
HW 3

Mathematics 127
Mathematical and Computational Methods in

Molecular Biology

Fall 2002
UC Berkeley, CA

Nasser M. Abbasi

Fall 2002 Compiled on August 2, 2022 at 8:09am [public]

mailto:nma@12000.org

Contents
1 Problems 3

2 Problem 1 6

3 Problem 2 16

4 Problem 3 20

5 Problem 4 24

6 Problem 5 26
6.1 Problem 5 source code . 31

1

2

3

1 Problems

Problem Set 3 (due Tuesday October 15)
MATH 127: Mathematical and Computational Methods in Molecular

Biology

Please work on the starred problem alone.
Problem 1
Prove that a non-trivial connected graph is Eulerian if, and only if, every

edge belongs to an odd number of cycles.
Problem 2∗

The goal of this problem is to obtain some familiarity with running Re-
peatMasker:

You’ll need to use the web server at
http://ftp.genome.washington.edu/cgi-bin/RepeatMasker

a) Get the sequence with accession AF548051 from Genbank. How long
is the particular A tail of the repeat? Find the article in the literature (on
which this Genbank entry is based), read it, and report on the maximum
length of observed Alu A tails in the human genome. What is the apparent
function of the A tail?

b) RepeatMask the sequence at the RepeatMasker web server. How does
the answer depend on the type of organism selected? What SW score do you
get? What is its meaning?

c) How dependent is RepeatMasker on the A tail? Try removing the A
tail. Does RepeatMasker still find the repeat? Try extending it considerably
(beyond the observed length of A tail in the genome)? Does RepeatMasker
still find the repeat?

Problem 3
Consider the overlap detection method described in class for DNA: Com-

pute the convolution vector 4 times, each time setting one of the bases to
1 and the rest to 0. Suppose you try to find the overlap between two ran-
dom DNA sequences of length 500, each of which contains equal amounts of
the four bases. What do you expect the maximum value of an element in
the convolution vector to be? What kind of bound does this place on the
minimum size overlap you can detect reliably with the method?

Problem 4
The paper by Pevzner, Tang and Waterman states that “the spectral

alignment problem can be efficiently solved by dynamic programming in the

1

4

case where the number of mutations is small”. Make this statement precise
and describe the algorithm for solving it.

Optional Problem
Implement the overlap detection method discussed in class.
Note: this is easy using the MATLAB FFT and IFFT commands (type

help FFT or help IFFT to learn more about them). To view the convolution
vector you can use the PLOT command.

a) Write a function that takes as input two sequences f, g of the same
length and finds the convolution f ∗ g.

b) Test your program on the sequences [00001010110000010] and
[01010110000010000]. What is the best shift? (Remember, you will have to
reverse one of the sequences).

2

5

A

Edge L

Generating all the cycles that
edge L is part of.
15 cycles found.

Figure 1: Example generating all cycles an edge is part of

6

2 Problem 1

Math 127, UC Berkeley.
HW 3

Problem 1
By Nasser Abbasi

Question
Prove that a non-trivial connected graphs is Eulerian IFF every edge

belongs to an odd number of cycles.

Answer

An euler graphs has an even degree on all of its vertices.

A cycle in the above, is meant to be a path 1 2 1, , , n nv v v where v v

Since this is an IFF problem, There are two statements that needs to be
proved.

Statement one: IF a graph is Euler, then each edge belongs to an odd

number of edges.
Statement two: IF each edge belongs to odd number of cycles, then the
graph is Euler.

Proof for statement one

Proof by induction over the number of vertices v

For number of vertices = 1, the statement is true. Because given an Euler

graph with one vertex, there are even number of edges, hence all edges
must be of this form

L

Hence, each edge can only belong to 1 cycle. Since if we have more than
one edge, as in

LR

7

Then the cycle over L can not go over R, since this implies the vertex in

the middle was visited twice. And the cycle over R can not go over L as
well.

Hence the statement is true for all Euler graphs of one vertex.

Now, Assume the statement is true for all connected Euler graphs with K
vertices.

Now, need to show the statement is true for any Euler graph Z of K+1
vertices.

Looking at any one edge H in Z, such as (Figure 1 below)

.

.

.

.

.

.

L1

L2

Ln

R1

R2

Rm

R3L3

Edge H
VL VR

Transform the graphs of K+1 vertices to K vertices, remove the edge H
and collaps the two vertices to one vertex to get this (figure 2):

.

.

.

.

.

.

L1

L2

Ln

R1

R2

Rm

R3L3

8

Since this is a K vertices Euler graph, then it will have all the edges in it
part of odd number of cycles (by assumption). That is, number of cycles

over each L edge is odd, and number of cycles of each R edge is odd.

Since the above also is a Euler graph, then the degree of the above one
vertex is even. This means n+m is an even number. Hence n and m can
be both even, or can be both odd numbers. (will show below that only

case possible is for n,m to be both odd numbers).

Now, looking back at figure 1 above, since this is a Euler graph, then the

degree of VL is even, and the degree of VR is even.

But edge H adds one degree to each vertex, that is n+1 is even, and m+1
is even.

hence n and m must be both odd numbers.

