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1 problem1

Problem 1: (20 pts) Use FFT techniques to find the response of your vibration isolation
system to the turbulent flight profile in “FlightAccel.mat” on the course website. (To do
this. vou will have to assume that the aircraft experiences this exact same flight profile
over and over again.)
a.) Provide at least one plot comparing the response of the aircraft to the (hopefully
improved) response on the vibration isolator.
b.) Report on the values of mass, stiffness and damping that you used and how they
would be realized in practice (e.g. if you use a beam as a leaf spring. what would
its dimensions be?).

1.1 Part(a)

Vibration isolation was based on reducing absolute acceleration of passenger under tur-
bulent external forces. This was done by isolating the passenger from the base motion
subjected to external absolute acceleration. Hence the model is based on the following
diagram

j




Hence EQM of motion is

my"’ + c(y’ - z’) + k(y - z) =0
my” +cy’ +ky=cz' +kz (1)
We are given the time history of the turbulent acceleration. Hence in frequency domain

we can write
7 acc ,i(wn)t
2" = Re|zZgecel@mt)

Where Z%“ is the complex amplitude of the n'" harmonic component in the acceleration
data. Let wn = @, then using the above, In frequency domain Eq[I|becomes
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The above gives the transfer function between the displacement of the passenger and the
external acceleration. In otherwords

c _k
y(t) = Re 0, _af Zaccpi(wimt
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Let
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0, o
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then the transfer function is

—ic k
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Hence phase is

arg(H(®@,)) = tan‘l(cm_”) _ tan_l( k& )

and magnitude is
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: . 1 (k+ico,
These can be written in terms of C and w,,;; as follows. From H(®,,) = ——2%,
@7 (k—m@n)+lcbnc

dividing numerator and denominator by k = mw?,, and using ¢ = 2{maw,,; then
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Letr, = :}D” then the above becomes
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The following is a plot showing the passenger absolute acceleration y”’(t) over the period
of 80 seconds against the turbulent acceleration z”’(t). We now see that passenger absolute
acceleration is close to the nominal acceleration. This was done using the following values
for the vibration isolation

M | 100000 kg

C 1072

k | 38924 N/m
¢ | 57746 Ns/m

The plot on the right side is the absolute acceleration of the passenger during flight in
the turbulent case.
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1.2 Part(b)

The length of first class cabinet was estimated to be L = 15 meters from looking at Boeing
web page.

Using Steel, Structural ASTM-A36 [ beam as a cantilever beam for the implementation,

. 3EI ,
then using k = 75 results in

B 3(200 X 109)1
38924 = ————

[=21895%107* m*

(2.1895><10—4)12

——— = 032843

3
Using rectangle cross section I = % Letting h = 20 cm, then b =
meter or 32 cm.



2 Problem 2

360 A one-degree-of-freedom system is subjected
to a pulse excitation in the form of a parabola,

0= 200021ty bt~ )] N

The system mass is 0.5 kg, and the natural fre-
quency is 100 Hz. The pulse duration T equals the
undamped period of free vibration period. The
system is at rest in the equilibrium position at
t=0.

(a) Use FFT techniques to evaluate the response
when { = 0.20.

(b) Use FFT techniques to evaluate the response
when ¢ = 0.002.

(¢) Use superposition and Appendix B to derive
the analytical solution for this pulse. Compare the
analytical and FFT results for {=0.2 and

{ =0.002.
2.1 part(a)
(T-1)
Q = 2000t——[I(t) ~ (¢ ~ T)]
m = 0.5 kg
w, =2nf,
f, =100 Hz

Hence pulse duration is % = 0.01 sec.

my” +cy’ +ky = Q(f)




In the frequency domain assuming that the force Q(t) can be represented in its Fourier
series as

Q) = Re(z Qnei“””t)

where w; is the fundamental frequency for Q(t) which depends on the period we choose
to select to sample over. In this example, I selected 3T as the overall period to sample over
so that it covers the pulse duration and an additional time to show the free vibration part
as well and to compare to the analytical solution. Hence the EQM becomes

Qu

Y, = T
—m(nwq)” + ic(hwq) + k

k = w?m hence dividing the numerator and denominator by k we obtain

Qu
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" ( m(nw1)2) ic(nawy)
1- 2 +—
wpm wf{m

1 1
k(1-172) +i2er,

nwq

where r, = — Hence response is

Whp
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y(t) is found by taking the IFFT of }; Q,-

Q,, values are found by taking the FFT of Q(t). We start by sampling Q(t). To obtain the
solution for say t = 0 --- 3T, then we have to assume that the period of the signal is actually
3T and sample over this whole time from 0 --- 3T — delt. Then we use FFT on the result.
Then find the response by doing IFFT. Using N = 128 over t = 0---0.03 seconds, the
following solution was obtained



force Q) and its reponse. 16 samples, delT=0.000236
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%by Nasser M. Abbasi, HW 7, EMA 545

close all;

T = 0.01; %sec

duration = 3%T; Yduration to find solution over
N = 128;

delT = duration/(N-1);

wl = 2%pi/duration; %fundamental freq rad/sec
t = linspace(0, (duration-delT),N);
Qt = @(t) (2000%t.*(T-t))/T"2.*(t<=T)+0*(t>T)

subplot(2,1,1)

plot(t,Qt(t),'r-0');

hold on;
plot(0:delT:duration,Qt(0:delT:duration),'r');

title(sprintf('force Q(t) and its reponse. 16 samples, delT=Yf',delT));
xlabel('time sec');

grid;

m = 0.5; Ymass kg

wn = 2xpi*100; %natural freq

k = wn"2*m; Y%stiffness N/meter

[Q,ws] = fft_easy(Qt(t),delT);

zeta = 0.002;

I = sqrt(-1);

y = ifft_easy( (Q/k)./( (1-(ws/wn)."2) + 2*I*xzeta*ws/wn),ws);

subplot(2,1,2);

plot(t,y,'r');

title(sprintf ('reponse at zeta=)f',zeta));
xlabel('time sec');

grid;

2.2 Part(b)
For C = 0.002 the above Matlab script was modified and the following solution resulted.
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force Qit) and its reponse. 16 samples, delT=0.000236
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Now we compare the above with the analytical solution.

2.3 Part(c)
The pulse can be written as
F = Q®)[h(t) - h(t - T)]
= Q(B)h(t) = QB)h(t - T)
Lett’ =t—-T,hencet =t + T, therefore the above becomes
F = Q(®)h(t) - Q" + Dh(t')
2000¢(

But Q(t) = 225 Let
write the above F as

2000
T2

= [ since it is a constant. Hence Q(t) = t(T —t). Now we

F = BHT - t)h(t) - B(t' + TI(T = (' + T))h(t’)
= (BTt - BE2)1(t) - B’ + T)(—t)(t')
= (BTt = p2)n(t) + B((#")* + T¥ )h(t')
= BTth(t) — Bt2h(t) + BT(¥')* + BTHh(t') (2)
So we see that the response to F will be the response to a unit impulse h(t) with forcing
basis functions that are 1, , 2. Now we can use the solution from back of the book ap-

pendix B to sum the responses in order to find the final response and compare to the FFT
method.
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From appendix B, the response to unit ramp th(t)is

r(th(t)) = miﬁ (a)nt 20+ e—Cwnf[zc cos wat — (1 - 2c2)Z—Z sin wdt])h(t)

and the response to quadratic #2h(t) is

s(tzh(t)) = 104 ((a)nif)2 —4Cw,t - 2(1 - 4C2) + e‘cw”tl2(1 - 4C2) cos wyt + (6C - 8C3)% sin a)dtl)h(t)

n d

Now that we have the basis solutions, we can apply them to EQ

F = BT(r(t) + r(t')) — BT(s(t) — s(t'))
= B(r(t) + r(f —T)) - BT(s(t) - s(t - T))

ﬁT s|wt—2C+e ~Cont 27 cos wyt — (1 - 2C2 — sinwyt | |h(t)
Wy

+ ) (a)nt' — 20 + e~C@nt’ [2C cos wyt’ — (1 - 2@2)—” sin w,t’
w4

)h(t’)

(8
(ﬁ) ((a)nt) —4Cw,t - 2(1 - 4C2) + e_Cw"t[2<1 - 4C2) cos wyt + <6C - 8C3)Z—Z sin wdt])h(t)

+ (,8) ((a)nt’) —4Cw,t" - (1 - 4C2) + e Cont’ lZ(l - 4C2) cos wyt’ + (6C - 8C3)% sinw,t’ ])h(t’)
d

In the above, w; = w, V1 — C?. To plot this solution, the following small script was used
and was run for both { = 0.2 and ¢ = 0.002

