HW

PROBLEM 16.5

Knowing that the coefficient of static friction between the tires and the road is 0.80 for the automobile shown, determine the maximum possible acceleration on a level road, assuming (a) four-wheel drive, (b) rearwheel drive, (c) front-wheel drive.

SOLUTION

(a) Four-wheel drive:

$$
+\uparrow \Sigma F_{y}=0: \quad N_{A}+N_{B}-W=0 \quad N_{A}+N_{B}=W=m g
$$

Thus:

$$
F_{A}+F_{B}=\mu_{k} N_{A}+\mu_{k} N_{B}=\mu_{k}\left(N_{A}+N_{B}\right)=\mu_{k} W=0.80 \mathrm{mg}
$$

$$
\begin{array}{r}
+\Sigma F_{x}=\Sigma\left(F_{x}\right)_{\mathrm{eff}}: \quad F_{A}+F_{B}=m \bar{a} \\
0.80 m g=m \bar{a}
\end{array}
$$

$$
\bar{a}=0.80 g=0.80\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)=7.848 \mathrm{~m} / \mathrm{s}^{2}
$$

$$
\bar{a}=7.85 \mathrm{~m} / \mathrm{s}^{2}
$$

(b) Rear-wheel drive:

$$
\begin{gathered}
\text { +) } \Sigma M_{B}=\Sigma\left(M_{B}\right)_{\mathrm{eff}}:(1 \mathrm{~m}) W-(1.5 \mathrm{~m}) N_{A}=-(0.5 \mathrm{~m}) m \bar{a} \\
N_{A}=0.4 W+0.2 m \bar{a}
\end{gathered}
$$

Thus:

$$
F_{A}=\mu_{k} N_{B}=0.80(0.4 W+0.2 m \bar{a})=0.32 m g+0.16 m \bar{a}
$$

$$
\begin{aligned}
& \xrightarrow{+} \Sigma F_{x}=\Sigma\left(F_{x}\right)_{\mathrm{eff}}: F_{A}=m \bar{a} \\
& 0.32 m g+0.16 m \bar{a}=m \bar{a} \\
& 0.32 g=0.84 \bar{a}
\end{aligned}
$$

$$
\bar{a}=\frac{0.32}{0.84}\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)=3.7371 \mathrm{~m} / \mathrm{s}^{2}
$$

HW 7

PROBLEM 16.5 CONTINUED

(c) Front-wheel drive:

Thus:

$$
F_{B}=\mu_{k} N_{B}=0.80(0.6 W-0.2 m \bar{a})=0.48 m g-0.16 m \bar{a}
$$

$$
\begin{array}{r}
+\Sigma F_{x}=\Sigma\left(F_{x}\right)_{\mathrm{eff}}: \quad F_{B}=m \bar{a} \\
0.48 m g-0.16 m \bar{a}=m \bar{a} \\
0.48 g=1.16 \bar{a} \\
\bar{a}=\frac{0.48}{1.16}\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)=4.0593 \mathrm{~m} / \mathrm{s}^{2}
\end{array}
$$

or $\bar{a}=4.06 \mathrm{~m} / \mathrm{s}^{2} \longrightarrow$

SOLUTION

(a) Acceleration

$$
\begin{gathered}
\xrightarrow{+} \Sigma F_{x}=\Sigma\left(F_{x}\right)_{\mathrm{eff}}: \\
25 \mathrm{lb}=m \bar{a} \\
25 \mathrm{lb}=\frac{50 \mathrm{lb}}{32 \mathrm{ft} / \mathrm{s}^{2}} \bar{a}
\end{gathered}
$$

$$
\bar{a}=16.10 \mathrm{ff} / \mathrm{s}^{2}\langle
$$

(b) For tipping to impend); $A=0$

$$
\begin{gathered}
+\left(\Sigma M_{B}=\Sigma\left(M_{B}\right)_{\mathrm{eff}}:\right. \\
(25 \mathrm{lb}) h-(50 \mathrm{lb})(12 \mathrm{in} .)=m \bar{a}(36 \mathrm{in} .) \\
25 h=600 \cdot(25)(36) \quad h=60 \mathrm{in} .
\end{gathered}
$$

For tipping to impend) ; $B=0$

$$
\begin{gathered}
+\left(\Sigma M_{A}=\Sigma\left(M_{A}\right)_{\mathrm{eff}}:\right. \\
(25 \mathrm{lb}) h+(50 \mathrm{lb})(12 \mathrm{in} .)=m \bar{a}(36) \quad \text { or } \quad h=12 \mathrm{in} .
\end{gathered}
$$

cabinet will not tip for $12 \mathrm{in} . \leq h \leq 60 \mathrm{in}$.

PROBLEM 16.27

The flywheel shown has a radius of 600 mm , a mass of 144 kg , and a radius of gyration of 450 mm . An $18-\mathrm{kg}$ block A is attached to a wire that is wrapped around the flywheel, and the system is released from rest. Neglecting the effect of friction, determine (a) the acceleration of block $A,(b)$ the speed of block A after it has moved 1.8 m .