Now, I need to show that an edge such as H in the Euler graph of K+1
vertices (see figure 1) can only be part of an odd cycles.

There are two cases here.

Case one, all the cycles passing over the edges iL (or edges jR) also pass

over edge H.

.

.

.

.

.

.

L1

L2

Ln

R1

R2

Rm

R3L3

Edge H
VL VR

In this case, we have, since each edge in L has an odd number of cycles
as shown above, the total number of cycles that edge H is part of is given
by

1 2 nq q q Z   

where N is an odd number, and each q is an odd number.

9

When we add odd number of times odd numbers, we get an odd number.

Hence Z is an odd number.
 Hence number of cycles over H are odd.

Case two, in this case, not all cycles that pass over any or all edge iL (or

edges jR) also pass over edge H as in the following figure example

.

.

.

.

.

.

L1

L2

Ln

R1

R2

Rm

R3L3

Edge H
VL VR

Cycle x

Now, each time we get a cycle such as cycle x above, it will contribute 1
to the count of cycles to both edges it travels over (in this example edges

L1 and L2).

This cycle also can not come back over another edge to cover H, since
then it will visit vertex VL, and this is not possible by the definition of a
cycle.

Hence for each such cycle as ‘x’ above, I have to subtract 2 from the total
possible number of cycles passing over edge H.

So in this case, total number of cycles passing over edge H is

 1 2 (2*)nq q q number of cycles not going over edge H   

but since n is odd, (it is 1 subtracted from the degree of the vertex vL),
and each q is odd, then the above is an odd number – even number.

Which is an odd number.

Hence number of cycles over H are odd.

This completes the proof for statement one.

To prove statement two: IF each edge belongs to odd number of cycles,
then the graph is Euler.

10

Looking at any one edge, such as H, in such a graph

.

.

.

.

.

.

L1

L2

Ln

R1

R2

Rm

R3L3

Edge H
VL VR

I need to show, given that number of cycles over H are odd, then the
degree of each vertex must be even (.i.e. the graph is Euler).

I use proof by contradiction.

In a proof by contradiction, when we need to proof the following
statement is true

IF A => B

We assume that given the following is true:

A and NOT B

and we try to show this is not possible. Hence A=>B.

So, in this example, A is ‘each edge has odd number of cycles’, B is
‘Graph is Euler’.

So, Assume we have a graph with each edge has odd number of cycles,

and it is NOT Euler.

Looking at the above figure, we have two cases.

Case one, all the cycles passing over edges iL (or edges jR) also pass over

edge H.

11

.

.

.

.

.

.

L1

L2

Ln

R1

R2

Rm

R3L3

Edge H
VL VR

Summing all cycles going over H, assume number of cycles over i iL is q

1 2 nq q q Z   

where Z is the cycles over H. But Z must be an odd number (given), and

each q in the above sum is odd also (given).

The only way to add odd numbers N times and still get an odd number,
is when N itself is odd.

Hence the number of L edges coming into VL in the above diagram is
odd. Add the edge H itself, then the degree of vertex VL can only be even.

Hence for this case, it is not possible to have odd number of cycles and
have the vertex not have an even degree. Hence the graph must be Euler,
which contradict the assumption.

Now to prove it for case two:

Case two: not all cycles that pass over the edges iL (or edges jR) also

pass over edge H as in the example

.

.

.

.

.

.

L1

L2

Ln

R1

R2

Rm

R3L3

Edge H
VL VR

Cycle x

Again, as argued earlier:

12

Now, each time we get a cycle such as cycle x above, it will contribute 1

to the count of cycles to both edges it travels over (in this example edges
L1 and L2).

This cycle also can not come back over another edge (say L3) to cover H,
since then it will visit vertex VL, and this is not possible by the definition

of a cycle.

Hence for each such cycle as ‘x’ above, we subtract 2 from the total

number of cycles passing over edge H. So total number of cycles Z going
over H is

   1 2 2*nq q q cycles not going over H Z    

or

 1 2 nq q q even number Z    

Since Z is odd, then  1 2 nq q q   must be odd.

Hence n must be odd.

Hence the number of edges coming into VL in the above diagram is odd.

Add the edge H itself, then the number degree of vertex VL can only be
even. Hence for this case, it is not possible to have odd number of cycles
and have the vertex not have an even degree. Hence the graph must be

Euler, which contradict the assumption.

This completes the proof of the second statement.

QED.

Problem 1 extra

Extra on problem 1

Dr, as I was studying for this problem, I read about the Fleury algorithm
to find all the cycles in an Euler graph. To learn how this algorithm
works, I found 3 cycles in some graph, showing step by step how the

algorithm works. I am including this below, (even thought it is not
required to solve this problem, but it helped me understand the subject a

little more).

13

Only connected graphs with has no vertices of odd degree can have an Euler circuit.

So the above graphs must have at least one Euler circuit. To find, use Fleury algorithm:

1. Start at any vertex.

2. Pick an edge to travel. If one of the edges is a bridge (Going along it, there is no way to come back to the vertex other than on it, then do not select it, unless

it is the one edge left from that vertex).

