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0.1 Mathematical model

The equation of motion of the car is

my′′ + cy′ + ky = cy′g + kyg

Let y − yg = u which is the distance between m and the ground. Hence the equation of
motion now becomes

m
(
u′′ + y′′g

)
+ c
(
u′ + y′g

)
+ k (u+ yg) = cy′g + kyg

mu′′ + cu′ + ku = −my′′g



3

0.2 Summary of results found
0.2.1 Bridge data

imperial SI
span length λ 70 ft 70× 0.3048 = 21.336 meter
upward camber ∆ 2.5′′ = 0.208 33ft 2.5× 0.0254 = 0.0635 meter

0.2.2 Car data

imperial
mass of car 1500

32.2 = 46.584 lb.s2

ft

speed of car 30 mile/hr= 44.0 ft/sec
critical damping ratio is ζ 0.75
spring constant k 2400 lb/ft

natural frequency ωn =
√

k
m

√
2400

46. 584 = 7.177 7 rad/sec

natural frequency fn = ωn

2π
7. 177 7

2π = 1.142 4 Hz
natural period Tn = 1

fn
1

1.142 4 = 0.875 35 sec

natural damped frequency ωd = ωn

√
1− ζ2 7.177 7

√
1− 0.752 = 4.747 6 rad/sec

natural damped frequency fd = ωd

2π
4. 747 6

2π = 0.755 6 Hz
Tp time to driver over one span = λ

v
1.591 sec

Ta time to cross the bridge (duration of loading) 7× 1.591 = 11.137 sec

0.2.3 Results

an values found for up to n = 10
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Peak relative displacement of the driver
Maximum relative displacement was 0.24 inch and it occurred during transient phase.
Peak total displacement of the driver
0.165 inch + 2.5 inch =2.665 inch and it occurred during steady state phase at multiples
of half the period Tp while on the bridge.
Number of an terms used
In addition to a0 term, the next 5 terms are used for a total of 6 terms.

0.3 Analysis
0.3.1 Generate load equation

The equation of the ground is shown in this diagram
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Description of one span and equation of road

Therefore, the equation of span is

yg (x) = ∆ sin
(
π
λ
x
)

0 ≤ x ≤ λ

Hence, we convert it to be a function of time using x = vt, hence

yg (t) = ∆ sin
(
π
λ
vt
)

0 ≤ t ≤ λ
v

= ∆sin ($t) 0 ≤ t ≤ Tp

= ∆sin
(

π
Tp
t
)

0 ≤ t ≤ Tp

Where in the above $ = π
Tp

is the fundamental frequency of the ground motion. Hence

y′g (t) = ∆ π
Tp

cos
(

π
Tp
t
)
and

y′′g (t) = −∆
(

π

Tp

)2

sin
(

π

Tp
t

)
And

β = Tn

Tp
= 0.875 35

1.591 = 0.550 19

Then load in one span 0 < t < Tp is

Pa (t) = m∆
(

π

Tp

)2

sin
(

π

Tp
t

)
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Let

Po = m∆
(

π

Tp

)2

= (46.584) (0.208 33)
( π

1.591

)2
= 37. 840 lb

Then the load becomes

Pa (t) = Po sin
(

π

Tp
t

)
(1)

0.3.2 Convert load to Fourier series

Now we need to convert Eq 1 to Fourier series1. Let P̃a (t) be the Fourier series approximation
to Pa (t), hence

P̃a (t) = a0 +
∞∑
n=1

an cos
(
n
2π
Tp

t

)
+

∞∑
n=1

bn sin
(
n
2π
Tp

t

)

a0 =
1
Tp

Tp∫
0

Pa (t) dt

an = 2
Tp

Tp∫
0

Pa (t) cos
(
n
2π
Tp

t

)
dt

bn = 2
Tp

Tp∫
0

Pa (t) sin
(
n
2π
Tp

t

)
dt

Hence

a0 =
1
Tp

Tp∫
0

Pa (t) dt =
Po

Tp

Tp∫
0

sin
(

π

Tp
t

)
dt = Po

Tp

− cos
(

π
Tp
t
)

π
Tp

Tp

0

= −Po

π
(cos (π)− 1)

= 2Po

π
= 2 (37.840)

π
= 24.090 lb

1The Fourier series can also be found using complex form. This was done in the appendix.
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And

an = 2
Tp

Tp∫
0

Pa (t) cos
(
n
2π
Tp

t

)
dt

= 2Po

Tp

Tp∫
0

sin
(

π

Tp
t

)
cos
(
n
2π
Tp

t

)
dt

= 4Po

π − 4n2π
cos (nπ)2

But cos (nπ)2 = 1 Hence
an = 4Po

π − 4n2π

and

bn = 1
Tp

Tp∫
0

Pa (t) sin
(
2πn t

Tp

)
dt

= 2Po

Tp

Tp∫
0

sin
(

π

Tp
t

)
cos
(
n
2π
Tp

t

)
dt

= 2Po

π − 4n2π
sin (2nπ)

But sin (2nπ) = 0 for all integer n, hence bn = 0.Therefore

P̃a (t) = a0 +
∞∑
n=1

an cos
(
2πn t

Tp

)
= a0 +

∞∑
n=1

4Po

π − 4n2π
cos
(
2πn t

Tp

)

Using the numerical values found, we obtain

P̃a (t) = 24.0897 +
∞∑
n=1

4 (37.840)
π − 4n2π

cos
(
2πn t

1.591

)
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0.3.3 Plot of load and its Fourier series approximation

This plot below shows Pa (t) and its Fourier series approximation P̃a (t) as more terms
are added. This was plotted for t = 0 · · · 5 sec. This was done to verify that the Fourier
series approximation is correct before going to the next stage of the analysis. The actual
calculations used the first 6 terms of an.

