HWy 5

PROBLEM 14.5

A bullet is fired with a horizontal velocity of $500 \mathrm{~m} / \mathrm{s}$ through a $3-\mathrm{kg}$ block A and becomes embedded in a $2.5-\mathrm{kg}$ block B. Knowing that blocks A and B start moving with velocities of $3 \mathrm{~m} / \mathrm{s}$ and $5 \mathrm{~m} / \mathrm{s}$, respectively determine (a) the mass of the bullet, (b) its velocity as it travels from block A to block B.

SOLUTION

The masses are m for the bullet and m_{A} and m_{B} for the blocks.
(a) The bullet passes through block A and embeds in block B. Momentum is conserved.

Initial momentum:

$$
m v_{0}+m_{A}(0)+m_{B}(0)=m v_{0}
$$

Final momentum:

$$
m v_{B}+m_{A} v_{A}+m_{B} v_{B}
$$

Equating,

$$
m v_{0}=m v_{B}+m_{A} v_{A}+m_{B} v_{B}
$$

$$
m=\frac{m_{A} v_{A}+m_{B} v_{B}}{v_{0}-v_{B}}=\frac{(3)(3)+(2.5)(5)}{500-5}=43.434 \times 10^{-3} \mathrm{~kg}
$$

$$
m=43.4 \mathrm{~g}
$$

(b) The bullet passes through block A. Momentum is conserved.

Initial momentum:

$$
m v_{0}+m_{A}(0)=m v_{0}
$$

Final momentum:

$$
m v_{1}+m_{A} v_{A}
$$

Equating,

$$
m v_{0}=m v_{1}+m_{A} v_{A}
$$

$$
v_{1}=\frac{m v_{0}-m_{A} v_{A}}{m}=\frac{\left(43.434 \times 10^{-3}\right)(500)-(3)(3)}{43.434 \times 10^{-3}}=292.79 \mathrm{~m} / \mathrm{s}
$$

$$
\mathbf{v}_{1}=293 \mathrm{~m} / \mathrm{s} \longrightarrow
$$

PROBLEM 14.21

In a game of pool, ball A is traveling with a velocity \mathbf{v}_{0} when it strikes balls B and C which are at rest and aligned as shown. Knowing that after the collision the three balls move in the directions indicated and that $v_{0}=4 \mathrm{~m} / \mathrm{s}$ and $v_{C}=2.1 \mathrm{~m} / \mathrm{s}$, determine the magnitude of the velocity of (a) ball $A,(b)$ ball B.

SOLUTION

Velocity vectors:

$$
\begin{aligned}
& \mathbf{v}_{0}=v_{0}\left(\cos 30^{\circ} \mathbf{i}+\sin 30^{\circ} \mathbf{j}\right) \\
& \mathbf{v}_{A}=v_{A}\left(\sin 7.4^{\circ} \mathbf{i}+\cos 7.4^{\circ} \mathbf{j}\right) \\
& \mathbf{v}_{B}=v_{B}\left(\sin 49.3^{\circ} \mathbf{i}-\cos 49.3^{\circ} \mathbf{j}\right) \\
& \mathbf{v}_{C}=v_{C}\left(\cos 45^{\circ} \mathbf{i}+\sin 45^{\circ} \mathbf{j}\right)
\end{aligned}
$$

Conservation of momentum:

$$
m_{A} \mathbf{v}_{0}=m_{A} \mathbf{v}_{A}+m_{B} \mathbf{v}_{B}+m_{C} \mathbf{v}_{C}
$$

Divide by $m_{A}=m_{B}=m_{C}$ and substitute data.

$$
\begin{aligned}
4\left(\cos 30^{\circ} \mathbf{i}+\sin 30^{\circ} \mathbf{j}\right)= & v_{A}\left(\sin 7.4^{\circ} \mathbf{i}+\cos 7.4^{\circ} \mathbf{j}\right)+v_{B}\left(\sin 49.3^{\circ} \mathbf{i}-\cos 49.3^{\circ} \mathbf{j}\right) \\
& +2.1\left(\cos 45^{\circ} \mathbf{i}+\sin 45^{\circ} \mathbf{j}\right)
\end{aligned}
$$

Resolve into components and rearrange.

$$
\begin{aligned}
& \text { i: } \quad\left(\sin 7.4^{\circ}\right) v_{A}+\left(\sin 49.3^{\circ}\right) v_{B}=4 \cos 30^{\circ}-2.1 \cos 45^{\circ} \\
& \text { j: } \quad\left(\cos 7.4^{\circ}\right) v_{A}-\left(\cos 49.3^{\circ}\right) v_{B}=4 \sin 30^{\circ}-2.1 \sin 45^{\circ}
\end{aligned}
$$

Solving simultaneously,
(a)

$$
v_{A}=2.01 \mathrm{~m} / \mathrm{s}
$$

(b)

$$
v_{B}=2.27 \mathrm{~m} / \mathrm{s}
$$

PROBLEM 14.26

An 18-lb shell moving with a velocity $\mathbf{v}_{0}=(60 \mathrm{ft} / \mathrm{s}) \mathbf{i}-(45 \mathrm{ft} / \mathrm{s}) \mathbf{j}-$ $(1800 \mathrm{ft} / \mathrm{s}) \mathbf{k}$ explodes at point D into three fragments A, B, and C weighing, respectively, $6 \mathrm{lb}, 4 \mathrm{lb}$, and 8 lb . Knowing that the fragments hit the vertical wall at the points indicated, determine the speed of each fragment immediately after the explosion.

SOLUTION

Position vectors (ft):

$$
\mathbf{r}_{D}=18 \mathbf{k}
$$

$$
\begin{array}{lll}
\mathbf{r}_{A}=-7.5 \mathbf{i} & \mathbf{r}_{A / D}=-7.5 \mathbf{i}-18 \mathbf{k} & r_{A / D}=19.5 \\
\mathbf{r}_{B}=18 \mathbf{i}+9 \mathbf{j} & \mathbf{r}_{B / D}=18 \mathbf{i}+9 \mathbf{j}-18 \mathbf{k} & r_{B / D}=27 \\
\mathbf{r}_{C}=-13.5 \mathbf{j} & \mathbf{r}_{C / D}=-13.5 \mathbf{j}-18 \mathbf{k} & r_{C / D}=22.5
\end{array}
$$

Unit vectors:

$$
\begin{array}{ll}
\text { Along } \mathbf{r}_{A / D}, & \lambda_{A}=\frac{1}{19.5}(-7.5 \mathbf{i}-18 \mathbf{k}) \\
\text { Along } \mathbf{r}_{B / D}, & \lambda_{B}=\frac{1}{27}(18 \mathbf{i}+9 \mathbf{j}-18 \mathbf{k}) \\
\text { Along } \mathbf{r}_{C I D}, & \lambda_{C}=\frac{1}{22.5}(-13.5 \mathbf{j}-18 \mathbf{k})
\end{array}
$$

Assume that elevation changes due to gravity may be neglected. Then, the velocity vectors after the exposition have the directions of the unit vectors.

$$
\mathbf{v}_{A}=v_{A} \lambda_{A} \quad \mathbf{v}_{B}=v_{B} \lambda_{B} \quad \mathbf{v}_{C}=v_{C} \lambda_{C}
$$

Conservation of momentum:

$$
m \mathbf{v}_{0}=m_{A} \mathbf{v}_{A}+m_{B} \mathbf{v}_{B}+m_{C} \mathbf{v}_{C}
$$

$$
\frac{18}{g}(60 \mathbf{i}-45 \mathbf{j}-1800 \mathbf{k})=\frac{6}{g}\left(\frac{v_{A}}{19.5}\right)(-7.5 \mathbf{i}-18 \mathbf{k})+\frac{4}{g}\left(\frac{v_{B}}{27}\right)(18 \mathbf{i}+9 \mathbf{j}-18 \mathbf{k})+\frac{8}{g}\left(\frac{v_{C}}{22.5}\right)(-13.5 \mathbf{j}-18 \mathbf{k})
$$

Multiply by g and resolve into components.

$$
\begin{aligned}
1080 & =-45\left(\frac{v_{A}}{19.5}\right)+72\left(\frac{v_{B}}{27}\right) \\
-810 & = \\
-32400 & =-108\left(\frac{v_{B}}{27}\right)-108\left(\frac{v_{C}}{22.5}\right)-72\left(\frac{v_{B}}{27}\right)-144\left(\frac{v_{C}}{22.5}\right)
\end{aligned}
$$

