sin \theta \mathbf{k}) \\
\mathbf{F}_{\mathbf{e}}=(320)(0.10923)\left(\cos 14.044^{\circ} \mathbf{i}+\sin 14.04 \mathbf{R}^{\circ} \mathbf{k}\right) \\
\mathbf{F}_{\mathbf{e}}=33.909 \mathbf{i}+8.4797 \mathbf{k}(\mathrm{~N}) \\
\Sigma \mathbf{F}=\left(F_{x}+33.909\right) \mathbf{i}+\left(F_{y}-4.905\right) \mathbf{j}+8.4797 \mathbf{k}=\frac{m v^{2}}{r} \mathbf{j}+m g \mathbf{k} \\
F_{x}+33.909 \mathrm{~N}=0 \quad F_{y}=4.905 \mathrm{~N}+(0.5) \frac{\left(8.5212 \mathrm{~m}^{2} / \mathrm{s}^{2}\right)}{0.15 \mathrm{~m}} \\
F_{x}=-33.909 \mathrm{~N} \\
F_{y}=33.309 \mathrm{~N}
\end{gathered}
$$

$$
\mathbf{F}=-33.9 \mathrm{~N} \mathbf{i}+33.3 \mathrm{~N} \mathbf{j}
$$

HW \#3

PROBLEM 13.70

A thin circular rod is supported in a vertical plane by a bracket at A. Attached to the bracket and loosely wound around the rod is a spring of constant $k=40 \mathrm{~N} / \mathrm{m}$ and undeformed length equal to the arc of circle $A B$. A 200-g collar C is unattached to the spring and can slide without friction along the rod. Knowing that the collar is released from rest when $\theta=30^{\circ}$, determine (a) the velocity of the collar as it passes through point $B,(b)$ the force exerted by the rod on the collar as is passes through B.

SOLUTION

$$
\begin{aligned}
& \text { (a) } \\
& v_{C}=0, \quad T_{C}=0 \\
& T_{B}=\frac{1}{2} m v_{B}^{2} \\
& T_{B}=\frac{1}{2}(0.2 \mathrm{~kg}) v_{B}^{2} \\
& T_{B}=0.1 v_{B}^{2} \quad V_{C}=\left(V_{C}\right)_{e}+\left(V_{C}\right)_{g} \\
& \operatorname{arc} B C=\Delta L_{B C}=R \theta \\
& \Delta L_{B C}=(0.3 \mathrm{~m})\left(30^{\circ}\right) \frac{(\pi)}{180^{\circ}} \\
& \Delta L_{B C}=0.15708 \mathrm{~m} \\
& \left(V_{C}\right)_{e}=\frac{1}{2} k\left(\Delta L_{B C}\right)^{2}=\frac{1}{2}(40 \mathrm{~N} / \mathrm{m})(0.15708 \mathrm{~m})^{2}=0.49348 \mathrm{~J} \\
& \left(V_{C}\right)_{g}=W R(1-\cos \theta)=(0.2 \mathrm{~kg})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)(0.3 \mathrm{~m})\left(1-\cos 30^{\circ}\right) \\
& \left(V_{C}\right)_{g}=0.078857 \mathrm{~J} \\
& \begin{array}{c}
V_{C}=\left(V_{C}\right)_{e}+\left(V_{C}\right)_{g}=0.49348 \mathrm{~J}+0.078857 \mathrm{~J}=0.57234 \mathrm{~J} \\
V_{B}=\left(V_{B}\right)_{e}+\left(V_{B}\right)_{g}=0+0=0 \\
T_{C}+V_{C}=T_{B}+V_{B} ; \quad 0+0.57234=0.1 v_{B}^{2} \\
v_{B}^{2}=5.7234 \mathrm{~m}^{2} / \mathrm{s}^{2} \quad v_{B}=2.39 \mathrm{~m} / \mathrm{s}
\end{array} \\
& +\uparrow \Sigma F=F_{R}-W=\frac{m v_{B}^{2}}{R} \\
& \text { (b) } \\
& F_{R}=1.962 \mathrm{~N}+(0.2 \mathrm{~kg}) \frac{\left(5.7234 \mathrm{~m}^{2} / \mathrm{s}^{2}\right)}{(0.3 \mathrm{~m})} \\
& F_{R}=1.962 \mathrm{~N}+3.8156 \mathrm{~N}=5.7776 \mathrm{~N} \quad F_{R}=5.78 \mathrm{~N}
\end{aligned}
$$

PROBLEM 13.75

An 8-oz package is projected upward with a velocity \mathbf{v}_{0} by a spring at A; it moves around a frictionless loop and is deposited at C. For each of the two loops shown, determine (a) the smallest velocity \mathbf{v}_{0} for which the package will reach C, (b) the corresponding force exerted by the package on the loop just before the package leaves the loop at C.

