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1 problem 1

1.1 Part(a)
Vibration isolation was based on reducing absolute acceleration of passenger under tur-
bulent external forces. This was done by isolating the passenger from the base motion
subjected to external absolute acceleration. Hence the model is based on the following
diagram
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Hence EQM of motion is

𝑚𝑦′′ + 𝑐�𝑦′ − 𝑧′� + 𝑘�𝑦 − 𝑧� = 0
𝑚𝑦′′ + 𝑐𝑦′ + 𝑘𝑦 = 𝑐𝑧′ + 𝑘𝑧 (1)

We are given the time history of the turbulent acceleration. Hence in frequency domain
we can write

𝑧′′ = Re�𝑍𝑎𝑐𝑐
𝑛 𝑒𝑖(𝜔1𝑛)𝑡�

Where 𝑍𝑎𝑐𝑐
𝑛 is the complex amplitude of the 𝑛𝑡ℎ harmonic component in the acceleration

data. Let 𝜔1𝑛 ≡ 𝜛𝑛 then using the above, In frequency domain Eq 1 becomes

Re��−𝑚𝜛2
𝑛 + 𝑖𝜛𝑛𝑐 + 𝑘�𝑌𝑛𝑒𝑖𝜛𝑛𝑡� = Re��𝑐

𝑍𝑎𝑐𝑐
𝑛
𝑖𝜛𝑛

+ 𝑘
𝑍𝑎𝑐𝑐
𝑛

−𝜛2
𝑛
�𝑒𝑖𝜛𝑛𝑡�

𝑌𝑛 =

⎛
⎜⎜⎜⎜⎜⎜⎝

𝑐
𝑖𝜛𝑛

− 𝑘
𝜛2𝑛

−𝑚𝜛2
𝑛 + 𝑖𝜛𝑛𝑐 + 𝑘

⎞
⎟⎟⎟⎟⎟⎟⎠𝑍

𝑎𝑐𝑐
𝑛

The above gives the transfer function between the displacement of the passenger and the
external acceleration. In otherwords

𝑦(𝑡) = Re

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜⎝

𝑐
𝑖𝜛𝑛

− 𝑘
𝜛2𝑛

−𝑚𝜛2
𝑛 + 𝑖𝜛𝑛𝑐 + 𝑘

⎞
⎟⎟⎟⎟⎟⎟⎠𝑍

𝑎𝑐𝑐
𝑛 𝑒𝑖(𝜔1𝑛)𝑡

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

Let

𝑌𝑛 =

⎛
⎜⎜⎜⎜⎜⎜⎝

𝑐
𝑖𝜛𝑛

− 𝑘
𝜛2𝑛

−𝑚𝜛2
𝑛 + 𝑖𝜛𝑛𝑐 + 𝑘

⎞
⎟⎟⎟⎟⎟⎟⎠𝑍

𝑎𝑐𝑐
𝑛

then the transfer function is

𝐻(𝜛𝑛) =
𝑌𝑛
𝑍𝑎𝑐𝑐
𝑛

=
−𝑖𝑐
𝜛𝑛
− 𝑘

𝜛2𝑛

−𝑚𝜛2
𝑛 + 𝑖𝜛𝑛𝑐 + 𝑘

= −
1
𝜛2
𝑛

(𝑘 + 𝑖𝑐𝜛𝑛)
�𝑘 − 𝑚𝜛2

𝑛� + 𝑖𝜛𝑛𝑐

Hence phase is

arg(𝐻(𝜛𝑛)) = tan−1�
𝑐𝜛𝑛
𝑘
� − tan−1�

𝜛𝑛𝑐
𝑘 − 𝑚𝜛2

𝑛
�

and magnitude is

|𝐻(𝜛𝑛)| = �
𝑌𝑛
𝑍𝑎𝑐𝑐
𝑛
� =

1
𝜛𝑛

�𝑘2 + 𝑐2𝜛2
𝑛

��𝑘 − 𝑚𝜛
2
𝑛�

2
+ (𝜛𝑛𝑐)

