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1 problem1

Problem 1: (40 points)

a.) Find the nonlinear equation of motion for the system pictured below. The block
has mass m and the guide can be approximated as frictionless. In the position
shown the spring is unstretched and the angle between the spring and guide bar is
Bo.

b.) Linearize your equation of motion for small deflections from the position shown
(i.e. using a Taylor series expansion on k(x) about x=0). Use a computer to plot
kix) versus the linear approximation for L=1 m. F=1000 N/m and 8¢ = 45 degrees
for x ranging from -1 m to +1 m.

¢.) Find the equations of motion for the system using the stiff spring approximation
and assuming small displacements from an equilibrium position defined by L=1
m. k=1000 N/m and 8y = 45 degrees. Compare your result with your linearized
result from part (b).

d.) Using m=1, find the response of the nonlinear system (in part a) using ode45 and
plot the displacement of the mass over a few cycles when it is released from rest
at x(0)=0.1 and also at x(0)=0.5 meters. Overlay both curves on the same set of
axes. How does the period of the response compare with the linearized natural
frequency in each case? In what other way(s) does the nonlinearity manifest itself
in the response of the system when x(0)=0.5?

1.1 part(a)

Let initial length of the spring (un stretched length) be Ly and when the mass m has
moved to the right by an amount x then let the current length be L,,,.

Therefore the stretch in the spring is

A =Ly, - LO

Let the height of the bar by H, where tan 0, = % or H=Ltan 6,



Hence from the above diagram we see that Ly = VH2 + L2 and L, = \/H>+ (L + x)%,

therefore
A=+H2+(L+x)? - VH2 + L2
2
A2 = (\/HZ +(L+x)7° - VH2 + L2)

Now we can derive the equation of motion using energy methods.

Let T be the current kinetic energy in the system, and let V be the current potential energy.
This system is one degree of freedom, since we only need one generalized coordinate to
determine the position of the mass m. This coordinate is x.

1

T = —mi?
zmx
1

V= kA
2

2
= %k(\/Hz +(L+x)* - VH2 + LZ)

Hence the Lagrangian @ is
O=T-V=T-V

2
1 1
= mi - Ek(\/HZ +(L+x)* - VH2 + L2)

Now the equation of motion for coordinate x is (using the standard Lagrangian form)
d (&CD) P

FTLETY R



But Q,, then generalized force, is zero since there is no external force and no damping.
Now we just need to evaluate each part of the above expression to obtain the EOM.
D
ok

d(d®) _
at\ox | -

mx

and
oo (1, 1( [ : )
P _&X(me 2k( H? + (L + x) H*+L
1 1
= —k( H2 + (L +x)° —\/H2+L2)§(H2 +(L+x)°) 2 2L +2x)
VH2 + (L + %) —VH2 + 2
= —k (L +x)
VH? + (L + x)?
Hence EOM becomes
(00 _d0 _
dt\ dx | dx
JVH2 + (L +x)? - VH2 + 12
mx + k (L+x)=0
H2 + (L + x)°
1.2 part(b)

JH2+(L+x)? -VH2+12
JH2+(L+x)?

x2f//(0)
2!

VH2 + (L +0)* - VH? + 12
(L+0)
JH2? + (L +0)

112 V2112
:k\/ + VH2? + JL

For small x we need to expand f(x) = k[ ](L + x) around x = 0 in Taylor

series and let higher powers of x go to zero.

f(x) = f(0) +xf"(0) + + HOT.

VH? + [2



and now for f’(0)

d
£(0) = = f(mg

JVH2 + (L +x)? - VH2 + 12

d
= k—
dx

(L +x)

VH? + (L + x)* .
x=

dx

= k[ (L + x){ VH? + L2

da )d VE2+(L+x? -VHZ+12 | [JH2+@L+x)? -VH2Z+12 |4
= +x)— +

H2 + (L + x)° H2 + (L + x)*

E(L + X)

x=0

L+x JH2 + (L +x)? - VH2 + 12
+

Now we evaluateitatx =0

£7(0) = k| (L + 0)| VH2 + L2

3
(H? + 12 + 2Lx + 22)? VHZ + (L +x)°

L+0 VH2 + (L +0)* - VH2 + 12
+

(H? + 12 + 20 +0) H? + (L +0)°

N W

Ve —E +[‘/H2+L2—\/H2+L2J
(2 +12)? H2 + 2
1
_kLZ (H2+L2)2
(H2+L2)§

Therefore, EOM of motion becomes (notice we ignored higher order terms, which con-

tains x? in them)