2. Remove the edge traveled. If a vertex left with no edges leaving it, remove the vertex.

3. repeat step 2 until no more edges left.

4. The order of the edges traveled is the Euler circuit.

A B

C

E
F

D

A B

C

E
F

D

A B

C

E
F

D

A B

C

E
F

D

A B

C

E
F

D

A B

C

E
F

D

A B

C

E

D

A B

C

E

A B

C

E

A B

C

A B

C

A B
A

After AE removed. Back to

starting vertex, and no

edges left. Euler circuit.

Original graph

Start at E. 1 in 6

choice.

After EF removed

1 in 6 choices

After FA removed 1

in 4 choices.

After AE removed

1 in 3 choice.

After ED removed. 1 in 3 choice. Notice

now have option of going DC or DF.

After DF removed. 1 in 2 choices.

Notice, can not travel DC, since DC

is a bridge.

After FD removed.

Only choice.

After DC removed.

Only choice

After CE removed. 1

in 3 choices

After EB removed.

Only choice After BC removed

1 in 2 choices

After CB removed After BA removed

E E

E E

A B

C

E
F

D

1

2
3

4
6

5

7

8

9

12

11
10

Showing Euler circuit. Visit each edge

once, and visit all edges. Starting

from E and back to E.

13

One Euler cicruit.

14

A B

C

E
F

D

A B

C

E
F

D

A B

C

EF

D

A B

C

E
F

D

A

After AE removed. Back to

starting vertex, and no

edges left. Euler circuit.

Original graph

Start at E. 1 in 6

choice.

After ED removed

1 in 6 choices

After DC removed 1

in 3 choices.

After CE removed

1 in 4 choice.
After EB removed. 1 in 4 choice.

After BC removed. 1 in 3 choices.

Notice, can not remove BA, since BA is a

bridge.

After CB removed.

Only choice.

After AF removed. 1

in 3 choices

After FD removed.

Notice, can not

remove FE as it is a

bridge
After DF removed

only choice.

After FE removed.

Only choice

After EA removed

E

A B

C

E
F

D

11

8
12

1
9

10

2

3

4

7

6
5

Showing Euler circuit. Visit each edge

once, and visit all edges. Starting

from E and back to E.

13

second Euler cicruit starting from E

A B

C

E
F

D

A B

C

E
F

D

A B

E
F

D

After BA removed.

Only choice.

A

E
F

D

A

E
F

D

A

E
F

D

A

E
F

A

E

15

A B

C

E
F

D

A B

C

E
F

D

A

After AE removed. Back to

starting vertex, and no

edges left. Euler circuit.

Original graph

Start at E. 1 in 6

choice.

After EC removed

1 in 6 choices

After CB removed 1

in 2 choices.

After AF removed. 1 in 3 choice.

After FE removed. 1 in 3 choices.
After EB removed. 1

in 4 choices

After CD removed.

Only choice

After DF removed.

Notice, can not

remove DE as it is a

bridge

After DE removed.

Only choice

After EA removed

E

A B

C

E
F

D

5

4
12

11
9

10

8

1

6

3

7
5

Showing Euler circuit. Visit each edge

once, and visit all edges. Starting

from E and back to E.

13

Third Euler cicruit starting from E

After BC removed.

Only choice.

A

E
F

D

A

E

A B

C

E
F

After BA removed 1

in 3 choices.

A B

C

E
F

A B

C

E
F

A B

C

E
F

A B

C

E
F

A

C

E
F

A

E
F

D

D D

D D
D

D

A

E

D
After FD removed.

16

3 Problem 2

MATH 127, UC Berkeley

HW 3

Problem 2

Nasser Abbasi

Part A

From NCBI web site http://www.ncbi.nlm.nih.gov , typed AF548051 in
the ‘for’ window, with ‘search’ window set to Nucleotide, and hit’GO’. The

result is:

 Then select the ‘FASTA’ option in the display menu, and click on the
link, I get

>gi|23395425|gb|AF548051.1| Homo sapiens clone AFAM1-Ya5NBC243.seq Alu Ya5a2 subfamily repeat region

GGCCGGGCGCGGTGGCTCACGCCTGTAATCCCAGCACTTTGGGAGGCCGAGGCGGGCGGATCACGAGGTC
AAGAGATCGAGACCATCCCGGCTAAAACGGTGAAACCCCGTCTCTACTAAAAATACAAAAAAATTAGCCG

GGCGTAGTGGCGGGCGCCTGTAGTCCCAGCTACTTGGGAGGCTGAGGCAGGAGAATGGCGTGAACCCGGG

AGGCGGAGCTTGCAGTGAGCCGAGATCCCGCCACTGCACTCCAGCCTGGGCGACAGAGCGAGACTCCGTC

TCAAAAAAAAAAAAAAAAAAAAAAAAGGAAA

The A tail of the above repeat is ‘AAAAAAAAAAAAAAAAAAAAAAAAGCAAA’ which is 24

long. (I stopped counting at just before ‘GGAAA’. Since from the paper, it
said to stop counting the A-tail when at least 2 consecutive non-
adenosine bases show up.

From the article,

AUTHORS Roy-Engel,A.M., Salem,A.H., Oyeniran,O.O., Deininger,L.,

 Hedges,D.J., Kilroy,G.E., Batzer,M.A. and Deininger,P.L.

 TITLE Active alu element 'A-Tails': size does matter

 JOURNAL Genome Res. 12 (9), 1333-1344 (2002)

From the article, it said the maxmimum A-length for Alu was 97 bases:

Some of the A-lengths in this group reach as high as 97 bases for Alu and almost
180 bases for L1.

17

The apparent function of the A-Tail, is that the length of the Alu A-Tail
correlate to which Alu is active, that is, which Alu elements are able to

retropose. So the A-Tail is a factor in determining the retropositional
capability of the Alu sequence as it said in the citation.

Part B

cut/paste the above, and went to http://ftp.genome.washington.edu/cgi-

bin/RepeatMasker and submitted the above sequence using default
setting. Tried for all organisms. The result is shown below

Organism Number of

matching

repeats found

in DB

SW

score

Matching

repeats

family Matching position

In query

Primates 1 2870 AluYa5 SINE 1..311

RODENTs 2 528

772

PB1

FAM

SINE

SINE

2..132

137..296

Other mammals

2 625

805

FLAM_A

FAM

SINE

SINE

2..133

137..300
other vertebrates 0

Arabidopsis 1 219 (A)n Simple_repeat 283..311

Grasses 0

Drosophila 1 219 (A)n Simple_repeat 283..311

By doing the search assuming the query sequence belongs to different
organism (that is, seach different repeats database), a different alignment
score is obtained. The highest score was for Primates covering the whole

query sequence. This means the primates have all of the query sequence
(1..311) repeated in the genome in different locations. While for Rodents
and other mammals, only parts of the sequence is repeated (2 parts, the

first ‘half’ and the ‘second’ half). So, this repeat sequence is unique to
Primates only.

In Arabidopsis and Drosophilla, only the tail-A
‘AAAAAAAAAAAAAAAAAAAAAAAAGGAAA’ was found to be a repeat.

Part C

Here, I removed the A-Tail. This is the subsequence
AAAAAAAAAAAAAAAAAAAAAAAAGGAAA from the original sequence, and re-run all the
tests as above. This is the new table.

18

Organism Number of

matching

repeats found

in DB

SW

Score

Matching

repeats

family Matching position

In query

Primates 1 2637 AluYa5 SINE 1..282

RODENTs 2 528

649

PB1

FAM

SINE

SINE

2..132

137..282

Other mammals

2 625

660

FLAM_A

FAM

SINE

SINE

2..133

137..282
other vertebrates 0

Arabidopsis 0

Grasses 0

Drosophila 0

So this shows that repateMasker was still able to find the repeats in the

data base without the A-Tail.

Now, I extend the A-Tail, by adding ‘A’s to the end of the tail. I added 120
‘A’s to the A-tail, now the A-tail length is 149 (since the A-Tail original

length was 29). I choose 120, since from the paper it said that the longest
A-Tail was 97 in recent Alu insertions. So, this means an extension of 50
beyond the longest A-Tail

So, the new query sequence I used is this:

>gi|23395425|gb|AF548051.1| Homo sapiens clone AFAM1-Ya5NBC243.seq Alu Ya5a2 subfamily repeat region

GGCCGGGCGCGGTGGCTCACGCCTGTAATCCCAGCACTTTGGGAGGCCGAGGCGGGCGGATCACGAGGTC
AAGAGATCGAGACCATCCCGGCTAAAACGGTGAAACCCCGTCTCTACTAAAAATACAAAAAAATTAGCCG

GGCGTAGTGGCGGGCGCCTGTAGTCCCAGCTACTTGGGAGGCTGAGGCAGGAGAATGGCGTGAACCCGGG

AGGCGGAGCTTGCAGTGAGCCGAGATCCCGCCACTGCACTCCAGCCTGGGCGACAGAGCGAGACTCCGTCTC
AAAAAAAAAAAAAAAAAAAAAAAAGGAA

AA

A

So, the new query sequence is now of length 311+120=431

I run the same tests as above, and the result is shown in this table

Organism Number of

matching

repeats found

in DB

SW

Score

Matching

repeats

family Matching position

In query

Primates 1 2880 AluYa5 SINE 1..431

RODENTs 2 528

773

PB1

FAM

SINE

SINE

2..132

137..431

Other mammals

2 625

806

FLAM_A

FAM

SINE

SINE

2..133

137..431

19

other vertebrates 0

Arabidopsis 1 1299 (A)n Simple_repeat 283..431

Grasses 0

Drosophila 1 1299 (A)n Simple_repeat 283..431

The above shows extending the A-tail considerably did not affect

repeateMasker ability to find the repeats.
Notice that in Arabidopsis and Drosophilla, only the tail-A is the repeat.

The more ‘A’s I added, the higher the score became for those organisms.
This shows there are long simple_repeats of ‘A’s in those organisms.