2
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These can be written in terms of 𝜁 and 𝜔𝑛𝑎𝑡 as follows. From 𝐻(𝜛𝑛) = − 1
𝜛2𝑛

(𝑘+𝑖𝑐𝜛𝑛)
�𝑘−𝑚𝜛2𝑛�+𝑖𝜛𝑛𝑐

,

dividing numerator and denominator by 𝑘 = 𝑚𝜔2
𝑛𝑎𝑡 and using 𝑐 = 2𝜁𝑚𝜔𝑛𝑎𝑡 then

𝐻(𝜛𝑛) = −
1
𝜛2
𝑛

�1 + 𝑖2𝜁𝑚𝜔𝑛𝑎𝑡𝜛𝑛
𝑚𝜔2

𝑛𝑎𝑡
�

�1 − 𝑚𝜛2𝑛

𝑚𝜔2
𝑛𝑎𝑡
� + 𝑖𝜛𝑛2𝜁𝑚𝜔𝑛𝑎𝑡

𝑚𝜔2
𝑛𝑎𝑡

= −
1
𝜛2
𝑛

�1 + 𝑖2𝜁𝜛𝑛
𝜔𝑛𝑎𝑡

�

�1 − 𝜛2𝑛

𝜔2
𝑛𝑎𝑡
� + 𝑖𝜛𝑛2𝜁

𝜔𝑛𝑎𝑡

Let 𝑟𝑛 =
𝜛𝑛
𝜔𝑛𝑎𝑡

then the above becomes

𝐻(𝜛𝑛) = −
1
𝜛2
𝑛

(1 + 𝑖2𝜁𝑟𝑛)
�1 − 𝑟2𝑛� + 𝑖2𝑟𝑛𝜁

Hence

|𝐻(𝜛𝑛)| =
1
𝜛𝑛

�1 + (2𝜁𝑟𝑛)
2

��1 − 𝑟
2
𝑛�

2
+ (2𝑟𝑛𝜁)

2

arg(𝐻(𝜛𝑛)) = tan−1(2𝜁𝑟𝑛) − tan−1
2𝑟𝑛𝜁
1 − 𝑟2𝑛

The following is a plot showing the passenger absolute acceleration 𝑦′′(𝑡) over the period
of 80 seconds against the turbulent acceleration 𝑧′′(𝑡). We now see that passenger absolute
acceleration is close to the nominal acceleration. This was done using the following values
for the vibration isolation

𝑀 100000 kg

𝜁 0.72

𝑘 38924 N/m

𝑐 57746 Ns/m

The plot on the right side is the absolute acceleration of the passenger during flight in
the turbulent case.
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1.2 Part(b)
The length of first class cabinet was estimated to be 𝐿 = 15meters from looking at Boeing
web page.

Using Steel, Structural ASTM-A36 𝐼 beam as a cantilever beam for the implementation,
then using 𝑘 = 3𝐸𝐼

𝐿3 results in

38924 =
3�200 × 109�𝐼

153
𝐼 = 2.1895 × 10−4 m4

Using rectangle cross section 𝐼 = 𝑏ℎ3

12 . Letting ℎ = 20 cm, then 𝑏 =
�2.1895×10−4�12

0.23 = 0.32843
meter or 32 cm.
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2 Problem 2

2.1 part(a)

𝑄 = 2000𝑡
(𝑇 − 𝑡)
𝑇2 [ℎ(𝑡) − ℎ(𝑡 − 𝑇)]

𝑚 = 0.5 kg
𝜔𝑛 = 2𝜋𝑓𝑛
𝑓𝑛 = 100 Hz

Hence pulse duration is 1
𝑓 = 0.01 sec.