Hence the linearized EOM is

mi + (f(0) + xf’(0)) = 0

.. 1? _
mx + kmx =0




Or in terms of 6 the EOM can be written as

L2
2 =
((Ltan 6)* + 12)
1
— X
1+ tan? 6,

mx + k

mx + k

This is the linearized EOM around x = 0. Using numerical values given in the problem
L=1,m =1,k =1000N/m, 6, = 7, it becomes

1

X+ 1000—71236 =0
1+ (tan Z)
X+500x =0

Therefore the linearized stiffness is 500x | while the nonlinearized stiffness is

. JVH2 + (L+x)* —VH2 + 12 :

H2 + (L + x)°

L+ x)

L=1,0=450

\/(tan 2)2 +(1+ x)2 - \/(tan %)2 +1
\/(tan g)z +(1+ x)2

\/(x +1.0° +1.0 - 1.4142

=1000 (1+x)

= 1000

1+x)

\/(x+1.0)2 +1.0

Here is a plot of linearized vs. non-linearized stiffness for x = -1 ---1



Afh* 2+ (L+x)? - Vh?+ L2
4 h? & (L+x)?
linear[x ] := x 500;

valoes = {L+1, 6 + 45Degree, h » Tan[45 Degree] , k » 1000} ;

In[13}= nonlinear[x ] :=k (L + x)

Plot[{nonlinear([x] /. valuoes, linear[x] /. values}, {x, -1, 1},
PlotStyle »+ { {Dashed, Thick}, Black}, Frame + True, PlotLegend= + {"non-linear", "linear"},
Framelabel » {{k[x], NHone}, {x, "linearized vs. non-linearized"}}, ImageSize » 500,

GridLines » Antomatic, GridLinesStyle + LightGray]

linzarizad ve. non—linzarizad

T T T T
,
i
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P
-
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o
200 - at 4
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Out]igl= =
— linear
D —

—200 o
—400 4

sl L 1 gty

-1.0 -0.5 0.0 0.5 1.0

1.3 part(c)

The spring extension A is first found by assuming there is a point A at x = 0 and point B
where the spring is attached to the ceiling. Hence




A = (14 —ttg)e s
= (i - 0f) - (cos Oyt - sin Opf)

= X cos 6

Therefore
A = xcos 0

Now we repeat the same calculations but using A = x cos 0, for the spring extension.

T = -mi*
M
1

V = —kA?
2
1 2

= —k(x cos 6y)
2
Hence the Lagrangian @ is
O=T-V
1

= mez - Ek(x CcOSs 90)2

Now the equation of motion for coordinate x is (using the standard Lagrangian form)
d(dP\ JD
dt\ dx ) Jx

It is equal to zero above, since there is no generalized force associated with coordinate x.
Now we just need to evaluate each part of the above expression to obtain the EOM.

v
o
d (oD o
at\ox | =™
and
L0 d (1 1
R B 2
P &x(zmx 2k(xc:os@o))

= —k(x cos 6y) cos 6,
= —kx cos? 0,



Hence EOM becomes

a0 0 _
dt\ dx dx

m¥ + kx cos? 0y = 0

L
But cos 6y = Wl hence
.. L?
mx + kx ez = 0

This is the same as the EOM for the linearized case found in part(c)
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1.4 part(d)

Now we need to solve numerically the nonlinear EOM found in part(a) which is

JH2 + (L +%)* —VH2 + 2
(L+x)=0
HZ + (L + x)?

using m =1,k =1000,L = 1,0, = 45°. For IC we use x(0) = 0.1, x(0) = 0 for first case, and
for second case using x(0) = 0.5, x'(0) = 0. This is a plot showing both responses on same
diagram

mx + k

Yh4 2+ (L+x[t]})? - Vh?+ 12 A
afh?+ (L+x[t])?

ic= {{x[0] =0.1, x"[0] =0}, {xX[0] =0.5, x'[0] =0}}:
valones = {L+1, h+ Tan[45Degree] , m + 1, k 1000} ;

eq=mx""[t] +k (L+x[t])