SOLUTION

Loop 1

(a) The smallest velocity at B will occur when the force exerted by the tube on the package is zero.
At A
$v_{B}^{2}=r g=1.5 \mathrm{ft}\left(32.2 \mathrm{ft} / \mathrm{s}^{2}\right)$
$V_{\mathrm{A}}=0\left(8 \mathrm{oz}=0.5 \mathrm{lb} \Rightarrow=\frac{0.5}{32.2}=0.01553\right)$
$T_{B}^{2}=48.30$
At B
$T_{B}=\frac{1}{2} m v_{B}^{2}=\frac{1}{2} m(48.30)=24.15 \mathrm{~m}$
$T_{A}^{2}+V_{A}=T_{B}+V_{B}: \frac{1}{2}(0.01553) v_{0}^{2}=24.15(0.01553)+4.5$
$v_{0}^{2}=627.82$
$v_{0}=25.056$

At C

$$
\begin{gathered}
T_{C}=\frac{1}{2} m v_{C}^{2}=0.007765 v_{C}^{2} \quad V_{C}=7.5 m g=7.5(0.5)=3.75 \\
T_{A}+V_{A}=T_{C}+V_{C}: \quad 0.007765 v_{0}^{2}=0.007765 v_{C}^{2}+3.75 \\
0.007765(25.056)^{2}-3.75=0.007765 v_{C}^{2}
\end{gathered}
$$

$$
v_{C}^{2}=144.87
$$

PROBLEM 13.75 CONTINUED

(b)

$$
\begin{gathered}
N_{c} \rightarrow \prod_{0}=\prod_{m a} \frac{v_{c}^{2}}{r} \\
\xrightarrow{+} \Sigma F=m a_{n}: N=0.01553 \frac{(144.87)}{1.5} \\
N=1.49989
\end{gathered}
$$

Loop 2

(2)
$\{$ Package in tube $\} N_{C}=1.500 \mathrm{lb} \longleftarrow \longleftarrow$
(a) At B, tube supports the package so,

$$
v_{B} \approx 0
$$

$$
\begin{gathered}
v_{B}=0, T_{B}=0 \quad V_{B}=m g(7.5+1.5) \\
=4.5 \mathrm{lb} \cdot \mathrm{ft} \\
T_{A}+V_{A}=T_{B}+V_{B} \\
\frac{1}{2}(0.01553) v_{A}^{2}=4.5 \Rightarrow v_{A}=24.073
\end{gathered}
$$

$$
v_{A}=24.1 \mathrm{ft} / \mathrm{s}
$$

(b) At $C \quad T_{C}=0.007765 v_{C}^{2}, V_{C}=7.5 \mathrm{mg}=3.75$

$$
T_{A}+V_{A}=T_{C}+V_{C}: \quad 0.007765(24.073)^{2}=0.007765 v_{C}^{2}+3.75
$$

$$
v_{C}^{2}=96.573
$$

$$
N_{c} \rightarrow \prod_{0.5}^{\prod_{0}}=\prod_{m a}^{\rightarrow} \frac{m v_{c}^{2}}{1.5}
$$

$$
N_{C}=0.01553\left(\frac{96.573}{1.5}\right)=0.99985
$$

\{Package on tube\} $N_{C}=1.000 \mathrm{lb}$

PROBLEM 13.83

Knowing that the velocity of an experimental space probe fired from the earth has a magnitude $v_{A}=32.5 \mathrm{Mm} / \mathrm{h}$ at point A, determine the velocity of the probe as it passes through point B.

SOLUTION

At A,

$$
\begin{gathered}
T_{A}=\frac{1}{2} m(9028 \mathrm{~m} / \mathrm{s})^{2}=40.752 \times 10^{6} \mathrm{~m} \\
V_{A}=-\frac{G M m}{r_{A}}=\frac{-g R^{2} m}{r_{A}} \\
r_{A}=10.67 \mathrm{Mm}=10.67 \times 10^{6} \mathrm{~m} \\
R=6370 \mathrm{~km}=6.37 \times 10^{6} \mathrm{~m} \\
V_{A}=-\frac{\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)\left(6.37 \times 10^{6} \mathrm{~m}\right)^{2}}{\left(10.67 \times 10^{6} \mathrm{~m}\right)} m=-37.306 \times 10^{6} \mathrm{~m}
\end{gathered}
$$

At B

$$
\begin{gathered}
T_{B}=\frac{1}{2} m v_{B}^{2} ; V_{B}=-\frac{G M m}{r_{B}}=\frac{-g R^{2} m}{r_{B}} \\
r_{B}=19.07 \mathrm{Mm}=19.07 \times 10^{6} \mathrm{~m} \\
V_{B}=-\frac{\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)\left(6.37 \times 10^{6} \mathrm{~m}\right)^{2} m}{\left(19.07 \times 10^{6} \mathrm{~m}\right)}=-20.874 \times 10^{6} \mathrm{~m} \\
T_{A}+V_{A}=T_{B}+V_{B} ; 40.752 \times 10^{6} \mathrm{~m}-37.306 \times 10^{6} \mathrm{~m}=\frac{1}{2} m v_{B}^{2}-20.874 \times 10^{6} \mathrm{~m} \\
v_{B}^{2}=2\left[40.752 \times 10^{6}-37.306 \times 10^{6}+20.874 \times 10^{6}\right] \\
v_{B}^{2}=48.64 \times 10^{6} \mathrm{~m}^{2} / \mathrm{s}^{2} \\
v_{B}=6.9742 \times 10^{3} \mathrm{~m} / \mathrm{s}=25.107 \mathrm{Mm} / \mathrm{h}
\end{gathered}
$$