𝑚𝑦′′ + 𝑐𝑦′ + 𝑘𝑦 = 𝑄(𝑡)
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In the frequency domain assuming that the force 𝑄(𝑡) can be represented in its Fourier
series as

𝑄(𝑡) = Re��
𝑛
𝑄𝑛𝑒𝑖𝜔1𝑛𝑡�

where 𝜔1 is the fundamental frequency for 𝑄(𝑡) which depends on the period we choose
to select to sample over. In this example, I selected 3𝑇 as the overall period to sample over
so that it covers the pulse duration and an additional time to show the free vibration part
as well and to compare to the analytical solution. Hence the EQM becomes

𝑌𝑛 =
𝑄𝑛

−𝑚(𝑛𝜔1)
2 + 𝑖𝑐(𝑛𝜔1) + 𝑘

𝑘 = 𝜔2
𝑛𝑚 hence dividing the numerator and denominator by 𝑘we obtain

𝑌𝑛 =
𝑄𝑛
𝐾

�1 − 𝑚(𝑛𝜔1)
2

𝜔2𝑛𝑚
� + 𝑖𝑐(𝑛𝜔1)

𝜔2𝑛𝑚

=
1
𝑘

1
�1 − 𝑟2𝑛� + 𝑖2𝜁𝑟𝑛

𝑄𝑛

where 𝑟𝑛 =
𝑛𝜔1
𝜔𝑛

.Hence response is

𝑦(𝑡) = Re��
𝑛
𝑌𝑛𝑒𝑖𝜔1𝑛𝑡�

= Re
⎛
⎜⎜⎜⎜⎝�

𝑛

1
𝑘

1
�1 − 𝑟2𝑛� + 𝑖2𝜁𝑟𝑛

𝑄𝑛𝑒𝑖𝜔1𝑛𝑡

⎞
⎟⎟⎟⎟⎠

𝑦(𝑡) is found by taking the IFFT of∑𝑛
1
𝑘

1
�1−𝑟2𝑛�+𝑖2𝜁𝑟𝑛

𝑄𝑛.

𝑄𝑛 values are found by taking the FFT of 𝑄(𝑡). We start by sampling 𝑄(𝑡). To obtain the
solution for say 𝑡 = 0⋯3𝑇, thenwe have to assume that the period of the signal is actually
3𝑇 and sample over this whole time from 0⋯3𝑇 − 𝑑𝑒𝑙𝑡. Then we use FFT on the result.
Then find the response by doing IFFT. Using 𝑁 = 128 over 𝑡 = 0⋯0.03 seconds, the
following solution was obtained
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%by Nasser M. Abbasi, HW 7, EMA 545
close all;
T = 0.01; %sec
duration = 3*T; %duration to find solution over
N = 128;
delT = duration/(N-1);
w1 = 2*pi/duration; %fundamental freq rad/sec
t = linspace(0,(duration-delT),N);
Qt = @(t) (2000*t.*(T-t))/T^2.*(t<=T)+0*(t>T)

subplot(2,1,1)
plot(t,Qt(t),'r-o');
hold on;
plot(0:delT:duration,Qt(0:delT:duration),'r');

title(sprintf('force Q(t) and its reponse. 16 samples, delT=%f',delT));
xlabel('time sec');
grid;

m = 0.5; %mass kg
wn = 2*pi*100; %natural freq
k = wn^2*m; %stiffness N/meter
[Q,ws] = fft_easy(Qt(t),delT);

zeta = 0.002;
I = sqrt(-1);
y = ifft_easy( (Q/k)./( (1-(ws/wn).^2) + 2*I*zeta*ws/wn),ws);

subplot(2,1,2);
plot(t,y,'r');
title(sprintf('reponse at zeta=%f',zeta));
xlabel('time sec');
grid;

2.2 Part(b)
For 𝜁 = 0.002 the above Matlab script was modified and the following solution resulted.
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Now we compare the above with the analytical solution.

