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1 problem 1

1.1 part(a)
Let initial length of the spring (un stretched length) be 𝐿0 and when the mass 𝑚 has
moved to the right by an amount 𝑥 then let the current length be 𝐿𝑐𝑢𝑟.

Therefore the stretch in the spring is

Δ = 𝐿𝑐𝑢𝑟 − 𝐿0

Let the height of the bar by 𝐻,where tan𝜃0 =
𝐻
𝐿 or 𝐻 = 𝐿 tan𝜃0
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L0

H

Hence from the above diagram we see that 𝐿0 = √𝐻2 + 𝐿2 and 𝐿𝑐𝑢𝑟 = �𝐻2 + (𝐿 + 𝑥)2 ,
therefore

Δ = �𝐻2 + (𝐿 + 𝑥)2 − √𝐻2 + 𝐿2

Δ2 = ��𝐻2 + (𝐿 + 𝑥)2 − √𝐻2 + 𝐿2 �
2

Now we can derive the equation of motion using energy methods.

Let 𝑇 be the current kinetic energy in the system, and let𝑉 be the current potential energy.
This system is one degree of freedom, since we only need one generalized coordinate to
determine the position of the mass 𝑚. This coordinate is 𝑥.

𝑇 =
1
2
𝑚𝑥̇2

𝑉 =
1
2
𝑘Δ2

=
1
2
𝑘��𝐻2 + (𝐿 + 𝑥)2 − √𝐻2 + 𝐿2 �

2

Hence the Lagrangian Φ is
Φ = 𝑇 − 𝑉 = 𝑇 − 𝑉

=
1
2
𝑚𝑥̇2 −

1
2
𝑘��𝐻2 + (𝐿 + 𝑥)2 − √𝐻2 + 𝐿2 �

2

Now the equation of motion for coordinate 𝑥 is (using the standard Lagrangian form)
𝑑
𝑑𝑡�

𝜕Φ
𝜕𝑥̇ �

−
𝜕Φ
𝜕𝑥

= 𝑄𝑥
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But 𝑄𝑥, then generalized force, is zero since there is no external force and no damping.
Now we just need to evaluate each part of the above expression to obtain the EOM.

𝜕Φ
𝜕𝑥̇

= 𝑚𝑥̇

𝑑
𝑑𝑡�

𝜕Φ
𝜕𝑥̇ �

= 𝑚𝑥̈

and

𝜕Φ
𝜕𝑥

=
𝜕
𝜕𝑥

⎛
⎜⎜⎜⎜⎝
1
2
𝑚𝑥̇2 −

1
2
𝑘��𝐻2 + (𝐿 + 𝑥)2 − √𝐻2 + 𝐿2 �

2⎞⎟⎟⎟⎟⎠

= −𝑘��𝐻2 + (𝐿 + 𝑥)2 − √𝐻2 + 𝐿2 �
1
2
�𝐻2 + (𝐿 + 𝑥)2�

−1
2 2(𝐿 + 𝑥)

= −𝑘

⎛
⎜⎜⎜⎜⎜⎜⎜⎝
�𝐻2 + (𝐿 + 𝑥)2 − √𝐻2 + 𝐿2

�𝐻2 + (𝐿 + 𝑥)2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
(𝐿 + 𝑥)

Hence EOM becomes
𝑑
𝑑𝑡�

𝜕Φ
𝜕𝑥̇ �

−
𝜕Φ
𝜕𝑥

= 0

𝑚𝑥̈ + 𝑘

⎛
⎜⎜⎜⎜⎜⎜⎜⎝
�𝐻2 + (𝐿 + 𝑥)2 − √𝐻2 + 𝐿2

�𝐻2 + (𝐿 + 𝑥)2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
(𝐿 + 𝑥) = 0

1.2 part(b)

For small 𝑥 we need to expand 𝑓(𝑥) = 𝑘
⎛
⎜⎜⎜⎜⎝
�𝐻2+(𝐿+𝑥)2 −√𝐻2+𝐿2

�𝐻2+(𝐿+𝑥)2

⎞
⎟⎟⎟⎟⎠(𝐿 + 𝑥) around 𝑥 = 0 in Taylor

series and let higher powers of 𝑥 go to zero.