SOLUTION

Kinematics

Kinetics

+) $\Sigma M_{B}=\Sigma\left(M_{B}\right)_{\mathrm{eff}}$:
$\left(m_{A} g\right) r=\bar{I} \alpha+\left(m_{A} a\right) r$ $m_{A} g r=m_{F} k^{2}\left(\frac{a}{r}\right)+m_{A} a r$

$$
a=\frac{m_{A} g}{m_{A}+m_{F}\left(\frac{k}{r}\right)^{2}}
$$

$$
a=\frac{(18 \mathrm{~kg})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)}{18 \mathrm{~kg}+(144 \mathrm{~kg})\left(\frac{450 \mathrm{~mm}}{600 \mathrm{~mm}}\right)^{2}}=1.7836 \mathrm{~m} / \mathrm{s}^{2}
$$

$$
\text { or } \quad \mathbf{a}_{A}=1.784 \mathrm{~m} / \mathrm{s}^{2}
$$

(b)

$$
V_{A}^{2}+V_{B}^{2}+2 a s
$$

For $s=1.8 \mathrm{~m}$

$$
\begin{gathered}
V_{A}^{2}=0+2\left(1.7836 \mathrm{~m} / \mathrm{s}^{2}\right)(1.8 \mathrm{~m})=6.42096 \mathrm{~m}^{2} / \mathrm{s}^{2} \\
V_{A}=2.5339 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

or $\quad V_{A}=2.53 \mathrm{~m} / \mathrm{s}$

PROBLEM 16.56

The uniform disk shown, of mass m and radius r, rotates counterclockwise. Its center C is constrained to move in a slot cut in the vertical member $A B$ and a horizontal force \mathbf{P} is applied at B to maintain contact at D between the disk and the vertical wall. The disk moves downward under the influence of gravity and the friction at D. Denoting by μ_{k} the coefficient of kinetic friction between the disk and the wall and neglecting friction in the vertical slot, determine (a) the angular acceleration of the disk, (b) the acceleration of the center C of the disk.

SOLUTION

(a)

$$
\left.\alpha=\frac{4 \mu_{k} P}{m r}\right)
$$

(b)

$$
+\downarrow F_{y}=m g+\mu_{k}(2 P)=m a
$$

$$
a=g+\frac{2 \mu_{k} P}{m}
$$

SOLUTION

$$
\omega=0 \quad \bar{a}=\frac{L}{2} \alpha
$$

$$
\begin{array}{cl}
\mathbf{a}_{B}=\mathbf{a}_{A}+\mathbf{a}_{B / A}=0+L \alpha \\
\mathbf{a}_{B}=L\left(\frac{3}{2} \frac{g}{L}\right)=\frac{3}{2} g
\end{array}
$$

Ho

PROBLEM 16.93

A drum of $80-\mathrm{mm}$ radius is attached to a disk of $160-\mathrm{mm}$ radius. The disk and drum have a combined mass of 5 kg and combined radius of gyration of 120 mm . A cord is attached as shown and pulled with a force \mathbf{P} of magnitude 20 N . Knowing that the coefficients of static and kinetic friction are $\mu_{s}=0.25$ and $\mu_{k}=0.20$, respectively, determine (a) whether or not the disk slides, (b) the angular acceleration of the disk and the acceleration of G.

SOLUTION

Assume disk rolls:

$$
\begin{aligned}
& \bar{I}=m \bar{k}^{2}=(5 \mathrm{~kg})(0.12 \mathrm{~m})^{2} \\
& =0.072 \mathrm{~kg} \cdot \mathrm{~m}^{2} \\
& +) \Sigma M_{C}=\Sigma\left(M_{C}\right)_{\mathrm{eff}}:(20 \mathrm{~N})(0.16 \mathrm{~m})=(m \bar{a}) r+\bar{I} \alpha \\
& 3.2 \mathrm{~N} \cdot \mathrm{~m}=(5 \mathrm{~kg})(0.16 \mathrm{~m})^{2} \alpha+\left(0.072 \mathrm{~kg} \cdot \mathrm{~m}^{2}\right) \alpha \\
& \alpha=16 \mathrm{rad} / \mathrm{s}^{2}
\end{aligned}
$$

$$
\text { or } \left.\alpha=16 \mathrm{rad} / \mathrm{s}^{2}\right)
$$

$$
\bar{a}=r \alpha=(0.16 \mathrm{~m})\left(16 \mathrm{rad} / \mathrm{s}^{2}\right)=2.56 \mathrm{~m} / \mathrm{s}^{2}
$$

$$
\text { or } \mathbf{a}=2.56 \mathrm{~m} / \mathrm{s}^{2} \longrightarrow
$$

$$
\begin{array}{r}
\xrightarrow{+} \Sigma F_{x}=\Sigma\left(F_{x}\right)_{\mathrm{eff}}:-F+20 \mathrm{~N}=m \bar{a} \\
-F+20 \mathrm{~N}=(5 \mathrm{~kg})\left(2.56 \mathrm{~m} / \mathrm{s}^{2}\right) \\
F=7.2 \mathrm{~N}
\end{array} \begin{array}{r}
+\dagger \Sigma F_{y}=\Sigma\left(F_{y}\right)_{\mathrm{eff}}: N-m g=0 \quad N=(5 \mathrm{~kg})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right) \\
=49.05 \mathrm{~N}
\end{array}
$$

Since $F<F_{m}$, disk rolls with no sliding