2.3 Part(c)
The pulse can be written as

𝐹 = 𝑄(𝑡)[ℎ(𝑡) − ℎ(𝑡 − 𝑇)]
= 𝑄(𝑡)ℎ(𝑡) − 𝑄(𝑡)ℎ(𝑡 − 𝑇)

Let 𝑡′ = 𝑡 − 𝑇, hence 𝑡 = 𝑡′ + 𝑇, therefore the above becomes

𝐹 = 𝑄(𝑡)ℎ(𝑡) − 𝑄(𝑡′ + 𝑇)ℎ(𝑡′)

But 𝑄(𝑡) = 2000𝑡(𝑇−𝑡)
𝑇2 . Let 2000

𝑇2 = 𝛽 since it is a constant. Hence 𝑄(𝑡) = 𝛽𝑡(𝑇 − 𝑡). Now we
write the above 𝐹 as

𝐹 = 𝛽𝑡(𝑇 − 𝑡)ℎ(𝑡) − 𝛽(𝑡′ + 𝑇)(𝑇 − (𝑡′ + 𝑇))ℎ(𝑡′)
= �𝛽𝑇𝑡 − 𝛽𝑡2�ℎ(𝑡) − 𝛽(𝑡′ + 𝑇)(−𝑡′)ℎ(𝑡′)

= �𝛽𝑇𝑡 − 𝛽𝑡2�ℎ(𝑡) + 𝛽�(𝑡′)2 + 𝑇𝑡′�ℎ(𝑡′)

= 𝛽𝑇𝑡ℎ(𝑡) − 𝛽𝑡2ℎ(𝑡) + 𝛽𝑇(𝑡′)2 + 𝛽𝑇𝑡′ℎ(𝑡′) (2)

So we see that the response to 𝐹 will be the response to a unit impulse ℎ(𝑡) with forcing
basis functions that are 1, 𝑡, 𝑡2. Now we can use the solution from back of the book ap-
pendix 𝐵 to sum the responses in order to find the final response and compare to the FFT
method.
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From appendix B, the response to unit ramp 𝑡ℎ(𝑡)is

𝑟(𝑡ℎ(𝑡)) =
1

𝑚𝜔3
𝑛
�𝜔𝑛𝑡 − 2𝜁 + 𝑒−𝜁𝜔𝑛𝑡�2𝜁 cos𝜔𝑑𝑡 − �1 − 2𝜁2�

𝜔𝑛
𝜔𝑑

sin𝜔𝑑𝑡��ℎ(𝑡)

and the response to quadratic 𝑡2ℎ(𝑡) is

𝑠�𝑡2ℎ(𝑡)� =
1

𝑚𝜔4
𝑛
�(𝜔𝑛𝑡)

2 − 4𝜁𝜔𝑛𝑡 − 2�1 − 4𝜁2� + 𝑒−𝜁𝜔𝑛𝑡�2�1 − 4𝜁2� cos𝜔𝑑𝑡 + �6𝜁 − 8𝜁3�
𝜔𝑛
𝜔𝑑

sin𝜔𝑑𝑡��ℎ(𝑡)

Now that we have the basis solutions, we can apply them to EQ 2

𝐹 = 𝛽𝑇(𝑟(𝑡) + 𝑟(𝑡′)) − 𝛽𝑇(𝑠(𝑡) − 𝑠(𝑡′))
= 𝛽(𝑟(𝑡) + 𝑟(𝑡 − 𝑇)) − 𝛽𝑇(𝑠(𝑡) − 𝑠(𝑡 − 𝑇))

= �𝛽𝑇�
1

𝑚𝜔3
𝑛
�𝜔𝑛𝑡 − 2𝜁 + 𝑒−𝜁𝜔𝑛𝑡�2𝜁 cos𝜔𝑑𝑡 − �1 − 2𝜁2�

𝜔𝑛
𝜔𝑑

sin𝜔𝑑𝑡��ℎ(𝑡)

+ �𝛽𝑇�
1

𝑚𝜔3
𝑛
�𝜔𝑛𝑡′ − 2𝜁 + 𝑒−𝜁𝜔𝑛𝑡′�2𝜁 cos𝜔𝑑𝑡′ − �1 − 2𝜁2�

𝜔𝑛
𝜔𝑑

sin𝜔𝑑𝑡′��ℎ(𝑡′)