PROBLEM 13.116

A spacecraft of mass m describes a circular orbit of radius r_{1} around the earth. (a) Show that the additional energy ΔE which must be imparted to the spacecraft to transfer it to a circular orbit of larger radius r_{2} is

$$
\Delta E=\frac{\operatorname{GMm}\left(r_{2}-r_{1}\right)}{2 r_{1} r_{2}}
$$

where M is the mass of the earth. (b) Further show that if the transfer from one circular orbit to the other circular orbit is executed by placing the spacecraft on a transitional semielliptic path $A B$, the amounts of energy ΔE_{A} and ΔE_{B} which must be imparted at A and B are, respectively, proportional to r_{1} and r_{2} :

$$
\Delta E_{A}=\frac{r_{2}}{r_{1}+r_{2}} \Delta E \quad \Delta E_{B}=\frac{r_{1}}{r_{1}+r_{2}} \Delta E
$$

SOLUTION

(a) For a circular orbit of radius r

$$
\begin{gather*}
F=m a_{n}: \frac{G M m}{r^{2}}=m \frac{v^{2}}{r} \\
v^{2}=\frac{G M}{r} \\
E=T+V=\frac{1}{2} m v^{2}-\frac{G M m}{r}=-\frac{1}{2} \frac{G M m}{r} \tag{1}
\end{gather*}
$$

Thus ΔE required to pass from circular orbit of radius r_{1} to circular orbit of radius r_{2} is

$$
\begin{gather*}
\Delta E=E_{1}-E_{2}=-\frac{1}{2} \frac{G M m}{r_{1}}+\frac{1}{2} \frac{G M m}{r_{2}} \\
\Delta E=\frac{G M m\left(r_{2}-r_{1}\right)}{2 r_{1} r_{2}} \tag{2}
\end{gather*}
$$

(b) For an elliptic orbit we recall Equation (3) derived in Problem $13.113\left(\right.$ with $\left.v_{P}=v_{1}\right)$

$$
v_{1}^{2}=\frac{2 G m}{\left(r_{1}+r_{2}\right)} \frac{r_{2}}{r_{1}}
$$

At point A : Initially spacecraft is in a circular orbit of radius r_{1}

$$
\begin{gathered}
v_{\text {circ }}^{2}=\frac{G M}{r_{1}} \\
T_{\text {circ }}=\frac{1}{2} m v_{\text {circ }}^{2}=\frac{1}{2} m \frac{G M}{r_{1}}
\end{gathered}
$$

PROBLEM 13.116 CONTINUED

After the spacecraft engines are fired and it is placed on a semi-elliptic path $A B$, we recall

$$
\begin{aligned}
& v_{1}^{2}=\frac{2 G M}{\left(r_{1}+r_{2}\right)} \cdot \frac{r_{2}}{r_{1}} \\
& T_{1}=\frac{1}{2} m v_{1}^{2}=\frac{1}{2} m \frac{2 G M r_{2}}{r_{1}\left(r_{1}+r_{2}\right)}
\end{aligned}
$$

At point A, the increase in energy is

$$
\begin{gathered}
\Delta E_{A}=T_{1}-T_{\text {circ }}=\frac{1}{2} m \frac{2 G M r_{2}}{r_{1}\left(r_{1}+r_{2}\right)}-\frac{1}{2} m \frac{G M}{r_{1}} \\
\Delta E_{A}=\frac{G M m\left(2 r_{2}-r_{1}-r_{2}\right)}{2 r_{1}\left(r_{1}+r_{2}\right)}=\frac{G M m\left(r_{2}-r_{1}\right)}{2 r_{1}\left(r_{1}+r_{2}\right)} \\
\Delta E_{A}=\frac{r_{2}}{r_{1}+r_{2}}\left[\frac{G M m\left(r_{2}-r_{1}\right)}{2 r_{1} r_{2}}\right]
\end{gathered}
$$

Recall Equation (2):

$$
\begin{equation*}
\Delta E_{A}=\frac{r_{2}}{\left(r_{1}+r_{2}\right)} \Delta E \tag{Q.E.D}
\end{equation*}
$$

A similar derivation at point B yields,

$$
\begin{equation*}
\Delta E_{B}=\frac{r_{1}}{\left(r_{1}+r_{2}\right)} \Delta E \tag{Q.E.D}
\end{equation*}
$$