2ol = First@NDSolve[ {Evaluate[eq /. valunes], &}, x[t], {t, 0, 1}] & /@ic;
Plot [Evalunate[x[t] /. sol1], {t, O, 1}, PlotStyle + {{Dashed, Thick}, Black}, Frame -+ True,
PlotLegends —+ {"x[0]=0.1", "x[0]=0.5"},
Framelabel »+ {{x[t], NHone}, {"t =2eec", "numerical found nonlinear solution for 2 initial conditions="}},

ImageSize » 600, GridLines + Antomatic, GridLinesStyle + LightGray]

numarical fund nonlinesr solution fr 1 initial conditions
T T T T

- x[0]=0.1
— x[0]=0.3

The period for the response for case of IC given by x(0) = 0.5 is seen to be about 0.375
seconds and for the case x(0) = 0.1 it is 0.275 sec.

The linearized EOM is ¥ + 500x = 0 and hence w? = 500 or w,, = V500 = 22.361 rad/sec,

hence T = o _2n 0.281 sec |.

w, 22361

We notice this agrees well with the period of the response of the nonlinear equation for
only the case x = 0.1.This is because x = 0.1 is very close to x = 0 the point at which the
linearization happened. Therefore, the linearized EOM gave an answer of 0.281 sec that is
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very close the more exact value of 0.275 seconds. But when the initial conditions changed
to x(0) = 0.5, then T found from linearized EOM does not agree with the exact value of
0.375 seconds.

This is because x = 0.5 is far away from the point x = 0 where the linearized was done.
Hence the linearized EOM can be used for only initial conditions that are close to the
point where the linearization was done.

Additionally, the nonlinearity manifests itself in the response of the system by noticing
that the frequency of the free vibration response has actually changed depending on
initial conditions. In a linear system, only the phase and amplitude of the free vibration
response will change as initial conditions is changed, while the natural frequency of
vibrations does not change.

2 problem 2

Problem 2: Exercise 1.27 from Ginsberg.

A standard model for a wing has a translational spring k, and a torsional spring kr
representing the elastic rigidity. Point E represents the elastic center because static
application of a vertical force at that point results in upward displacement without an
associated rotation. The design of the wing is such that horizontal movement of point E
is negligible. The lift force L acts at point P, which is called the center of pressure. The
lift force may be treated as known. When the wing is in its static equilibrium position,
points G. E and P form a horizontal line. Point G is the center of mass. and the radius of
gyration of the wing about that point is 7. Denote the mass of the wing m. Derive the
equations of motion for the wing. assuming small displacements (and small rotational
displacements). Put the equations in matrix form and check the units and sign of each

term in your EOM. (Hint: use the displacement of the center of gravity and the rotation
of the wing as generalized coordinates.)

F{SI

EXERCISE 1.27
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Use y and 0 as generalized coordinates as shown in this diagram in the positive direction

Using Lagrangian method, we start by finding the kinetic energy of the system, then the
potential energy.

T= %m]'/z + %(mré)@z

For the potential energy, there will be potential energy due to k, spring extension and
due to kr spring angle of rotation in system. From the diagram above, we see that, for
small angle O

1 1
_ 2 2
V= EkyA + EkT@

To find A we use the stiff spring approximation. Let the point the spring is attached at
the top be B, then

A = (iig — itg)egsp
= ((10-9)1-0)- ()
= (10-3)j-()

= (y-10)

Hence
A=y-10

Therefore, the potential energy now can be found to be

V= %ky(y —16) + %kTQZ
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Therefore, the Lagrangian @ is

O=T-V
1 1 | 1
= Emyz + E(mrz )92 — Eky(y — 16)2 — EkT@z

We now find the equations for each coordinate. For y

Iv
dy i
dod
ity Y
0
y ~k,(y - 16)
Hence EOM is
dJdd JD 0
atdy dy Y

We just need to find Q, the generalized force in the y direction. Using virtual work, we
make small virtual displacement 6y in positive y direction while fixing all other gener-
alized coordinates from moving (in this case 6) and then find out the work done by
external forces. In this case, there is only one external force which is L. Hence

OW = Loy

Therefore Q, = L since that is the force that is multiplied by 6y. Hence EOM for y is now
found

my+ky(y—19):L

verification: As L increases, then we see that " gets larger. This makes sense since y is
upwards acceleration, so wing accelerates in the same direction.

