Notes by Nasser M. Abbasi
During math 127, UC Berkeley, 2002
This is a simple way to remember how to calculate the FFT of a vector.
If n is the number of coordinates (or data points) in the vector x, then let

$$
\mathrm{X}=f f t(x)
$$

X is a complex vector of the same number of coordinates (or data points) as x
Let $x=(a, b, c)$ be the vector (possibly complex) that we want to find the $f f t$ for.
We will do a dot product of the above vector with vectors whose coordinates are the roots of unity.

Recall that there are n roots ε such that $\varepsilon^{n}=1$
But

$$
1=\cos (2 \pi)+i \sin (2 \pi)=e^{2 \pi i}
$$

so the n roots of unity are

$$
\varepsilon=1^{\frac{1}{n}}=\cos \left(\frac{2 \pi}{n}\right)+i \sin \left(\frac{2 \pi}{n}\right)=e^{\frac{2 \pi i}{n}}
$$

So, we divide the angle 2π by the number of roots, and each root will have the same magnitude of 1 , but it will be at an angle of $k\left(\frac{2 \pi}{n}\right)$ multiples where $k=0,1,2, \ldots, n-1$. This is because, with complex numbers, when we multiply one by the other, we add angles. Hence when we multiply a complex number by itself n times, we add n times the angle it had with the x-axis. Since we want to get 1 at the end (which has 360 angle), we divided 360 by n to get the above equation.

So, for $n=1$ there is one root, which is 1 . for $n=2$ there are 2 roots, which are for $k=0,1$, which are 1 and $e^{\pi i}=-1$ and so on.

To see this better, use the argand diagram. For example, this below are the 3 roots of unity. Since $n=3$, then we divide 360 degrees by the number of roots, and each unity root has an angle of $\frac{2 \pi}{3}$ or 120 degrees away from the previous root.

3 roots of unity. Hence $360 / 3=120$ degrees.
What does the roots of unity have to do with FFT?
Let me show how they are used.
In the case of $n=3$ (number of coordinates, or number of data points), we construct the 3 roots of unity.

Let $\omega=\exp ^{\frac{2 \pi i}{n}}$, then the roots of unity be written down as

$$
\omega=\left(\omega^{0}, \omega^{1}, \ldots, \omega^{n-1}\right)
$$

but $n=3$, so we get

$$
\omega=\left(\omega^{0}, \omega^{1}, \omega^{2}\right)
$$

So, the exponent multipliers above, are the angle multipliers
Now, from this one set of roots of unity shown above, generate n sets by multiplying the exponents of ω inside the brackets by zero, then by one, then by two, then by three, etc... until $n-1$. When we multiply the exponent, this means we are rotating the root of unity vector around.

Since $n=3$ here, we will get the 3 different sets of roots of unity, all generated from the original $\left(\omega^{0}, \omega^{1}, \omega^{2}\right)$:

$$
\begin{aligned}
& \left(\omega^{0}, \omega^{0}, \omega^{0}\right) \\
& \left(\omega^{0}, \omega^{1}, \omega^{2}\right) \\
& \left(\omega^{0}, \omega^{2}, \omega^{4}\right)
\end{aligned}
$$

This is a graphical representation of the above 3 sets

Notice that the roots are the same, we just change the angle of rotation to get to the root each time.

Now, align the x vector on top of these roots of unity vectors, we get

$$
\begin{aligned}
& (a, b, \quad c) \\
& \left(\omega^{0}, \omega^{0}, \omega^{0}\right) \\
& \left(\omega^{0}, \omega^{1}, \omega^{2}\right) \\
& \left(\omega^{0}, \omega^{2}, \omega^{4}\right)
\end{aligned}
$$

Now to get the coordinates of X , do the dot product of x with each of the vectors below it one at a time. Remember that the dot product of two vectors is just one number (possibly complex) and not a set of numbers (or a vector).