Solving,

$$
\begin{array}{ll}
\frac{v_{A}}{19.5}=161.311 & v_{A}=3150 \mathrm{ft} / \mathrm{s} \\
\frac{v_{B}}{27}=115.820 & v_{B}=3130 \mathrm{ft} / \mathrm{s} \\
\frac{v_{C}}{22.5}=46.106 & v_{C}=1037 \mathrm{ft} / \mathrm{s}
\end{array}
$$

HW\# 5

SOLUTION

Use a frame of reference that is translating with the mass center G of the system. Let \mathbf{v}_{0} be its velocity.

$$
\mathbf{v}_{0}=v_{0} \mathbf{i}
$$

The initial velocities in this system are $\left(\mathbf{v}_{A}^{\prime}\right)_{0},\left(\mathbf{v}_{B}^{\prime}\right)_{0}$ and $\left(\mathbf{v}_{C}^{\prime}\right)_{0}$, each having a magnitude of $l \omega$. They are directed 120° apart. Thus,

$$
\left(\mathbf{v}_{A}^{\prime}\right)_{0}+\left(\mathbf{v}_{B}^{\prime}\right)_{0}+\left(\mathbf{v}_{C}^{\prime}\right)_{0}=0
$$

(a) Conservation of linear momentum:

$$
\begin{gathered}
m\left(\mathbf{v}_{A}^{\prime}\right)_{0}+m\left(\mathbf{v}_{B}^{\prime}\right)_{0}+m\left(\mathbf{v}_{C}^{\prime}\right)_{0}=m\left(\mathbf{v}_{A}-\mathbf{v}_{0}\right)+m\left(\mathbf{v}_{B}-\mathbf{v}_{0}\right)+m\left(\mathbf{v}_{C}-\mathbf{v}_{0}\right) \\
0=\left(v_{A} \mathbf{j}-v_{0} \mathbf{i}\right)+\left(-v_{B} \mathbf{j}-v_{0} \mathbf{i}\right)+\left(v_{C} \mathbf{i}-v_{0} \mathbf{i}\right)
\end{gathered}
$$

Resolve into components.

$$
\begin{array}{lll}
\text { i: } & v_{C}-3 v_{0}=0 & v_{0}=\frac{1}{3} v_{C}=\frac{1}{3}(15) \\
\text { j: } & v_{A}-v_{B}=0 & v_{B}=v_{A}=8.66 \mathrm{ft} / \mathrm{s}
\end{array} \quad \mathbf{v}_{0}=5.00 \mathrm{ft} / \mathrm{s} \longrightarrow
$$

Conservation of angular momentum about G :

$$
\left.\begin{array}{l}
+\mathbf{H}_{G}=3 m l^{2} \omega \mathbf{k}=\mathbf{r}_{A} \times m\left(\mathbf{v}_{A}-\mathbf{v}_{0}\right)+r_{B} \times\left(\mathbf{v}_{B}-\mathbf{v}_{0}\right)+\mathbf{r}_{C} \times\left(\mathbf{v}_{C}-\mathbf{v}_{0}\right) \\
\begin{array}{rl}
3 l^{2} \omega \mathbf{k} & =\left(\mathbf{r}_{A}-\mathbf{r}_{B}\right) \times\left(v_{A} \mathbf{j}\right)+\mathbf{r}_{C} \times\left(v_{C} \mathbf{i}\right)-\left(\mathbf{r}_{A}+\mathbf{r}_{B}+\mathbf{r}_{C}\right)\left(v_{0} \mathbf{i}\right) \\
& =a \mathbf{i} \times\left(\mathbf{v}_{A} \mathbf{j}\right)+(-d \mathbf{j}) \times\left(v_{C} \mathbf{i}\right)=\left(a v_{A}+d v_{C}\right) \mathbf{k}
\end{array} \\
l^{2} \omega
\end{array} \begin{array}{rl}
3 & \frac{1}{3}[(0.866)(8.66)+(0.5)(15)]=5.00 \mathrm{ft} / \mathrm{s}
\end{array}\right] \begin{aligned}
& T_{1}=3 \frac{1}{2}\left(m l^{2} \omega^{2}\right)=\frac{3}{2} m l^{2} \omega^{2}
\end{aligned}
$$