For C =0.2
solution veing Svparposition Impulzs rezponzs B J=02
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For C = 0.002

solution veing Suparposition Impulss esponza e J=0.002

0.004 .«"/ ._\'\

0.003

T
e
-l
-
-
=

0.001 ! ||I ' i ' i

TeEpOMEG

0.000 ~ RL '. .|. ]
00D [ 0 1
—-0.001 |- 1 i i

—0.002 |- x ™

1 1 1 1 1
0.000 0.003 0010 0.015 0.020 0.025 0.030

2.4 Conclusions

The analytical solution, using superposition agreed with the FFT solution for { = 0.2.
However, for some reason which I am not able to determine why yet, the FFT solution
when C = 0.002 did not agree with the analytical solution. The analytical solution was
verified to be correct using another numerical ODE solver. So the FFT method for some
reason is not giving accurate result for = 0.002. The same Matlab script was used for
both cases. I tried increasing the sampling rate but that did not change the result. Please
see Appendix for verification and the code used to plot the analytical solutions.

3 Problem 3

Problem 3: Exercise 1.11 from Ginsberg. (For the proof described in (b), set m,=0 and
see what your equation of motion reduces to.)

1.11 When the system in the sketch is at its static EXEIID]J]B, series or para]lei—accordmg to the
e.qullibnum position, there is no axial force in each equivalent spring stiffness.

spring.

(a) Derive equations of motion for the horizontal X

displacements x; and x, measured from the equi- g F b

librium position.

(b) Prove that if m, = 0, the equation of motion 4
for x, is the same as that obtained by replacing the &
four spmsgs by a single equwalcnt spring. Identify
the way in which the springs are connected—for E}(ERCISE 1.11
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3.1 Part(a)

Let T be the kinetic energy and V be the potential energy. Then equation of motion for a
generalized coordinate g; is given by

d(dJL\ JL _ 0
dt Bql &‘71 B

Where L is the Lagrangian L = T — V and Q; is the generalized force in the g; direction.
Assuming x, > x; and masses are moving to the right. For x; we obtain

1 22 1 02
T = Emlxl + Emlxz

1 1 1 1
V= Eklx% + Ekz(Xz - x1)2 + §k4x% + §k3x%

Q1=F
Q=0
Hence
L=T-V
1T, 1 1 1 > 1 1
= Emlx% + Emlxg - (Eklx% + EkZ(xz —x)" + Ek4x% + Ekg,x%)
JdL .
5_561 = mixq
d(JL\ |
M
dL
E = —k1x1 — ko — x1)(-1) — kgxy
X1
and
JdL )
9_562 = Mmyixp
d(JL)
t\ox,) ~ "2
JdL

o, = —ky(xy — x1)(A) = k3x,
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Hence the 2 EOM are for x;
d(JL JL B
dt &Xl 8x1 -
myXy — (=kyxq + kp(xp —x1) —kax1) = F
mljél + k1x1 — kz(XZ — xl) + k4x1 =F

Therefore EOM 1
mljél + (kl + k2 + k4)X1 - kzXz =F
and for x,
d{(JL JL _0
dt 8x2 sz B
my¥y — (=ka(xy — x1) — kzxp) = 0
myX, + kz(.X'z - xl) + k3X2 =0
Hence EOM 2

ml.’)&z + (kz + k3)X2 - kle =0
Hence in Matrix form EOM are

MX" + KX = Q
my 0 )%/ (ky +ky +kg)  —ky )1 r
+ =
0 My xé’ —kz (k2 + k3) Xo 0
3.2 Part(b)

If m, do not exist, then this means the springs k, and k; do not have a mass between them
and so these need to be replaced by single spring, say ks found by finding equivalent
Spring in series




Kq
F
7 ﬁ> "
my N
my
k]_ k2 k3
In series ki
F Ke
mi A
kl‘\\\\\\\
In series
k3+k2+k2k3k4+k1k2k3
F ka2ks
—> —— ™ A
Equivalent stiffness
1_1.1
ks ky ks
fe = ks + ky
T koks
From above, EQM for 1, becomes
ks
—_—
ks +k
m1§€1+ k1+(3 2)+k4X1:F
koks

Ka

Ks

In parallel

So now k4 and k, are in parallel, hence we replace ks + k4 by k¢ found from

k6:k5+k4
kst
() o
k3+k2+k2k3k4
k6:

kaoks

15



Hence EQM for m; now becomes
ke
k3 + kz + k2k3k4
kaks

m15€1 + kl +

and finally
k3 + kz + k2k3k4 + k1k2k3

miXi +
1X1 koks

1:

x1=F

16
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