0.3.4 Finding the steady state response

The equation of motion of the car is

my′′ + cy′ + ky = cy′g + kyg

Let y − yg = u which is the distance between m and the ground. Hence the equation of
motion now becomes

m
(
u′′ + y′′g

)
+ c
(
u′ + y′g

)
+ k (u+ yg) = cy′g + kyg

mu′′ + cu′ + ku = −my′′g (2)
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Hence Eq 2 becomes

mu′′ + cu′ + ku = m∆
(

π

Tp

)2

sin
(

π

Tp
t

)
= Pa (t)

=
∞∑
n=0

an cos
(
2πn t

Tp

)

= Re
{

∞∑
n=0

ane
in$t

}

Where $ = 2π
Tp

is the fundamental loading harmonic. Let uss (n) = Re {Une
in$t} be the

response due to the n term in the loading function. Hence the equation of motion now
becomes

mRe
{

∞∑
n=0

− n2$2Une
in$t

}
+ cRe

{
∞∑
n=0

i$nUne
in$t

}
+ kRe

{
∞∑
n=0

Une
in$t

}
= Re

{
∞∑
n=0

ane
in$t

}
(
−n2$2m+ cin$ + k

)
Un = an

Un = an
−n2$2m+ cin$ + k

= an
k

1
(1− n2r2) + 2iζnr

Hence the transfer function is

(
−n2$2m+ cin$ + k

)
Un = an

Un = an
−n2$2m+ cin$ + k

= an
k

1
(1− n2r2) + 2iζnr

Therefore, steady state response is

yss (t) = Re
{

∞∑
n=0

Une
in$t

}

= Re
{

∞∑
n=0

an
k

1
(1− n2r2) + 2iζnre

in$t

}

= Re


∞∑
n=0

Un︷ ︸︸ ︷
an
k
D (ζ,r,n)ein$t

 (3)
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Where D (ζ, r, n) is the nth harmonic dynamic magnification factor

|D (ζ, r, n)| =
√

1
(1− n2r2)2 + (2ζnr)2

and
argD (ζ, r, n) = − tan−1

(
2ζnr

1− n2r2

)
In the above,

r = $

ωnat
=

2π
Tp

ωnat
=

2π
1.591
7.1777 = 0.550 2

This is a list of the magnitude of Un for different n value to examine the contribution of
each harmonic to the steady state response.

0.3.5 Find the transient solution

From the steady state solution uss (t) we found above, we now find uss (0) and u′
ss (0) these

are the initial conditions, but in opposite sign, that the transient solution have to satisfy.
From above, we found the steady state solution to be

yss (t) = Re
{

∞∑
n=0

Une
in$t

}

Hence

y′ss (t) = Re
{

∞∑
n=0

in$Une
in$t

}
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At time t = 0 the above becomes

yss (0) = Re
{

∞∑
n=0

Un

}

y′ss (0) = Re
{

∞∑
n=0

in$Un

}

Now we need to decide on how many harmonics to use in order to determine yss (0) and
y′ss (0). From above we see that after n = 5 then an became very small. Hence we will
use up to n = 5 to find the initial conditions from the above 2 equations.

yss (0) = Re
{

5∑
n=0

Un

}
= Re

{
5∑

n=0

an
k

1
(1− n2r2) + 2iζnr

}
= 0.0084435 ft = 0.101322 inch

and for the initial velocity we obtain

y′ss (0) = Re
{

∞∑
n=0

in$Un

}

= Re
{

∞∑
n=0

in$
an
k

1
(1− n2r2) + 2iζnr

}
= −0.020207 ft/sec = −0.242484 inch/sec

Now the transient solution for damped system is given by

utr (t) = e−ζωnt (A cosωdt+B sinωdt)

with

utr (0) = −0.0084435
u′
tr (0) = +0.020207

Hence
A = utr (0) = −0.0084435

Taking derivative of utr (t) gives

u′
tr (t) = ζωne

−ζωnt (A cosωdt+B sinωdt) + e−ζωnt (−Aωd sinωdt+Bωd cosωdt)

Hence at t = 0 we obtain

u′
tr (0) = ζωnA+Bωd

B = u′
tr (0)− ζωnA

ωd
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But u′
tr (0) = +0.020207 ft/sec, A = −0.0084435 ft, ζ = 0.75,ωd = 4. 747 6 rad/sec,ωn =

7.1777 rad/sec, hence

B = 0.020207− 0.75× 7.1777× (−0.0084435)
4.7476

= 0.01383

Therefore

utr (t) = e−ζωnt (−0.0084435 cosωdt+ 0.01383 sinωdt)
= e−0.75(7.1777)t (−0.0084435 cos (4.7476t) + 0.01383 sin 4.7476t)

This solution is now added to the steady state solution.