20

4 Problem 3

MATH 127, UC Berkeley.
HW3

Problem 3
Nasser Abbasi

Answer
To help me understand this problem, I worked a simple example of how

to use convolution to find similarity between 2 DNA sequences.

21

ACGTT

TCGAA

A=1
10000

00011

01100

C=1
01000

01000

10000

G=1
00100

00100

00100

T=1
00011

10000

01100convolution

Original DNA sequences we want to find the where max alignment between them occur

Now, sum the 4 convolution vectors 01100

10000

00100

01100

12300
Nasser Abbasi

overlap_cobvolution.vsd

oct 12, 2002.

So, the max value is at

position 3 (it has the value

of 3). So, looking back the

two DNA sequences, this

tells us where the max

similarity is. ACGTT

TCGAA

The convolution is a circular convolution. Done using these steps.

1. Align the sequences on top of each others, multiply corresponding elements (i.e. element at position j

from top row with element at position j from second row, and add the final result.
10000

00011

00000 = 0

The above gives us the first element of the convolution vector, which is zero.

2. Now do a one position right shift of the lower sequence, and wrap around. So, a sequence ‘abcde’

when shifted one position to the right, will become ‘eabcd’.
10000

10001

10000 = 1

The above gives us the first element of the convolution vector, which is 1.

again, right shift the lower sequence again from above, and multiply and sum, we get

10000

11000

10000 = 1

again, right shift the lower sequence again from above, and multiply and sum, we get 10000

01100

00000 = 0

sum

multiply

again, right shift the lower sequence again from above, and multiply and sum, we get 10000

00110

00000 = 0

Since now the lower sequence has been shifted 4 times, and the size of the sequence is 5, we stop. The

final convolution vector is then [01100].

Replace one letter at by 1, and all the others by zero. Do this for A,C,G,T at a time. So we get 4 sets of sequences. Do the

convolution between each 2 sequences at a time. So, we get 4 convolution vectors a the end. Next, sum the 4 convolution

vectors.

To make sure the above makes sense and I did not make any mistakes, I

worked a bigger example below to verify the method, to find the overlap
between two larger DNA sequences.

22

TATAGCCTCCTC

TCCTCATCCTGT

A=1
010100000000

000001000000

010100000000convolution

Original DNA sequences we want to find the

overlap between them, the red sections is where I

would expect the sequences to overlap.

Now, sum the 4 convolution vectors

 255345347334

Nasser Abbasi

overlap_cobvolution.vsd

oct 12, 2002.

So, the max value is at

position 9 (it has the value

of 7). So, looking back the

two DNA sequences, this

tells us where the overlap

max position is.

Resulting in TATAGCCTCCTCATCCTGT

C=1
000001101101

011010011000

123123134122

G=1

000010000000

000000000010

000000000100

T=1

101000010010

100100100101

122122213112

010100000000

123123134122

000000000100

122122213112

TATAGCCTCCTC

TCCTCATCCTGT

The above shows the method does find the overlap region. (but it is not
clear to me how does one go about determining the extent of the overlap

if needed. May be the extent of the overlap is not needed, we just need a
point to know where to fold the two sequences next to each other from)
and this method gives us this.

Now, to answer the question. For the maximum value, it will occur when

we have maximum overlap.

The max is when the two sequences are identical ofcourse. However,

since these are random sequences, one would assume this is not likely to
occur.

Since there are equal number of each base, there will be 125 of each type
of base. These will be randomly distributed. So there is a chance of 1 out

of 4 that an A from one sequence will be at the same position as an A in
the other sequence, and the same for T,G and C.

Since the sequence length is 500, the chance of both sequences coming
out the same is then (1/4)^500, which is almost impossible, but when
this is the case, each convolution vector will a max value of 125, and the

final convolution vector (the sum of the 4 convolution vectors will have a
max value of 500.

But for normal random distribution, the bases are uniformly distributed,
and there is 25% chance that a base at one position in one sequence will

be the same as the base in the same position in the second sequence. So,
the convolution vector for say ‘A’ will have a max value of 125/4 or

about 32.25. But we add 4 convolution vectors to get the final

23

convolution vector, and the chance that the vector for ‘G’ or ‘C or ‘T’ will
have its maximum value at the same column as ‘A’ is 1/500, so I can not

just add 32.5 4 times to get 125. (I am assuming a fair random sequence
generator, else I would have picked 125 as the maximum).

Instead, I think I should pick one maximum from one vector (say ‘A’)
which is 32.5, and then assume the value at this column in the second,

third and fourth row vectors from each of other 3 convolution vectors is
the average value, which is 16 so, this gives a maximum of
32.5+16+16+16=80.

This 80 value gives a minimum size of 80 overlap that can be reliably

detected (or about 20% of the size of the sequence).

24

5 Problem 4

MATH 127
HW 3

Problem 4
Nasser Abbasi

The Euler assembly algorithm is a determination of superpath in de-
Bruijn graph. A read is an edge in such a graph. However, these reads
should have little errors in them. To remove these errors early on, the

reads are broken into l-tuples and multiple sequence alignment is
performed on these short strings and read errors detected and the
original reads are then modified to remove these errors, and the new

modified error-corrected reads (reduced errors) are then used in the de-
Bruijn graph.

