## HW \# 6



## PROBLEM 15.156

Four pins slide in four separate slots cut in a circular plate as shown. When the plate is at rest, each pin has a velocity directed as shown and of the same constant magnitude $u$. If each pin maintains the same velocity relative to the plate when the plate rotates about $O$ with a constant counterclockwise angular velocity $\omega$, determine the acceleration of each pin.

## SOLUTION

For each pin:

$$
\mathbf{a}_{P}=\mathbf{a}_{P^{\prime}}+\mathbf{a}_{P / F}+\mathbf{a}_{c}
$$

Acceleration of the coinciding point $P^{\prime}$ of the plate.
For each pin, $\mathbf{a}_{P^{\prime}}=r \omega^{2}$ towards the center $O$.
Acceleration of the pin relative to the plate.
For pins $P_{1}, P_{2}$, and $P_{4}$,

$$
\mathbf{a}_{P / F}=0
$$

For pin $P_{3}$, $\mathbf{a}_{P / F}=\frac{u^{2}}{r} \longleftarrow$

## Coriolis acceleration $\mathbf{a}_{c}$.

For each pin $a_{c}=2 \omega u$ with $\mathbf{a}_{c}$ in a direction obtained by rotating $\mathbf{u}$ through $90^{\circ}$ in the sense of $\omega$, i.e. ).
Then,

$$
\begin{array}{ll}
\mathbf{a}_{1}=\left[r \omega^{2} \rightarrow\right]+[2 \omega u \downarrow] & \mathbf{a}_{1}=r \omega^{2} \mathbf{i}-2 \omega u \mathbf{j} \\
\mathbf{a}_{2}=\left[r \omega^{2} \downarrow\right]+[2 \omega u \rightarrow] & \mathbf{a}_{2}=2 \omega u \mathbf{i}-r \omega^{2} \mathbf{j} \\
\mathbf{a}_{3}=\left[r \omega^{2} \leftarrow\right]+\left[\frac{u^{2}}{r} \leftarrow\right]+[2 \omega u \leftarrow] & \mathbf{a}_{3}=-\left(r \omega^{2}+\frac{u^{2}}{r}+2 \omega u\right) \mathbf{i} \\
\mathbf{a}_{4}=\left[r \omega^{2} \uparrow\right]+[2 \omega u \dagger] & \mathbf{a}_{4}=\left(r \omega^{2}+2 \omega u\right) \mathbf{j}
\end{array}
$$



## PROBLEM 15.179

The disk shown rotates with a constant clockwise angular velocity of 12 $\mathrm{rad} / \mathrm{s}$. At the instant shown, determine $(a)$ the angular velocity and angular acceleration of $\operatorname{rod} B D,(b)$ the velocity and acceleration of the point of the rod coinciding with $E$.

## SOLUTION



Geometry.

$$
\tan \beta=\frac{5}{10}, \quad \beta=26.565^{\circ}
$$

$$
l_{A E}=\frac{10}{\cos \beta}=11.1803 \mathrm{in}
$$

Velocity analysis.

$$
\left.\boldsymbol{\omega}_{A B}=12 \mathrm{rad} / \mathrm{s} \lambda, \quad \boldsymbol{\omega}_{B D}=\omega_{B D}\right\rangle
$$

$$
\begin{aligned}
\mathbf{v}_{B} & =(A B) \omega_{A B}=(5)(12)=60 \mathrm{in} . / \mathrm{s} \uparrow \\
\mathbf{v}_{E^{\prime}} & =\mathbf{v}_{B}+(B E) \omega_{B D} \mp \beta \\
& =[60 \uparrow]+\left[11.1803 \omega_{B D} \mp \beta\right] \\
& \mathbf{v}_{E / B D}=[u \text { 丹 } \beta], \quad \mathbf{v}_{E}=0
\end{aligned}
$$

Use $\mathbf{v}_{E}=\mathbf{v}_{E^{\prime}}+\mathbf{v}_{E / B D}$ and resolve into components.

$$
\begin{aligned}
& +\square \beta: \quad 0=-60 \sin \beta+11.1803 \omega_{B D}, \quad \omega_{B D}=2.400 \mathrm{rad} / \mathrm{s} \\
& +\forall \beta: \quad 0=60 \cos \beta-u, \quad u=53.666 \mathrm{~m} / \mathrm{s} \\
\mathbf{v}_{E^{\prime}} & =[60 \uparrow]+[(11.1803)(2.400) \square \beta]=53.7 \mathrm{in} . / \mathrm{s}>63.4^{\circ}
\end{aligned}
$$

Acceleration analysis.

$$
\begin{gathered}
\mathbf{a}_{B}=(A B) \omega_{A B}^{2}=(5)(12)^{2}=720 \mathrm{in} . / \mathrm{s}^{2} \longrightarrow \\
\mathbf{a}_{E^{\prime}}=\mathbf{a}_{B}+\left[(B E) \alpha_{B D} \square \beta\right]+\left[(B E) \omega_{B D}^{2} \forall \beta\right] \\
=[720 \longrightarrow]+\left[11.1803 \alpha_{B D} \square \beta\right]+[64.399 \forall \beta] \\
\mathbf{a}_{E / B D}=[\dot{u} \nmid \beta] \quad \mathbf{a}_{E}=0
\end{gathered}
$$

Coriolis acceleration.

$$
2 \omega_{B D} u=(2)(2.400)(53.666)=[257.60 \square \beta]
$$

## PROBLEM 15.179 CONTINUED

Use $\mathbf{a}_{E}=\mathbf{a}_{E^{\prime}}+\mathbf{a}_{E / B D}+\left[2 \omega_{B D} u \nearrow \beta\right]$ and resolve into components.

$$
\begin{gathered}
+>\beta: 0=-720 \cos \beta+11.1803 \alpha_{B D}+257.60 \\
\alpha_{B D}=34.56 \mathrm{rad} / \mathrm{s}^{2}
\end{gathered}
$$

$$
\begin{aligned}
+ & \forall: 0=-720 \sin \beta+64.399-\dot{u}, \quad \dot{u}=-257.59 \mathrm{in} / \mathrm{s}^{2} \\
\mathbf{a}_{E^{\prime}} & =[720 \rightarrow]+[(11.1803)(34.56) \text { 又 } \beta]+[64.399 \forall \beta] \\
& =[720 \rightarrow]+[386.39>\beta]+[64.399 \forall \beta] \\
& =365 \mathrm{in} . \mathrm{s}^{2} \text { \& } 18.4^{\circ}
\end{aligned}
$$

Summary:
(a)

$$
\left.\omega_{B D}=2.40 \mathrm{rad} / \mathrm{s} \lambda, \quad \alpha_{B D}=34.6 \mathrm{rad} / \mathrm{s}^{2}\right)
$$

(b)

$$
\mathbf{v}_{E^{\prime}}=53.7 \mathrm{in} . / \mathrm{s}>63.4^{\circ}, \quad \mathbf{a}_{E^{\prime}}=365 \mathrm{in} . / \mathrm{s}^{2} \subset 18.4^{\circ}
$$