Now we find EOM for 6
0D ),
0_)—9. =mrg0
d 0D 5
EO_)—Q = erQ
J
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Therefore the EOM is

dJdd Jo
e = o = Qp

it oo~ 90
mrz0 - k,l(y - 10) + k6 = Qg
mrg0 —kyly + k,20 + k70 = Qq

mr20 —k,ly + (kT + kylz)G = Qy

We just need to find Qy the generalized force in the 0 direction. Using virtual work, we
make small virtual displacement 60 in positive 0 direction (i.e. anticlock wise) while
fixing all other generalized coordinates from moving (in this case y) and then find out
the work done by external forces. In this case, there is only one external force which is L.
When we make 60 rotation in the positive 0 direction, the displacement where the force L
acts is (I + 5)00 for small angle. But this displacement is in the downward direction, hence
it is negative, since we are using y as positive upwards. Hence

SW = —L(I +5)50

Therefore Qg = —L(I + s) since that is the force that is multiplied by 660. Hence EOM for 0
is now found

mrs0 - k,ly + (kg +k,12)0 = -L(l +5)

Verification: As L gets larger, then 0 gets negative (since L has negative sign). This makes
sense, since as L gets larger, the rotation as shown in the positive direction will change
sign and the wing will now swing the opposite direction (i.e. anticlockwise).

Now we can make the matrix of EOM

MX" +kX =Q
m 0 |y . ky =k (y [ L
0 mg)\6) |-k, kr+kP)6) (-LU+5)

Notice that for [k] the matrix is symmetric as expected, and also positive on the diagonal
as expected. The mass matrix [m] is symmetric and positive definite as well.
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3 problem 3

1.16 The bar executes small rotations in the verti- §
cal plane relative to the static equilibrium position
depicted in the sketch. Let the rotation of the bar be
the generalized coordinate. Determine the damping
coefficient C;.

\vﬂ,H

g o
=i

EXERCISE 1.16

Problem 3: Use the power balance method and the stiff spring approximation 1o find the
equation of motion of the system picturad in Problem 1.16.

Let O be the small angle of rotation that the rod rotates by in the anti clockwise direction.
Let the point the spring is fixed be B and the moving point where the spring is attached
to the rod be A.To find spring extension A we use the stiff spring approximation. Let the
angle a = 53.13%, hence

A= (ity —1tp) - eqp
= 59 7-0 -(Cosaf+sinaf)
3

= S0
3 SIm «
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Hence

A= =0si
zosina

Using Lagrangian method, we start by finding the kinetic energy of the system, then the

potential energy. 0 is the only generalized coordinate. Assume bar has mass m and hence
mL?

I:T

1 .
T = =162
2

For the potential energy, there will be potential energy due to k spring extension. From
the diagram above, we see that

V—lkLQ' 2
= k| 30sina

Therefore, the Lagrangian @ is

O=T-V
1. 1. 12
= 5162 - Ekgez sinza

Now we find EOM for 6

20

dod
dt 00
D kL2 sin® a

90 9

16

Therefore the EOM is
dod IO

St o 0

it 90 00
. kL2sin?
19+—S’9m Y0=0,

We now need to find the generalized force due to virtual 60 rotation using the virtual
work method. There are 2 external forces, the damping force which will have negative
sign since it takes energy away from the system, and the external force F which will add
energy hence will have positive sign.

We start by making 60 and then find the work done by these 2 forces.
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Work done by F is FL60 since the displacement is LoO for small angle. Now the work
done by damping is(c%@)%é@ hence total work is

OW = FL6O LQ Lé@
= —|C— —
3 )3
L2 .
= (FL - c;@)é@

Notice that work due to damping was added with negative sign since damping removes
energy from the system.

2,
Hence Qg = (FL - c%@) therefore the EOM is

kL? sin’ 2
16 + ng Yo =FL-c—6
. [?2. kl?sin’a
16+C?6+TQ=PL

12
Hence the damping coefficient is ¢



18

4 problem 4

Problem 4: Exercise 1.33 from Ginsberg: (be very careful to write a correct expression
for the acceleration of the small block.) Check the unit and sign of each term in your
EOM.