The spectral alignment problem is one solution to finding these read
errors early on. To help me understand the concepts in the paper more, I

made the following very simple example. Imagine a Genome G which is
‘CCTTGCATCCTC’, with 3 reads, each of length 6. let l, the length of the
tuple be 3. This is what I get:

Genome = C C T T G C A T C C T C

read 1

read 2

read 3

CCTTGC

CCT

 CTT

 TTG

 TGC

TGCATC

TGC

 GCA

 CAT

 ATC

ATCCTC

ATC

 TCC

 CCT

 CTC

Assume we have 3 reads, each of length n=6. Assume L=3 (tuple size). Each read is broken into n-L+1, or 4

tuples as shown.

solid
-tu

ples

so
lid

-tu
pl
es

In the above, using M=1, there are those shown solid-tuples. Solid tuple are ones that belong to more

than M reads. In the above simple example, there are 3 such solid tuples. The rest are called weak L-

tuples. The approximated Genome (used by the error-correction method in the paper) will then be the

set of all solid-tuples.

Now, a collection of L-tuples short strings is called a spectrum. A string
‘s’ belongs this spectrum if each one of its L-tuples can be found in this

spectrum. The spectral alignment problem is to find the minimum
number of letter changes we have to make in the string ‘s’ to cause all its
tuples to be found in the given spectrum.

25

As an example, let string s=’CCTG’, with L=3, it then has ‘CCT’ and ‘CTG’
as its two tuples. (4-3+1=2).

Given a spectrum T={ ‘ACT’,’TCT’,’CCA’,’CTG’}, we see that ‘s’ as it stands

does not belong to T, since one of ‘s’ tuples (the first one) is missing from
T.

To make ‘s’ a T-string, we have to change one or more letters in ‘s’, but
when doing this change, we have to make sure we do not cause a
removal of a tuple that was already found in T, else we just added a tuple

in and removed one. In the above then, if we change the first letter in ‘s’
from C to A, this will cause ‘s’ now to be a T-string, since now the first

tuple becomes ‘ACT’ instead of ‘CCT’ and this already in T. Hence this is
the minimum change needed to make ‘s’ be a T-string. A one letter
change. So, the reason why we need the number of mutations made to be small,

so that we do not end up changing the original reads too much, causing the final

approximated Genome to be much different from the actual one. The
approximated Genome (with error-correction) is the one used to
construct the de-Bruijn graph.

The algorithm for spectral alignment works as follows.

Step 1. First construct the set of all solid L-tuples from all the initial
reads from the sequencing project. (this is the set of all L-tuples that are
found in more than M reads, where M is some threshold). This will be

our initial spectrum, called T.

Step 2. Now, for each read which does not have all its L-tuples in T (i.e. it
contains a number of weak L-tuples with respect to T) make the smallest
letter changes (mutations) to cause one weak L-tuple to become a solid

L-tuple (i.e. to show up in T). For example, in the above, I made one letter
change in the weak L-tuple ‘CCT’ to cause to become a solid L-tuple.

Step 3. Now, generate the T spectrum again.

Repeat steps 2,3. Each time using the newly modified reads until no
more reads with weak L-tuples is found (or stop at some threshold on
number of mutations to make?).

This completes the algorithm, and generates new modified reads and an

approximate Genome based on those error-corrected reads.

26

6 Problem 5

Math 127

HW3

Problem 5 (Optional)

Nasser Abbasi

Part (A)
I wrote a function that takes two DNA sequences, and returns the convolution vector.

The position of the maximum element in the convolution vector is where the overlap occurs.

This below are few examples showing how to use this function. (I highlight by red where the

overlap actually is).

Example 1

>> clear all

>>% 1 2 3 4 5 67 8 9 0 1 23 4 5 6 7 8

>> x='ACGTATTACCCCGGGCCC';

>> y='CCCCGGGCCCTAGTATTT';

>> nma_hw3_problem5(x,y)

ans =

 4 5 4 2 3 2 6 10 15 8 6 6 2 3 6 4 4 3

>> [v,I]=max(ans);

>> I

I =

 9

So, this says the overlap occurred at position 9, which is correct by looking at the above

sequences.

27

Example 2

>>% 1 2 3 4 5 6 78 9 0 1 2 3 4 5 6 7 8 9 0

>> x='ACTGTTGATATATATATATA';

>> y='ATATATCGTCGTCGTCGTCG';

>> nma_hw3_problem5(x,y)

 4 4 3 5 4 6 2 10 3 7 4 9 1 10 3 7 5 7 2 6

>> [v,I]=max(ans);

>> I

I =

 8

Notice that there are another maximum location (of value 10) in the convolution vector, which is

at position 14. This is the ‘end’ location. The max() function in matlab finds the first max in a

vector. For overlap, I need the last one, the one near the edge.

28

Part B

To test the program against the given sequences, I use directly the circular convolution

function I wrote (which is called by the function used in part A).

