Summary

Chapter 14 System of particles

Sample Problem #1.

Four small disks A,B,C, and D can slide freely on a frictionless horizontal surface. Disk B,C and D are connected by light rods and are at rest in the position shown when disk B is struck squarely by disk A which is moving to the right with a velocity $v_0=(38.5ft/s)i$. The weights of disks are $W_A=W_B=W_C=15lb$, and $W_D=30lb$. Knowing that the velocities of the disks immediately after the impact are $V_A=V_B=(8.25ft/s)I$, $v_C=V_Ci$ and $v_D=V_Di$, determine (a) the speeds v_C and v_D , (b) the fraction of the initial kinetic energy of the system which is dissipated during the collision.

# Step	Attacking Strategy	Your Solution	
#1	How many particles and what the particle system is	4 particles compose the particle system. Before collision, A malong x direction, B,C,D are at rest. After collision, all the par move along x direction. Velocities of A,B are known, while, ve of C,D are known. The motions of B,C, D are dependent.	noves ticles locity
#2	Setup a coordinate to describe the motion of all particles	A,B,C,D moves along x direction. We setup rectangular coord with x axis pointing rightwards and with origin at B.	linate
#3.1	Determine mass center	Before collision: $x=0$ and $y=(m_c*y_c+m_D*y_D)/(m_A+m_B+m_c+m_D)=-0.6ft$ After collision: $x=0$ and $y=-0.6ft$	
#3.2	Translation of mass center	$ \Sigma \mathbf{F}_{i}^{e}=0; :.a=0 \text{ and } v=\text{constant} :.(m_{A}*v_{A}+m_{B}*v_{B}+m_{C}*v_{C}+m_{D}*v_{D})=\text{constant} before collision, m_{A}*v_{A}+m_{B}*v_{B}+m_{C}*v_{C}+m_{D}*v_{D}=m_{A}*v_{0}=330 :.15*8.25+15*8.25+15*v_{C}+30*v_{D}=330 :.v_{C}+2*v_{D}=22 $	(1)
#3.3	Rotation of the particle system relative to mass center	$\begin{split} & \Sigma \mathbf{r}_{kc} X \mathbf{F}_{i}^{e} = 0; \therefore \text{ moment of momentum relative to the mass center is conserved.} \\ & \therefore m_{A} v_{0}^{*} 0.6 = (m_{A} + m_{B}) v_{A}' 0.6 + m_{C}^{*} v_{C}' (3 + 0.6) - m_{D} v_{D}' (3 - 0.6) \\ & \therefore 3 v_{C} - 4^{*} v_{D} = 11 \end{split}$	(2)
#4	Solutions	By (1) and (2), v_c=11ft/s; v_p=5.5ft/s (Energy lost)/(initial energy)=(T ₂ - T ₁)/T ₁ = 78.57%	
After Thought	The keys for the problems of a particle system are the determination of translation of mass center and the determination of rotation around the mass center.		

Step-by-Step Solution:

Sample Problem #2.

Two small spheres A and B, with masses of 2.5kg and 1kg, respectively, are connected by a rigid rod of negligible mass. The two spheres are resting on a horizontal; frictionless surface when A is suddenly given the velocity $v_0=3.5m/si$, Determine (a) the linear momentum of the system and its angular momentum about its mass center G. (b) the velocity of A and B after the rod AB has rotated through 180°

# Step	Attacking Strategy	Your Solution
#1	How many particles and what the particle system is	Two particles compose a particle system. Initially, A is given a velocity. Then, A and B will move with a fixed relative position vector.
#2	Setup a coordinate to describe the motion of all particles	The velocity of A is given along horizontal direction. So, we setup rectangular coordinate with x axis pointing rightwards and with origin at B.
#3.1	Determine mass center	Initially: x=0 and y= $(m_A*y_A+m_B*y_B)/(m_A+m_B)=150$ mm
#3.2	Translation of mass center	$\Sigma \mathbf{F}_{i}^{e}=0; :.a=0 \text{ and } v=\text{constant}$ $\therefore (m_{A}^{*}v_{A}+m_{B}^{*}v_{B})=\text{constant}$ before collision, $m_{A}^{*}v_{A}+m_{B}^{*}v_{B}=m_{A}^{*}v_{0}=2.5^{*}3.5(\text{kgm/s})$ $\therefore v=2.5\text{m/s and } m_{A}^{*}v_{A}+m_{B}^{*}v_{B}=8.75(\text{kgm/s})$ (1)
#3.3	Rotation of the particle system relative to mass center	$\Sigma \mathbf{r}_{kc} X \mathbf{F}_{i}^{e} = 0; \therefore$ moment of momentum relative to the mass center is conserved. $\therefore m_{A} v_{A}' 0.06 \cdot m_{B} v_{B}' 0.15 = m_{A}^{*} 3.5^{*} 0.06 = 0.525 \text{kgm}^{2}/\text{s}$ (2)
#4	Solutions	The angular moment about mass center equals to 0.525kgm²/s. Initially $v_A'=v+\omega$ *0.06; $v_B'=v-\omega$ *0.21 By (2) and (1), $\omega=15.08rad/s$ Since there is no force moment, ω will be kept at constant. \therefore , after rotating 180°, $v_A'=v-\omega$ *0.06= 1.5m/s ; $v_B'=v+\omega$ *0.21= 5m/s
After Thought	The keys for the problems of a particle system are the determination of translation of mass center and the determination of rotation around the mass center.	

Step-by-Step Solution: