

ECE 405 QUIZ \#3
20 POINTS
SUMMER 2010

1. The block diagram of USSB)generation using phasing method is shown in Figure 1.

Let $\mathrm{x}(\mathrm{t})=2 \sin (2 \pi 3000 \mathrm{t})$ and $f_{\mathrm{c}}=30000 \mathrm{~Hz}$.
(a) $\operatorname{Plot} x(t)$ in the time domain for two periods starting from $t=0$.
(b) Plot the spectrum $X(f)$ of $x(t)$ in the frequency domain.
(c) Find the Hilbert transform $\hat{x}(t)$ and plot $\hat{x}(t)$ in the time domain for two periods starting from $t=0$.
(d) Plot the spectrum $\hat{X}(f)$ of $\hat{x}(t)$ in the frequency domain.
(e) Find the waveform at (1) and plot it in the time domain.
(f) Find the spectrum at (1) and plot it in the frequency domain.
(g) Find the waveform at (2) and plot it in the time domain.
(h) Find the spectrum at (2) and plot it in the frequency domain.
(i) Find the waveform at (3) and plot it in the time domain.
(j) Find the spectrum at (3) and plot it in the frequency domain.

Figure 1

$$
\begin{aligned}
& \sin (\alpha+\beta)=\sin (\alpha) \cos (\beta)+\cos (\alpha) \sin (\beta) \\
& \sin (\alpha-\beta)=\sin (\alpha) \cos (\beta)-\cos (\alpha) \sin (\beta) \\
& \cos (\alpha+\beta)=\cos (\alpha) \cos (\beta)-\sin (\alpha) \sin (\beta) \\
& \cos (\alpha-\beta)=\cos (\alpha) \cos (\beta)+\sin (\alpha) \sin (\beta) \\
& \sin (\alpha) \cos (\beta)=(1 / 2)[\sin (\alpha-\beta)+\sin (\alpha+\beta)] \\
& \sin (\alpha) \sin (\beta)=(1 / 2)[\cos (\alpha-\beta)-\cos (\alpha+\beta)] \\
& \cos (\alpha) \cos (\beta)=(1 / 2)[\cos (\alpha-\beta)+\cos (\alpha+\beta)] \\
& \cos (\alpha) \sin (\beta)=(1 / 2)[-\sin (\alpha-\beta)+\sin (\alpha+\beta)]
\end{aligned}
$$

$$
\hat{x}(t)=2 \sin \left(2 \pi 3000 t-\frac{\pi}{2}\right)
$$

$$
x(t)=2 \sin (2 \pi 3000 t) \quad f c=30,000 H z
$$

a) $f_{m}=3000 \mathrm{Ht}$. $s_{0} T_{0}=\frac{1}{3000}=\frac{1}{3} \mathrm{~ms}$.

(b)

(c) $\hat{x}(t)=\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{x(\tau)}{t-\tau} d \tau$.
or $\frac{\Lambda}{X}(f)=-J \operatorname{sgn}(f) \bar{X}(f)$

so $\hat{x}(t)=-2 \cos (2 \pi 300 a t)$

Plot $\hat{x}(t)$ far z periods

$$
\hat{x}(t)=-2 \cos (2 \pi 3000 t)
$$

(d) Plot $\frac{1}{X}(t)$.

I allrealy did thi:

(e) Wave form at (1) is $x(t) \cos \omega_{c} t$

$$
\begin{aligned}
& S_{1}(t)=2 \sin (2 \pi 3000 t) \cdot \cos (2 \pi 30000 t) \\
&=2\left[\frac{1}{2}[\sin (-27000 t)+\sin (33000 t)]\right. \\
&\left.s_{1} 1 t\right)=-\sin (2 \pi 27000 t)+\sin (33000 t 2 \pi) \text { plot } \\
& \text { so } S_{1}^{2 \pi}(f)=-\left[-j / 2 \delta(f-27000)+\frac{j}{2} \delta(f+27000)\right] \\
&+\left[-j / 2 \delta(f-33000)+\frac{j}{2} \delta(f+33000)\right] \\
& \text { dompin } \\
& \text { net. } \\
& \text { pusc. } \\
& S_{1}(f)
\end{aligned}
$$

$$
s_{0} s_{1}(s)=\frac{j}{2}[\delta(f-27000)-\delta(f+27000)-\delta(f-33000)+\delta(f+30000)]
$$

Plot $s_{1}(t)$ in tine domain:

$$
\begin{aligned}
& s_{1}(t)=-\sin (2 \pi 27000 t)+\sin (33000 t 2 \pi) \\
& f=27000 \Rightarrow T=\frac{1}{27000}=0.037 \mathrm{~ms} \text { fo port } \\
& f=33000 \Rightarrow T=\frac{10300}{33000}=0.0303 \mathrm{~ms} \text { fo pail. }
\end{aligned}
$$

(9)

$$
\begin{aligned}
S_{2}(t) & =\hat{c}(t) \sin (2 \pi f c t) \\
& =-2 \cos (2 \pi 300 t) \sin (2 \pi 30000 t) \\
= & -2\left[\frac{1}{2}(-\sin (-27000 t 2 \pi)+\sin (2 \pi 33000 t)]\right. \\
= & -\sin (27000 t 2 \pi)-\sin (2 \pi 33000 t)
\end{aligned}
$$

Plot in time domain.

(h) spectomi io

$$
\begin{aligned}
S_{2}(f)= & -\left[-\frac{J}{2} \delta(f-27000)+\frac{j}{2} \delta(f+27000)\right] \\
& -\left[\frac{-J}{2} \delta(f-33000)+\frac{j}{2} \delta(f+33000)\right] \\
= & \frac{J}{2} \delta(f-27000)-\frac{J}{2} \delta(f+27000)+\frac{J}{2} \delta(f-33000)-\frac{J}{2} \delta(f+33000)
\end{aligned}
$$

So spection $\boldsymbol{c}_{\substack{-7 / 2} x^{-3 / 2}}^{-33}$

(1)
Since SUSs, Then need to subtract

$$
S_{1}(f)-S_{2}(f) \text { to find } S_{3}(f)
$$

first, in time domain

$$
\begin{aligned}
S_{3}(t)= & x(t) \cos \omega_{c} t-\hat{x}(t) \sin \omega_{c} t \\
& \left.=\sin _{1} t\right)-s_{2}(t) \\
& =(-\sin (2 \pi 27000 t)+\sin (33000 t 2 \pi)) \\
& -(-\sin (2 \pi 27000 t)-\sin (2 \pi 33000 t)) \\
= & -\sin (2 \pi 27000 t)+\sin (33000 t 2 \pi)+\sin (2 \pi 27000 t)+\sin (2 \pi 33 \\
S_{3}(t)= & 2 \sin (33000 t 2 \pi)
\end{aligned}
$$

plot in time domain:

$$
2 \sin (33000 t)
$$

-2
(i) spectrom is
since $S_{3}(t)=2 \sin (2 \pi 33000 t)$ ther spectorn io

$$
S_{3}(S)=-J \delta(f-33000)+J \delta(f+33000)
$$

which slio $S_{1}(f)-S_{2}(f)$ of verifinh.