So, the first coordinate of X will be

$$
(a, b, \quad c) \bullet\left(\omega^{0}, \omega^{0}, \omega^{0}\right)
$$

And the second coordinate of X will be the dot product of x with the second vector of the roots of unity, that is

$$
(a, \quad b, \quad c) \bullet\left(\omega^{0}, \omega^{1}, \omega^{2}\right)
$$

And the third and final coordinate will be

$$
(a, \quad b, \quad c) \bullet\left(\omega^{0}, \omega^{2}, \omega^{4}\right)
$$

and the $n^{\text {th }}$ coordinate is

$$
(a, \quad b, \quad c) \bullet\left(\omega^{0}, \omega^{1^{*} n}, \omega^{2^{*} n}\right)
$$

Example

Let me show this with an simple example. Let

$$
x=(1,4,5,6)
$$

be the data we want to find its FFT. Here $n=4$, hence

$$
\omega=\left(\omega^{0}, \omega^{1}, \omega^{2}, \omega^{3}\right)
$$

so we need 4 vectors of roots of unity generated from the above by multiplying the exponents by $0,1,2$ and 3 at a time, we get

$$
\begin{aligned}
& \left(\omega^{0}, \omega^{0}, \omega^{0}, \omega^{0}\right) \\
& \left(\omega^{0}, \omega^{1}, \omega^{2}, \omega^{3}\right) \\
& \left(\omega^{0}, \omega^{2}, \omega^{4}, \omega^{6}\right) \\
& \left(\omega^{0}, \omega^{3}, \omega^{6}, \omega^{9}\right)
\end{aligned}
$$

Now do the dot product of x with each one of these vectors one at a time. Each time we do a dot product, we get one data point in the FFT domain generated.

Notice that

$$
\begin{aligned}
& \omega^{0}=e^{0\left(\frac{2 \pi i}{4}\right)}=1 \\
& \omega^{1}=e^{1\left(\frac{2 \pi i}{4}\right)}=e^{\frac{i \pi}{2}} \\
& \omega^{2}=e^{2\left(\frac{2 \pi i}{4}\right)}=e^{i \pi} \\
& \omega^{3}=e^{3\left(\frac{2 \pi i}{4}\right)}=e^{\frac{3 \pi i}{2}} \\
& \omega^{4}=e^{4\left(\frac{2 \pi i}{4}\right)}=e^{2 \pi i} \\
& \omega^{6}=e^{6\left(\frac{2 \pi i}{4}\right)}=e^{3 \pi i} \\
& \omega^{9}=e^{9\left(\frac{2 \pi i}{4}\right)}=e^{\frac{9 \pi i}{2}}
\end{aligned}
$$

notice that

$$
e^{i \theta}=\cos \theta+i \sin \theta
$$

so we get

$$
\begin{aligned}
& \omega^{0}=1 \\
& \omega^{1}=i \\
& \omega^{2}=-1 \\
& \omega^{3}=-i \\
& \omega^{4}=1 \\
& \omega^{6}=-1 \\
& \omega^{9}=i
\end{aligned}
$$

so, our 4 vectors of unity are now

$$
\begin{aligned}
& (1,1,1,1) \\
& (1, i,-1,-i) \\
& (1,-1,1,-1) \\
& (1,-i,-1, i)
\end{aligned}
$$

Now do the dot product of x with each of the above vectors, and this will give us the FFT.

$$
\begin{aligned}
& (1,4,5,6) \bullet(1,1,1,1)=16 \\
& (1,4,5,6) \bullet(1, i,-1,-i)=-4-2 i \\
& (1,4,5,6) \bullet(1,-1,1,-1)=-4 \\
& (1,4,5,6) \bullet(1,-i,-1, i)=-4+2 i
\end{aligned}
$$

so,

$$
F F T[x]=F F T\left[\begin{array}{l}
1 \\
4 \\
5 \\
6
\end{array}\right]=\mathrm{X}=\left[\begin{array}{l}
16 \\
-4-2 i \\
-4 \\
-4+2 i
\end{array}\right]
$$