This is the output

>> help nma_cconv

 function nma_cconv(A,B) implement direct circular convolution for A,B

 vectors. Must be of equall length (for now).

 returns V, the convolution vector

>>% 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7

>> x=[0 0 0 0 1 0 1 0 1 1 0 0 0 0 0 1 0];

>> y=[0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0];

>> nma_cconv(x,y)

ans =

 1 2 1 5 1 2 1 1 1 2 1 1 1 1 2 1 1

>>

So, from the above, the maximum convolution is at position 4 and this gives the best

shift.

29

function V=nma_hw3_problem5(x,y)

%function p=nma_hw3_problem5(x,y)

%

% This function takes 2 DNA sequences, and returns

% the convolution vector for the sequneces

%

% calls the function nma_cconv.m to do the convolution

p=0;

if(nargin ~=2)

 error('x,y expected');

end

N=length(x);

if(N ~= length(y))

 error('x,y must be equal length');

end

DNA='ATCG';

V=zeros(N,1); % store final convolution vector here.

for(i=1:length(DNA))

 V=V+nma_cconv(normalize(x,(DNA(i))), ...

 normalize(y,(DNA(i))));

end

V=V';

%%%%%%%%%%%%%%%%%%%%%%%%

% this function replaces each letter in S with 0

% except those that matches w, they are replaced with 1

%%%%%%%%%%%%%%%%%%%%%%%%%

function T=normalize(S,w)

S=upper(S);

T=zeros(length(S),1);

for(i=1:length(S))

 if(S(i)==w)

 T(i)=1;

 end

end

30

function v=nma_cconv(A,B)

%function nma_cconv(A,B) implement direct circular convolution for A,B

%vectors. Must be of equall length (for now).

%returns V, the convolution vector

%By Nasser Abbasi, Oct 12,2002.

%Written for HW 3, problem 5.

%Math 127, UC Berkeley.

N=length(A);

if(N ~= length(B))

 error('A,B must be of equal length');

end

Bi=1:N;

v=zeros(N,1);

for(i=0:N-1)

 v(i+1)=sum(A .* B(Bi));

 Bi=[N-i:N 1:N-(i+1)]; %right sided circular shift

end

v=v';

31

6.1 Problem 5 source code
Matlab code� �
function V=nma_hw3_problem5(x,y)
%function p=nma_hw3_problem5(x,y)
%
% This function takes 2 DNA sequences, and returns
% the convolution vector for the sequneces
%
% calls the function nma_cconv.m to do the convolution

p=0;

if(nargin ~=2)
error('x,y expected');

end

N=length(x);
if(N ~= length(y))

error('x,y must be equal length');
end

DNA='ATCG';
V=zeros(N,1); % store final convolution vector here.
V=V';

for(i=1:length(DNA))
V=V+nma_cconv(normalize(x,(DNA(i))), ...

normalize(y,(DNA(i))));
end

%%%%%%%%%%%%%%%%%%%%%%%%
% this function replaces each letter in S with 0
% except those that matches w, they are replaced with 1
%%%%%%%%%%%%%%%%%%%%%%%%%
function T=normalize(S,w)

S=upper(S);
T=zeros(length(S),1);

for(i=1:length(S))
if(S(i)==w)

T(i)=1;
end

end� �

32

� �
function [y,zf]=nma_filter_v1(b,a,x,zi)
% function y=nma_filter_v1(b,a,x,zi)
%
% implement IIR filter to give the same output as matlab own
% filter.m function, and then convert the code to C++.
%
% The filter is a "Direct Form II Transposed"
% implementation of the standard difference equation:
%
% a(1)*y(n) = b(1)*x(n) + b(2)*x(n-1) + ... + b(nb+1)*x(n-nb)
% - a(2)*y(n-1) - ... - a(na+1)*y(n-na)
%

% Nasser Abbasi, sept 27,2002.
% done for the 5Prime project work.

b=b(:);
a=a(:);

if(size(b,2) ~= 1)
error('b must be a vector');

end

if(size(a,2) ~= 1)
error('a must be a vector');

end

nb = length(b);
na = length(a);

if(nb ~= na)
error('length(a) must equal length(b) in this implementation');

end

if(a(1) ~= 1.0)
a=a/a(1);
b=b/a(1);

end

nChannels=size(x,2);
nScan=size(x,1);
y=zeros(nScan,nChannels);
zf=zeros(nb-1,nChannels);

if(nargin==4)
if(~isempty(zi))

nCol=size(zi,2);

33

if(nCol>nChannels)
error('Zi number of columns can not be larger than number of X columns');

end
for(k=1:nCol)

zf(:,k)=zi(:,k);
end

end
end

for(k=1:nChannels)
for(n=1:nScan)

nDelay=1;
zf(:,k)=Z_(nDelay,x(:,k),y(:,k),zf(:,k),a,b,n-1);
y(n,k)=b(1)*x(n,k)+zf(nDelay,k);

end
k

end

%%%
% find the delay z at level at time t
%
%%
function zf=Z_(nDelay,x,y,zf,a,b,n)

nb=length(b);

if(n==0)
return;

else
if(nDelay==nb-1)

zf(nDelay)=b(nDelay+1)*x(n)-a(nDelay+1)*y(n);
else

zf=Z_(nDelay+1,x,y,zf,a,b,n-1);
zf(nDelay)=b(nDelay+1)*x(n)+zf(nDelay+1)-a(nDelay+1)*y(n);

end
end� �
� �
function c=nma_dconv(x,y)
%function c=nma_dconv(x,y)
% finds convolution using direct method.