Conservation of energy:

$$
\begin{array}{ll}
\mathbf{v}_{A}-\mathbf{v}_{0}=8.66 \mathbf{j}-5.00 \mathbf{i} & \left|\mathbf{v}_{A}-\mathbf{v}_{0}\right|=10 \mathrm{ft} / \mathrm{s} \\
\mathbf{v}_{B}-\mathbf{v}_{0}=-8.66 \mathbf{j}-5.00 \mathbf{i} & \left|\mathbf{v}_{B}-\mathbf{v}_{0}\right|=10 \mathrm{ft} / \mathrm{s} \\
\mathbf{v}_{C}-\mathbf{v}_{0}=15 \mathbf{i}-5.00 \mathbf{i} & \left|\mathbf{v}_{C}-\mathbf{v}_{0}\right|=10 \mathrm{ft} / \mathrm{s}
\end{array}
$$

PROBLEM 14.55 CONTINUED

$$
\begin{gathered}
T_{2}=\frac{1}{2} m\left(\mathbf{v}_{A}-\mathbf{v}_{0}\right)^{2}+\frac{1}{2} m\left(\mathbf{v}_{B}-\mathbf{v}_{0}\right)^{2}+\frac{1}{2} m\left(\mathbf{v}_{C}-\mathbf{v}_{0}\right)^{2} \\
T_{1}=T_{2} \\
\frac{3}{2} m l^{2} \omega^{2}=\frac{1}{2} m(10)^{2}+\frac{1}{2} m(10)^{2}+\frac{1}{2} m(10)^{2} \\
l \omega=10 \mathrm{ft} / \mathrm{s}
\end{gathered}
$$

(b)

$$
l=\frac{l^{2} \omega}{l \omega}=\frac{5 \mathrm{ft}^{2} / \mathrm{s}}{10 \mathrm{ft} / \mathrm{s}}
$$

$$
l=0.500 \mathrm{ft}
$$

(c)

$$
\omega=\frac{l \omega}{l}=\frac{10 \mathrm{ft} / \mathrm{s}}{0.5 \mathrm{ft}}
$$

SOLUTION

(a) Let point C be the point of contact between the shaft and the ring.

$$
\begin{array}{ll}
v_{C}=r_{1} \omega_{A}=(0.5)(25)=12.5 \mathrm{in} . / \mathrm{s} & \\
\omega_{B}=\frac{v_{C}}{r_{2}}=\frac{12.5}{2.5}=5.0 \mathrm{rad} / \mathrm{s} & \omega_{B}=5.00 \mathrm{rad} / \mathrm{s}
\end{array}
$$

(b) On shaft A :

$$
\begin{array}{rlr}
a_{A} & =r_{1} \omega_{A}^{2}=(0.5)(25)^{2} & \\
& =312.5 \mathrm{in} . / \mathrm{s}^{2}, & \mathbf{a}_{A}=26.0 \mathrm{ft} / \mathrm{s}^{2}
\end{array}
$$

On ring B :

$$
\begin{aligned}
a_{B} & =r_{2} \omega_{B}^{2}=(2.5)(5.0)^{2} \\
& =62.5 \mathrm{in} . \mathrm{s}^{2},
\end{aligned}
$$

$$
\mathbf{a}_{B}=5.21 \mathrm{ft} / \mathrm{s}^{2}
$$

(c) At a point on the outside of the ring, $r=r_{3}=3.5 \mathrm{in}$.

$$
a=r \omega_{B}^{2}=(3.5)(5.0)^{2}=87.5 \mathrm{in} . / \mathrm{s}^{2} \quad a=7.29 \mathrm{ft} / \mathrm{s}^{2}
$$

NW \# 5

PROBLEM 15.45

The sheet metal form shown moves in the $x y$ plane. Knowing that $\left(v_{A}\right)_{x}=100 \mathrm{~mm} / \mathrm{s}, \quad\left(v_{B}\right)_{y}=-75 \mathrm{~mm} / \mathrm{s}$, and $\left(v_{C}\right)_{x}=400 \mathrm{~mm} / \mathrm{s}$, determine (a) the angular velocity of the plate, (b) the velocity of point A.

