HW #6

PROBLEM 15.156

Four pins slide in four separate slots cut in a circular plate as shown. When the plate is at rest, each pin has a velocity directed as shown and of the same constant magnitude u. If each pin maintains the same velocity relative to the plate when the plate rotates about O with a constant counterclockwise angular velocity ω , determine the acceleration of each pin.

SOLUTION		SOLUTION
For each pin: \mathbf{a}_p	$= \mathbf{a}_{P'} + \mathbf{a}_{P/F} + \mathbf{a}_c$	
Acceleration of the coinciding point P' of the plate.		
For each pin, $\mathbf{a}_{P'} = r\omega^2$ towards the center <i>O</i> .		
Acceleration of the pin relative to the plate.		
For pins P_1 , P_2 , and P_4 , $0 = \mathbf{a}_{P_4}$	$v_F = 0$	
For pin P_3 , \mathbf{a}_{P_1}	$u_F = \frac{u^2}{r}$	
Coriolis acceleration \mathbf{a}_c .		
For each pin $a_c = 2\omega u$ with \mathbf{a}_c in a direction obtained by rotating u through 90° in the sense of ω , i.e.).		
Then, $\mathbf{a}_1 = \left[r\omega^2 \longrightarrow \right] + \left[2\omega u \downarrow \right]$		$\mathbf{a}_1 = r\omega^2 \mathbf{i} - 2\omega u \mathbf{j} \blacktriangleleft$
$\mathbf{a}_2 = \left[r\omega^2 \downarrow \right] + \left[2\omega u \longrightarrow \right]$		$\mathbf{a}_2 = 2\omega u \mathbf{i} - r\omega^2 \mathbf{j} \blacktriangleleft$
$\mathbf{a}_3 = \left[r\omega^2 \longleftarrow \right] + \left[\frac{u^2}{r} \longleftarrow \right] + \left[\frac{u^2}{r} \longleftarrow \right]$	$2\omega u \leftarrow]$ $\mathbf{a}_3 =$	$-\left(r\omega^2+\frac{u^2}{r}+2\omega u\right)\mathbf{i}\blacktriangleleft$
$\mathbf{a}_4 = \left[r\omega^2 \dagger \right] + \left[2\omega u \dagger \right]$		$\mathbf{a}_4 = \left(r\omega^2 + 2\omega u\right)\mathbf{j} \blacktriangleleft$

HW #6

PROBLEM 15.179

The disk shown rotates with a constant clockwise angular velocity of 12 rad/s. At the instant shown, determine (a) the angular velocity and angular acceleration of rod BD, (b) the velocity and acceleration of the point of the rod coinciding with E.

PROBLEM 15.179 CONTINUED

Use $\mathbf{a}_E = \mathbf{a}_{E'} + \mathbf{a}_{E/BD} + [2\omega_{BD} u \nearrow \beta]$ and resolve into components. $+ \gamma \beta$: 0 = -720 cos β + 11.1803 α_{BD} + 257.60 $\alpha_{BD} = 34.56 \text{ rad/s}^2$ $+ \sum \beta$: 0 = -720 sin β + 64.399 - \dot{u} , \dot{u} = -257.59 in/s² $\mathbf{a}_{E'} = \begin{bmatrix} 720 \longrightarrow \end{bmatrix} + \begin{bmatrix} (11.1803)(34.56) \not \beta \end{bmatrix} + \begin{bmatrix} 64.399 & \beta \end{bmatrix}$ $= [720 \longrightarrow] + [386.39 \nearrow \beta] + [64.399 \swarrow \beta]$ $= 365 \text{ in./s}^2 \le 18.4^\circ$ Summary: (a) $\omega_{BD} = 2.40 \text{ rad/s}$, $\alpha_{BD} = 34.6 \text{ rad/s}^2$ $\mathbf{v}_{E'} = 53.7 \text{ in./s} \ge 63.4^\circ, \quad \mathbf{a}_{E'} = 365 \text{ in./s}^2 \le 18.4^\circ \blacktriangleleft$ (*b*)