if(length(x) ~= length(y))
error('x and y must be same length');

end

n=length(x);

34

c=zeros(n,1);
yi=[1 n:-1:2];
yy=y(yi);

for(shift=0:n-1)

t=0;
for(i=1:n)

t=t+x(i)*yy(i);
end
c(shift+1)=t;

yi=[mod((yi+1),n)];
I=find(yi==0);
yi(I)=n;
yy=y(yi);

end� �
� �
function c = nma_cconv2(a,b,ctr)

if (exist('ctr') ~= 1)
ctr = 0;

end

if ((size(a,1) >= size(b,1)) & (size(a,2) >= size(b,2)))
large = a; small = b;

elseif ((size(a,1) <= size(b,1)) & (size(a,2) <= size(b,2)))
large = b; small = a;

else
error('one arg must be larger than the other in both dimensions!');

end

ly = size(large,1);
lx = size(large,2);
sy = size(small,1);
sx = size(small,2);

%% These values are the index of the small mtx that falls on the
%% border pixel of the large matrix when computing the first
%% convolution response sample:
sy2 = floor((sy+ctr+1)/2);
sx2 = floor((sx+ctr+1)/2);

% pad:

35

clarge = [...
large(ly-sy+sy2+1:ly,lx-sx+sx2+1:lx), large(ly-sy+sy2+1:ly,:), ...

large(ly-sy+sy2+1:ly,1:sx2-1); ...
large(:,lx-sx+sx2+1:lx), large, large(:,1:sx2-1); ...
large(1:sy2-1,lx-sx+sx2+1:lx), ...

large(1:sy2-1,:), ...
large(1:sy2-1,1:sx2-1)];

c = conv2(clarge,small,'valid');� �
� �
function v=nma_cconv(A,B)
%function nma_cconv(A,B) implement direct circular convolution for A,B
%vectors. Must be of equall length (for now).
%returns V, the convolution vector

%By Nasser Abbasi, Oct 12,2002.
%Written for HW 3, problem 5.
%Math 127, UC Berkeley.

N=length(A);

if(N ~= length(B))
error('A,B must be of equal length');

end

Bi=1:N;
v=zeros(N,1);

for(i=0:N-1)
v(i+1)=sum(A .* B(Bi));
Bi=[N-i:N 1:N-(i+1)]; %right sided circular shift

end

v=v';� �
Maple code� �
by Nasser Abbasi, oct 16, 2002.
how to read clipped data file using MAPLE.

INPIT: filename, the clipped full path file name.
OUTPUT: a Matrix that contains the clipped data. it has
as many rows as there are in the clipped file.

epg := proc(filename)
local line,y,f,x,k;

36

try
f := fopen(filename,READ);

catch:
printf("Failed to open file %s\n",filename);
return;

end try;

line := readline(f);
line := readline(f);

line := readline(f);
x := Matrix();
k:=1;
while(line <> 0) do

y := sscanf(line,cat("%a" $ length(line)));
y := y[3..nops(y)];
y := convert(y,Vector[row]);
if(k>1) then

x := < x , y >;
else

x:= y;
end if;
k:= k+1;
printf("read line %d\n",k);
line := readline(f);

end do;

fclose(f);
return x;

end proc;� �� �
hw3:=module()

export solve,nma_cconv;
local normalize_it;

##############
#
#
##############

solve := proc(x::string,y::string)

local N,DNA,V,i,t1,c;

N:= length(x);

37

if(N <> length(y)) then
error("Length of sequences must match");

end if;

DNA:="ATCG";
V:=Vector(N);

for i from 1 to length(DNA) do
c:=DNA[i];
t1 := normalize_it(x,c);
print(t1);
#V:=V+nma_cconv(normalize_it(x,DNA[i]),normalize(y,DNA[i]));

end do

end proc;

#####################
#
#####################

#nma_cconv:=proc(x::string,y::string)

#end proc();

##############
#
#
##############

normalize_it := proc(s::string,c)

local S,i,T;

S:=StringTools[UpperCase](s);
T:=Vector(length(S));

print("s = "); print(s);
print("S="); print(S);
print("length S is"); print(length(S));
print("c="); print(c);

for i from 1 to length(S) do
print("check on S[i] , c"); print(S[i]); print(c);

if(S[i]=c) then
print("set T[i] to 1"); print("i=",i);
T[i]:=1;
print("T now is "); print(T);

else

38

print("set T[i] to 0");
T[i]:=0;

end if;
end do;

print("T=",T);
return T;

end proc;
end module;� �

	Problems
	Problem 1
	Problem 2
	Problem 3
	Problem 4
	Problem 5
	Problem 5 source code