1.33 Determine the equations of motion govern-
ing a pair of generalized coordinates that locate
the position of the cart and the sliding block. Fric- st
tion is negligible. EXERCISE 1.33

Let x; and x; be the generalized coordinates as shown in this diagram

N

2

—» X1

Let mass of cart be m; and mass of small sliding block be m, (at the end, they will be
replaced by values given). Let k for spring attached to wall be k; and k for spring for small
block be k,.We start by finding the kinetic energy of the system

1 1,

— .2
T = §m1x1 + Emzv

where v is the velocity of the block. To find this v it is easier to resolve components on the
x and y direction. Therefore we find that

U = X sin 0] + (%, cos O + X7)i
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» X,C0SO + X1

Hence
|?5|2 = (i, sin 0)° + (&, cos O + ;)
= (x% sin? 6) + (x% cos? 0 + &% + 2,7 cos 9)
=X (sin2 0 + cos? 6) + x% + 23,31 cos O

= X5 + x% + 2%y%1 cos O

Therefore
T = 1m i2
= 5m

1
) ) ..
1t Emz(xz +Xx1+ 2X2X1 CcOS 9)

Now we find the potential energy.

1 1
V= Eklx% + Ekzx% — myg(x, sin 6)

There are no external forces, hence generalized forces Q,,, Q,, are zero. The Lagrangian
D is
O=T-V
1 1

1 1
= Emlx% + Emz(x% + X% + 2.5(25(1 CcoSs 6) - Eklx% - Ekzx% + ng(XZ sin 6)

Now we find EOM for x; is

A . : .

—— = M1X1 + MyXq + MyXy COS e

o"xl
d JD i} i} v cos O
—— = M1X1 + MyXq + MrX> COS
dt&xl 141 241 242

= (m1 + 7’7’12)5&1 + myi, cos O
oD
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Therefore the EOM for x; is

dt i,  dxy
(ml + mz)jél + myX, COS 0+ k1x1 =0

Now we replace the actual values for m; = 2m, m, = m, k; = 3k hence

3mxy + mx, cos 0 + 3kx; =0

Now we find EOM for x; is

A . ,
-— = mz(xz + X1 COS 6)
&XZ

d JD T

aa—xl = mz(XZ + X1 COS 6)

= 1y cOS OX1 + myX,

7A0)
&—xz = —k2X2 + myg sin @

Therefore the EOM for x, is

dt c?xz 0-).7(,'2 B
Ny COS Qxl + mzxz + szCZ —myg sinf =0

Now we replace the actual values for my = 2m,m, = m, k, = k hence

m cos 0¥, + mX, + kx, = mygsin 0

Now we can make the matrix of EOM
MX" +kX=Q

3m mcos 0 || X1 N 3k 0} x _ 0
mcos 0 m Xy 0 k)x myg sin 0
3 cosO|[x 3 0|x 0
m +k =
cos@ 1 J|X; 0 1)ixy myg sin 0

Notice that there zeros now off diagonal in the [K] matrix, which means the springs are
not coupled. (which is expected, as motion of one is not affected by the other). But mass

matrix [m] has non-zeros off the diagonal. So the masses are coupled. i.e. EOM is coupled.
This means we can’t solve on EOM on its own and both have to be solved simultaneously.

Hence
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5 problem 5

Problem 5: Exercise 1.30 from Ginsberg: Use the stiff spring approximation and
assume small deflections of both bars. Check the units and sign of each term in your
EOM. Gravity acts downward (same direction as the force, F).

1. SLM 1 L"“ ]
l Gk l j
k| § % &y my
1.30 Both bars in the linkage are horizontal, as L l-l J
shown, when the systemn is in static equilibrium. ] ]
Determine the linearized equations of mation for F 1 Lf2 Li
this systea. EXERCISE 1.30

There are 2 degrees of freedom, 0; and 0, as shown in this diagram, using anticlock wise
rotation as positive

k, ky
|
F/ L2
The Lagrangian ® = T — V where
1 . 1 .
T= Eh@% + E1295
Where I; = "2 and I, = 22 & (L)’ (usi llel axis th Hence I, = "2
ere ;1 = 5 and I, = ETH + my 1 (USIHg parallel axis eorem). ence I, = ETH +
2 7
mzﬁ = 4—8L2m2

Now we find the potential energy, assuming springs remain straight (stiff spring assump-



tion) and assuming small angles

A 2 Ay 2
1 |3L 3L 1 L L L
V= Ekl 161 + I@z + Ekz L61 + 562 + m1g§61 - ngzgz
Hence
O=T-V

