Analysis of motion in a car crossing south beltline bridge

A vehicle crossing the south beltline bridges experiences vertical dynamic vibration due to the residual camber in the bridge. Determine the extent of vertical motion that will occur. (Insert your values in the highlighted regions.)

Bridge data: \quad span length $=70 \mathrm{ft}$.
$\lambda:=70 \cdot f t$ upward camber $=2.5$ inches
$\Delta:=\frac{2.5}{12} \cdot \mathrm{ft}$

Car data:

$$
\begin{aligned}
& \text { weight }:=1800 \mathrm{lb} \\
& \text { speed }:=60 \mathrm{mph} \\
& \xi:=0.75 \\
& \mathrm{k}:=5000 \frac{\mathrm{lb}}{\mathrm{ft}} \\
& \mathrm{~m}:=\frac{\text { weight }}{32.2} \cdot \frac{\mathrm{sec}^{2}}{\mathrm{ft}} \\
& \mathrm{~m}=55.901 \frac{\mathrm{lb} \cdot \mathrm{~s}^{2}}{\mathrm{ft}} \\
& \omega_{\mathrm{n}}:=\sqrt{\frac{\mathrm{k}}{\mathrm{~m}}} \quad \omega_{\mathrm{n}}=9.458 \cdot \frac{\mathrm{rad}}{\mathrm{sec}} \\
& \mathrm{f}_{\mathrm{n}}:=\frac{\omega_{\mathrm{n}}}{2 \cdot \pi} \quad \mathrm{f}_{\mathrm{n}}=1.505 \frac{1}{\mathrm{~s}} \\
& \mathrm{~T}_{\mathrm{n}}:=\frac{1}{\mathrm{f}_{\mathrm{n}}} \quad \mathrm{~T}_{\mathrm{n}}=0.664 \mathrm{~s} \\
& \omega_{\mathrm{d}}:=\omega_{\mathrm{n}} \cdot \sqrt{1-\xi^{2}} \quad \omega_{\mathrm{d}}=6.256 \cdot \frac{\mathrm{rad}}{\mathrm{sec}} \\
& \text { sp := speed } \\
& \mathrm{sp}=88 \frac{\mathrm{ft}}{\mathrm{~s}}
\end{aligned}
$$

like an EQ load. Define the ground movement and acceleration.
-the car travels through $1 / 2$ cycle in one span:
$y_{g}(\mathrm{t}):=\Delta \cdot \sin \left(\pi \cdot \frac{\mathrm{x}}{\lambda}\right)^{\text {! }} \quad$ for $0<\mathrm{x}<\operatorname{span}$
-the car location " x " is dependent on speed and time:
$\mathrm{x}:=\mathrm{sp} \cdot \mathrm{t}{ }^{\text {I }}$
$\mathrm{y}_{\mathrm{g}}(\mathrm{t}):=\Delta \cdot \sin \left(\pi \cdot \frac{\mathrm{sp}}{\lambda} \cdot \mathrm{t}\right)^{\boldsymbol{】}}$
$\operatorname{acc}_{\mathrm{g}}(\mathrm{t}):=-\Delta \cdot\left(\frac{\pi \cdot \mathrm{sp}}{\lambda}\right)^{2} \cdot \sin \left(\pi \cdot \frac{\mathrm{sp}}{\lambda} \cdot \mathrm{t}\right)^{\text {! }}$
-the span length/speed = time to cross one span,
$\mathrm{T}_{\mathrm{p}}:=\frac{\lambda}{\mathrm{sp}} \quad \mathrm{T}_{\mathrm{p}}=0.795 \mathrm{~s}$
$\beta \varepsilon \tau \alpha:=\frac{\mathrm{T}_{\mathrm{n}}}{\mathrm{T}_{\mathrm{p}}} \quad \beta \varepsilon \tau \alpha=0.835$
$\operatorname{acc}_{g}(t):=-\Delta \cdot\left(\frac{\pi}{T_{p}}\right)^{2} \cdot \sin \left(\frac{\pi}{T_{p}} \cdot t\right)^{\mathbf{I}}$
rounded time, more than one period:

Then the load in one span $(0<t<T p)$:

$$
\mathrm{T}_{\mathrm{a}}:=1.2 \mathrm{~s}
$$

$\mathrm{P}_{\mathrm{a}}(\mathrm{t}):=\mathrm{m} \cdot \Delta \cdot\left(\frac{\pi}{\mathrm{T}_{\mathrm{p}}}\right)^{2} \cdot \sin \left(\frac{\pi}{\mathrm{~T}_{\mathrm{p}}} \cdot \mathrm{t}\right)^{\mathbf{I}}$
steps in analysis:
st $:=\frac{\mathrm{T}_{\mathrm{a}}}{.01 \mathrm{~s}} \quad$ st $=120$

We need to convert this load to a periodic form that works for any point in time, until the vehicle is off of the bridge.
end of load:

$$
\mathrm{T}_{\max }:=7 \cdot \mathrm{~T}_{\mathrm{p}} \quad \mathrm{~T}_{\max }=5.568 \mathrm{~s} \quad \mathrm{~T}_{\max }=!
$$

Convert the load to a series - Fourier Transform:

$$
\mathrm{P}_{\mathrm{a}}(\mathrm{t}):=\mathrm{m} \cdot \Delta \cdot\left(\frac{\pi}{\mathrm{~T}_{\mathrm{p}}}\right)^{2} \cdot \sin \left(\frac{\pi}{\mathrm{~T}_{\mathrm{p}}} \cdot \mathrm{t}\right) \quad \text { with a period of } \mathrm{Tp}, \quad \mathrm{P}_{\mathrm{o}}:=\mathrm{m} \cdot \Delta \cdot\left(\frac{\pi}{\mathrm{~T}_{\mathrm{p}}}\right)^{2}
$$

$$
\mathrm{P}_{\mathrm{o}}=181.654 \mathrm{lb}
$$

$$
\mathrm{P}_{\mathrm{f}}(\mathrm{t}):=\mathrm{a}_{\mathrm{o}}+\sum_{\mathrm{n}=1}^{\infty}\left(\mathrm{a}_{\mathrm{n}} \cdot \cos \left(2 \cdot \pi \cdot n \cdot \frac{\mathrm{t}}{\mathrm{~T}_{\mathrm{p}}}\right)\right)+\sum_{\mathrm{n}=1}^{\infty}\left(\mathrm{b}_{\mathrm{n}} \cdot \sin \left(2 \cdot \pi \cdot n \cdot \frac{\mathrm{t}}{\mathrm{~T}_{\mathrm{p}}}\right)\right)^{\text {! }}
$$

where:

$$
\mathrm{a}_{\mathrm{o}}:=\frac{1}{\mathrm{~T}_{\mathrm{p}}} \cdot \int_{0}^{\mathrm{T}_{\mathrm{p}}} \mathrm{P}_{\mathrm{o}} \cdot \sin \left(\pi \cdot \frac{\mathrm{t}}{\mathrm{~T}_{\mathrm{p}}}\right) \mathrm{dt} \quad \mathrm{a}_{\mathrm{o}}=115.644 \mathrm{lb}
$$

and: $\quad \mathrm{n}:=1,2$.. 10

$$
\mathrm{a}_{\mathrm{n}}:=2 \cdot \frac{\mathrm{P}_{\mathrm{o}}}{\mathrm{~T}_{\mathrm{p}}} \cdot \int_{0}^{\mathrm{T}_{\mathrm{p}}} \sin \left(\pi \cdot \frac{\mathrm{t}}{\mathrm{~T}_{\mathrm{p}}}\right) \cdot \cos \left(2 \cdot \pi \cdot \mathrm{n} \cdot \frac{\mathrm{t}}{\mathrm{~T}_{\mathrm{p}}}\right) \mathrm{dt}
$$

$$
\begin{aligned}
& \mathrm{a}_{\mathrm{n}}= \\
& \begin{array}{|r|}
\hline-77.096 \\
\hline-15.419 \\
\hline-6.608 \\
\hline-3.671 \\
\hline-2.336 \\
\hline-1.617 \\
\hline-1.186 \\
\hline-0.907 \\
\hline-0.716 \\
\hline-0.58 \\
\hline
\end{array} \\
& \mathrm{a}_{0}:=\mathrm{a}_{\mathrm{o}} \quad \mathrm{a}_{0}=115.644 \mathrm{lb} \\
& \text { theoretically } \\
& \text { all "b" = zero, }
\end{aligned}
$$