− �𝛽�
1

𝑚𝜔4
𝑛
�(𝜔𝑛𝑡)

2 − 4𝜁𝜔𝑛𝑡 − 2�1 − 4𝜁2� + 𝑒−𝜁𝜔𝑛𝑡�2�1 − 4𝜁2� cos𝜔𝑑𝑡 + �6𝜁 − 8𝜁3�
𝜔𝑛
𝜔𝑑

sin𝜔𝑑𝑡��ℎ(𝑡)

+ �𝛽�
1

𝑚𝜔4
𝑛
�(𝜔𝑛𝑡′)

2 − 4𝜁𝜔𝑛𝑡′ − 2�1 − 4𝜁2� + 𝑒−𝜁𝜔𝑛𝑡′�2�1 − 4𝜁2� cos𝜔𝑑𝑡′ + �6𝜁 − 8𝜁3�
𝜔𝑛
𝜔𝑑

sin𝜔𝑑𝑡′��ℎ(𝑡′)

In the above, 𝜔𝑑 = 𝜔𝑛√1 − 𝜁2 . To plot this solution, the following small script was used
and was run for both 𝜁 = 0.2 and 𝜁 = 0.002

For 𝜁 = 0.2
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For 𝜁 = 0.002

2.4 Conclusions
The analytical solution, using superposition agreed with the FFT solution for 𝜁 = 0.2.
However, for some reason which I am not able to determine why yet, the FFT solution
when 𝜁 = 0.002 did not agree with the analytical solution. The analytical solution was
verified to be correct using another numerical ODE solver. So the FFT method for some
reason is not giving accurate result for 𝜁 = 0.002. The same Matlab script was used for
both cases. I tried increasing the sampling rate but that did not change the result. Please
see Appendix for verification and the code used to plot the analytical solutions.

3 Problem 3
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3.1 Part(a)
Let 𝑇 be the kinetic energy and 𝑉 be the potential energy. Then equation of motion for a
generalized coordinate 𝑞𝑖 is given by

𝑑
𝑑𝑡�

𝜕𝐿
𝜕𝑞̇𝑖

� −
𝜕𝐿
𝜕𝑞𝑖

= 𝑄𝑖

Where 𝐿 is the Lagrangian 𝐿 = 𝑇 − 𝑉 and 𝑄𝑖 is the generalized force in the 𝑞𝑖 direction.

Assuming 𝑥2 > 𝑥1 and masses are moving to the right. For 𝑥1 we obtain

𝑇 =
1
2
𝑚1𝑥̇21 +

1
2
𝑚1𝑥̇22

𝑉 =
1
2
𝑘1𝑥21 +

1
2
𝑘2(𝑥2 − 𝑥1)

2 +
1
2
𝑘4𝑥21 +

1
2
𝑘3𝑥22

𝑄1 = 𝐹
𝑄2 = 0

Hence

𝐿 = 𝑇 − 𝑉

=
1
2
𝑚1𝑥̇21 +

1
2
𝑚1𝑥̇22 − �

1
2
𝑘1𝑥21 +

1
2
𝑘2(𝑥2 − 𝑥1)

2 +
1
2
𝑘4𝑥21 +

1
2
𝑘3𝑥22�

𝜕𝐿
𝜕𝑥̇1

= 𝑚1𝑥̇1

𝑑
𝑑𝑡�

𝜕𝐿
𝜕𝑥̇1

� = 𝑚1𝑥̈1

𝜕𝐿
𝜕𝑥1

= −𝑘1𝑥1 − 𝑘2(𝑥2 − 𝑥1)(−1) − 𝑘4𝑥1

and

𝜕𝐿
𝜕𝑥̇2

= 𝑚1𝑥̇2

𝑑
𝑑𝑡�

𝜕𝐿
𝜕𝑥̇2

� = 𝑚1𝑥̈2

𝜕𝐿
𝜕𝑥2

= −𝑘2(𝑥2 − 𝑥1)(1) − 𝑘3𝑥2
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Hence the 2 EOM are for 𝑥1

𝑑
𝑑𝑡�

𝜕𝐿
𝜕𝑥̇1

� −
𝜕𝐿
𝜕𝑥1

= 𝐹

𝑚1𝑥̈1 − (−𝑘1𝑥1 + 𝑘2(𝑥2 − 𝑥1) − 𝑘4𝑥1) = 𝐹
𝑚1𝑥̈1 + 𝑘1𝑥1 − 𝑘2(𝑥2 − 𝑥1) + 𝑘4𝑥1 = 𝐹

Therefore EOM 1
𝑚1𝑥̈1 + (𝑘1 + 𝑘2 + 𝑘4)𝑥1 − 𝑘2𝑥2 = 𝐹

and for 𝑥2

𝑑
𝑑𝑡�

𝜕𝐿
𝜕𝑥̇2

� −
𝜕𝐿
𝜕𝑥2

= 0

𝑚1𝑥̈2 − (−𝑘2(𝑥2 − 𝑥1) − 𝑘3𝑥2) = 0
𝑚1𝑥̈2 + 𝑘2(𝑥2 − 𝑥1) + 𝑘3𝑥2 = 0

Hence EOM 2
𝑚1𝑥̈2 + (𝑘2 + 𝑘3)𝑥2 − 𝑘2𝑥1 = 0

Hence in Matrix form EOM are

𝑀𝑋′′ + 𝐾𝑋 = 𝑄
⎛
⎜⎜⎜⎜⎜⎝
𝑚1 0

0 𝑚2

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝
𝑥′′1
𝑥′′2

⎞
⎟⎟⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎜⎝
(𝑘1 + 𝑘2 + 𝑘4) −𝑘2

−𝑘2 (𝑘2 + 𝑘3)

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝
𝑥1
𝑥2

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝
𝐹
0

⎞
⎟⎟⎟⎟⎟⎠

3.2 Part(b)
If𝑚2 do not exist, then this means the springs 𝑘2 and 𝑘3 do not have a mass between them
and so these need to be replaced by single spring, say 𝑘5 found by finding equivalent
spring in series
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F
m1

k3k2k2k3k4k1k2k3

k2k3

Equivalent stiffness

F

m1

k 2
k 3

k 4

k 1

F

m1

k 4

k 1In series k 5

F

m1

k 1

In parallel

k 6

In series

1
𝑘5
=
1
𝑘2
+
1
𝑘3

𝑘5 =
𝑘3 + 𝑘2
𝑘2𝑘3

From above, EQM for 𝑚1 becomes

𝑚1𝑥̈1 +

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
𝑘1 +

𝑘5
�����������
�
𝑘3 + 𝑘2
𝑘2𝑘3

� + 𝑘4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
𝑥1 = 𝐹

So now 𝑘4 and 𝑘4 are in parallel, hence we replace 𝑘5 + 𝑘4 by 𝑘6 found from

𝑘6 = 𝑘5 + 𝑘4

= �
𝑘3 + 𝑘2
𝑘2𝑘3

� + 𝑘4

𝑘6 =
𝑘3 + 𝑘2 + 𝑘2𝑘3𝑘4

𝑘2𝑘3
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Hence EQM for 𝑚1 now becomes

𝑚1𝑥̈1 +

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
𝑘1 +

𝑘6
���������������������𝑘3 + 𝑘2 + 𝑘2𝑘3𝑘4

𝑘2𝑘3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
𝑥1 = 𝐹

and finally

𝑚1𝑥̈1 +
𝑘3 + 𝑘2 + 𝑘2𝑘3𝑘4 + 𝑘1𝑘2𝑘3

𝑘2𝑘3
𝑥1 = 𝐹
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