0.3.6 Plot of the absolute total displacement with the bridge for both steady
state and transient combined

Zooming on the first 1.8 seconds shows more clearly the effect of transient solution
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The transient solution effect vanishes after about 1.5 second.

0.3.7 Plotting the full relative solution

To better see the solution obtained, we plot the relative displacement. This is the displace-
ment felt by the passenger. First the solution is shown for the whole time to cross the
bridge, then we zoom to the first 2 seconds to better see the transient solution
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From the above we see that the maximum relative displacement is about 0.24 inch and it
occurs during transient phase. During steady state, the maximum relative displacement is
about 0.165 inch
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0.4 Appendix
0.4.1 Finding Fourier series approximation using complex form

The Fourier series approximation can also be found using the complex representation. This
is the derivation using this method which gives the same result as was found earlier.

P̃a (t) =
1
2Y0 +Re

(
∞∑
n=1

Yne
in$t

)

Where

Yn = 2
Tp

Tp∫
0

Pa (t) e
−in$t

dt

= 2Po

Tp

Tp∫
0

sin
(

π

Tp
t

)
e
−in$t

dt (4)

Integration by parts,
∫
udv = uv −

∫
vdu, let u = sin

(
π
Tp
t
)
, hence du = π

Tp
cos
(

π
Tp
t
)
and

v = e
−in$t

−in$
, therefore the above becomes

Yn = 2Po

Tp

[sin( π

Tp
t

)
e
−in$t

−in$

]Tp

0

−
Tp∫
0

π

Tp
cos
(

π

Tp
t

)
e
−in$t

−in$
dt


= 2Po

Tp

sin
(

π

Tp
Tp

)
ie

−in$Tp

n$
− i

2n

Tp∫
0

cos
(

π

Tp
t

)
e
−in$t

dt


= − iPo

nTp

Tp∫
0

cos
(

π

Tp
t

)
e
−in$t

dt (5)

Now integrate by parts again where now
∫
udv = uv −

∫
vdu, let u = cos

(
π
Tp
t
)
, hence
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du = − π
Tp

sin
(

π
Tp
t
)
and v = e

−in$t

−in$
, therefore Eq 5 becomes

Yn = − iPo

nTp

(cos( π

Tp
t

)
e
−in$t

−in$

)Tp

0

−
Tp∫
0

− π

Tp
sin
(

π

Tp
t

)
e
−in$t

−in$
dt


= − iPo

nTp

cos
(

π

Tp
Tp

)
e
−in 2π

TpTp

−in$
− 1

−in$

+ i

n2

Tp∫
0

sin
(

π

Tp
t

)
e
−in$t

dt


= − iPo

nTp

(−i
e
−in2π

n$
− i

n$

)
+ i

n2

Tp∫
0

sin
(

π

Tp
t

)
e
−in$t

dt


= − Po

nTp

(
e
−in2π + 1
n$

)
+ ∆

2n2Tp

Tp∫
0

sin
(

π

Tp
t

)
e
−in$t

dt (6)

Now we see that the term
Tp∫
0

sin
(

π
Tp
t
)
e
−in$t

dt has repeated again. This term is the same

as what we started with in Eq 4, therefore, we write

Tp∫
0

sin
(

π

Tp
t

)
e
−in$t

dt = Tp

2∆Yn

and replace this term back into Eq 6, hence it becomes

Yn = − Po

nTp

(
e
−in2π + 1
n$

)
+ ∆

2n2Tp

Tp

2∆Yn

= − Po

nTp

(
e
−in2π + 1
n$

)
+ 1

22n2Yn

Yn −
1

22n2Yn = − Po

nTp

(
e
−in2π + 1
n$

)

Yn

(
1− 1

(2n)2
)

= − Po

nTp

(
e
−in2π + 1
n$

)

Yn = −
2Po

(
e
−in2π + 1

)
π
(
(2n)2 − 1

) =
2Po

(
e
−in2π + 1

)
π − π (2n)2

= 4Po

π (1− 4n2)
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And

Y0 =
2
Tp

Tp∫
0

Po sin
(

π

Tp
t

)
dt = 2Po

Tp

Tp∫
0

sin
(

π

Tp
t

)
dt = 2Po

Tp

− cos
(

π
Tp
t
)

π
Tp

Tp

0

= −2Po

π

(
cos
(

π

Tp
Tp

)
− 1
)

= −2Po

π
(−1− 1)

= 4Po

π

Therefore, the Fourier series approximation for ground motion is now

P̃a (t) =
1
2Y0 +Re

(
∞∑
n=1

Yne
in$t

)

= 4Po

2π +Re
(

∞∑
n=1

4Po

π (1− 4n2)e
in$t

)

= 2Po

π
+Re

(
∞∑
n=1

4Po

π (1− 4n2)e
in$t

)

We see that we obtained the same result using the classical Fourier series form.
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