SOLUTION

In units of mm / s,

$$
\begin{gathered}
\mathbf{v}_{B / A}=\omega \mathbf{k} \times \mathbf{r}_{B / A}=\omega \mathbf{k} \times(125 \mathbf{i}+75 \mathbf{j})=-75 \omega \mathbf{i}+125 \omega \mathbf{j} \\
\mathbf{v}_{C / A}=\omega \mathbf{k} \times \mathbf{r}_{C / A}=\omega \mathbf{k} \times(50 \mathbf{i}+150 \mathbf{j})=-150 \omega \mathbf{i}+50 \omega \mathbf{j} \\
\mathbf{v}_{B}=\mathbf{v}_{A}+\mathbf{v}_{B / A} \\
\left(v_{B}\right)_{x} \mathbf{i}-75 \mathbf{j}=100 \mathbf{i}+\left(v_{A}\right)_{y} \mathbf{j}-75 \omega \mathbf{i}+125 \omega \mathbf{j}
\end{gathered}
$$

Components.

$$
\begin{equation*}
\mathbf{i}:\left(v_{B}\right)_{x}=100-75 \omega \tag{1}
\end{equation*}
$$

$\mathbf{j}: \quad-75=\left(v_{A}\right)_{y}+125 \omega$

$$
\begin{gathered}
\mathbf{v}_{C}=\mathbf{v}_{A}+\mathbf{v}_{C / A} \\
400 \mathbf{i}+\left(v_{C}\right)_{y} \mathbf{j}=100 \mathbf{i}+\left(v_{A}\right)_{y} \mathbf{j}-150 \omega \mathbf{i}+50 \omega \mathbf{j}
\end{gathered}
$$

Components.

$$
\begin{align*}
& \mathbf{i}: \quad 400=100-150 \omega \tag{3}\\
& \mathbf{j}: \quad\left(v_{C}\right)_{y}=\left(v_{A}\right)_{y}+125 \omega \tag{4}
\end{align*}
$$

(a) From (3),

$$
\omega=-2 \mathrm{rad} / \mathrm{s}
$$

$\omega=-(2 \mathrm{rad} / \mathrm{s}) \mathbf{k}$
(b) From (2),

$$
\begin{aligned}
& \left(v_{A}\right)_{y}=-75-125 \omega=-75-125(-2)=175 \mathrm{~mm} / \mathrm{s} \\
& \mathbf{v}_{A}=(100.0 \mathrm{~mm} / \mathrm{s}) \mathbf{i}+(175.0 \mathrm{~mm} / \mathrm{s}) \mathbf{j}
\end{aligned}
$$

PROBLEM 15.95

Two $20-\mathrm{in}$. rods $A B$ and $D E$ are connected as shown. Point D is the midpoint of $\operatorname{rod} A B$, and at the instant shown $\operatorname{rod} D E$ is horizontal. Knowing that the velocity of point A is $1 \mathrm{ft} / \mathrm{s}$ downward, determine (a) the angular velocity of $\operatorname{rod} D E,(b)$ the velocity of point E.

SOLUTION

$$
\begin{aligned}
& \mathbf{v}_{A}=12 \mathrm{in} / \mathrm{s} \\
& \mathbf{v}_{B}=v_{B} \rightarrow
\end{aligned}
$$

Point C is the instantaneous center of bar $A B$.

$$
\begin{gathered}
\omega_{A B}=\frac{v_{B}}{A C}=\frac{12}{20 \cos 30^{\circ}} \\
=0.69282 \mathrm{rad} / \mathrm{s}) \\
C D=10 \mathrm{in} . \\
v_{D}=(C D) \omega_{A B}=(10)(0.69282)=6.9282 \mathrm{in} . / \mathrm{s} \\
\mathbf{v}_{D}=6.9282 \mathrm{in} . / \mathrm{s} \text { A } 30^{\circ} \\
\mathbf{v}_{E}=v_{E}<30^{\circ}
\end{gathered}
$$

Point I is the instantaneous center of bar $D E$.

$$
D I=20 \cos 30^{\circ}
$$

(a)

$$
\omega_{D E}=\frac{v_{D}}{D I}=\frac{6.9282}{20 \cos 30^{\circ}}=0.4 \mathrm{rad} / \mathrm{s}
$$

$$
\omega_{D E}=0.400 \mathrm{rad} / \mathrm{s}
$$

(b)

$$
v_{E}=(E I) \omega_{D E}=\left(20 \sin 30^{\circ}\right)(0.4)=4 \mathrm{in} . / \mathrm{s}
$$

$$
\mathbf{v}_{E}=0.333 \mathrm{ft} / \mathrm{s}\left\langle<30^{\circ}\right.
$$