1, 1.\ (1, (3L, 3L\ 1 L\ L L
= 511914'51292 - Ekl 191+192 +§k2 L61+§62 +m1g§91—m2g192

Now we find EOM for 6,
9 10
00, 1
490 _ g
dto6, !
j—z = —kl(%ez + %91)(%) - kz(gez + L@l)(L) = mlgg

3L (3L 3L L L
= —Zkl(zez + 161) - kZL(EGZ + L@l) - mlgE

Therefore the EOM for 6, is

d od JO
499 9% _q,
it 96, 96
.. 3L (3L 3L L L
1181 + Ikl(zgz + 161) + kzL(EQZ + L@l) + mlgz =0

The generalized force is zero, since there is no direct external force acting on top rod.

Hence EOM for 6, is from above
mL2 3L\ AN L
; 61 + Hl(kl(Z) + kszJ + 02(k1(Z) + k2? = —mlgE

Now we find EOM for 6,
0D )
—_— = 16
20, 2
T
dt b,
D 3L 3L 3L L L L
0_)—62 = —kl(zez + 161)(1) - kz(z@z + LGl)(E) + ngZ

16,



23

Therefore the EOM for 6, is

dod JoP

diao, 90, - 2
.. 3L 3L 3L L L L
1262 + kl(zez + 281)(1) + kz(z@z + Lel)(z) - ngZ = le

Now Qg,is found by virtual work. Making a virtual displacement 66, while fixing 6; and
finding the work done by all external forces.

L
6W = F- 66,

Hence Qg, = F % with positive sign since it add energy to the system. Hence EOM for 0,

1S
2 2 2
7 . 3L L? 3L L L L
@Lzmzez + Ql(kl(Z) + kz;) + Qz[kl(z) + kz(z) ] = n/lzgZ + FE

Now we can make the matrix of EOM

MX" +kX=Q
2
mqL? .. % 2 % L_Z L
- 0 [QlJ ki7g + el kl( 1 ) ko [61 —migs
+ =
7 o 3 2 ’ 2 2|lg L L
o 3mf) (e nfaf enfyf o lostor
The matrix [k] is coupled but the mass matrix [m] is not.
6 problem 6
200 200
The inertia and stiffness matrices for a system are [M] = kg, [K] = N/m.
0 200 800

determine the corresponding natural frequencies and modes of free vibration.

[1K] - w?[M] [{@} = {0}



Solving for eigenvalues

200 200 4 0
det - w? =0
200 800 0 2
200 — 402 200 |
det
200 800 - 2w?

(200 - 4w2)(800 - 2a)2) ~2002=0
8w* - 3600w? + 120000 = 0

=0

Hence, taking the positive square root only we find

w1 = 20.341 rad/sec
w, = 6.0211 rad/sec

200 —4w? 200 Dy 0
200 800 - 2w? || P2 0

Let @q; be the arbitrary value 1 hence

200 - 4w? 200|| 1 0
X x || P2 X

200 — 4w? +200dD,; =0

o - ~200 + 4w} 200 +4(20.341)* S
2700 T 200 -

When | w = @,

Hence the first mode associated with w = 20.341 rad/sec is

1
7.2751

200 -4ws 200 O 0
200 800 - 2w3 || P2 0

When | w = w,

24



Let @1, be the arbitrary value 1 hence

200 -4ws 200{| 1 | |0
X x || P22 X

200 — 43 + 200dD,, = 0

~200 +4w?  —200 + 4(6.0211)*
D, = - = —0.274
2 200 200 027493

Hence the first mode associated with v = 6.0211 rad/sec is

1
—-0.27493

Summary
w, (rad/sec) | mode shape
1

6.0211

-0.27493

1

20.341

7.2751

Verification using Matlab:

EDU>> M=[4 0;0 2]; K=[200 200;200 800];
EDU>> [phi,omega]=eig(K,M);
EDU>> sqrt(omega)

6.0211 0
0  20.3407
EDU>> phi(:,1)/abs(phi(1,1))

-1.0000
0.2749

EDU>> phi(:,2)/abs(phi(1,2))

1.0000
7.2749
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Which matches the result derived. One mode shape has both displacement in phase, and

the other mode shape shows the displacements to be out of phase.
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