𝑓(𝑥) = 𝑓(0) + 𝑥𝑓′(0) +
𝑥2𝑓′′(0)

2!
+ 𝐻𝑂𝑇.

𝑓(0) = 𝑘

⎛
⎜⎜⎜⎜⎜⎜⎜⎝
�𝐻2 + (𝐿 + 0)2 − √𝐻2 + 𝐿2

�𝐻2 + (𝐿 + 0)2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
(𝐿 + 0)

= 𝑘
⎛
⎜⎜⎜⎜⎝
√𝐻2 + 𝐿2 − √𝐻2 + 𝐿2

√𝐻2 + 𝐿2

⎞
⎟⎟⎟⎟⎠𝐿

= 0
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and now for 𝑓′(0)

𝑓′(0) =
𝑑
𝑑𝑥

𝑓(𝑥)𝑥=0

= 𝑘
𝑑
𝑑𝑥

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎜⎜⎝
�𝐻2 + (𝐿 + 𝑥)2 − √𝐻2 + 𝐿2

�𝐻2 + (𝐿 + 𝑥)2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
(𝐿 + 𝑥)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
𝑥=0

= 𝑘

⎛
⎜⎜⎜⎜⎜⎜⎜⎝
(𝐿 + 𝑥)

𝑑
𝑑𝑥

⎛
⎜⎜⎜⎜⎜⎜⎜⎝
�𝐻2 + (𝐿 + 𝑥)2 − √𝐻2 + 𝐿2

�𝐻2 + (𝐿 + 𝑥)2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
+

⎛
⎜⎜⎜⎜⎜⎜⎜⎝
�𝐻2 + (𝐿 + 𝑥)2 − √𝐻2 + 𝐿2

�𝐻2 + (𝐿 + 𝑥)2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
𝑑
𝑑𝑥

(𝐿 + 𝑥)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
𝑥=0

= 𝑘

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝
(𝐿 + 𝑥)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝
√𝐻2 + 𝐿2

𝐿 + 𝑥

�𝐻2 + 𝐿2 + 2𝐿𝑥 + 𝑥2�
3
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
+

⎛
⎜⎜⎜⎜⎜⎜⎜⎝
�𝐻2 + (𝐿 + 𝑥)2 − √𝐻2 + 𝐿2

�𝐻2 + (𝐿 + 𝑥)2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
𝑥=0

Now we evaluate it at 𝑥 = 0

𝑓′(0) = 𝑘

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝
(𝐿 + 0)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝
√𝐻2 + 𝐿2

𝐿 + 0

�𝐻2 + 𝐿2 + 2𝐿0 + 0�
3
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
+

⎛
⎜⎜⎜⎜⎜⎜⎜⎝
�𝐻2 + (𝐿 + 0)2 − √𝐻2 + 𝐿2

�𝐻2 + (𝐿 + 0)2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 𝑘

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝
𝐿

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝
√𝐻2 + 𝐿2

𝐿

�𝐻2 + 𝐿2�
3
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
+
⎛
⎜⎜⎜⎜⎝
√𝐻2 + 𝐿2 − √𝐻2 + 𝐿2

√𝐻2 + 𝐿2

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 𝑘

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝
𝐿2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

�𝐻2 + 𝐿2�
1
2

�𝐻2 + 𝐿2�
3
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 𝑘
⎛
⎜⎜⎜⎜⎝

𝐿2

�𝐻2 + 𝐿2�

⎞
⎟⎟⎟⎟⎠

Therefore, EOM of motion becomes (notice we ignored higher order terms, which con-
tains 𝑥2 in them)

𝑚𝑥̈ + �𝑓(0) + 𝑥𝑓′(0)� = 0

Hence the linearized EOM is

𝑚𝑥̈ + 𝑘 𝐿2

�𝐻2+𝐿2�
𝑥 = 0
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Or in terms of 𝜃0 the EOM can be written as

𝑚𝑥̈ + 𝑘
𝐿2

�(𝐿 tan𝜃0)
2 + 𝐿2�

𝑥 = 0

𝑚𝑥̈ + 𝑘
1

1 + tan2 𝜃0
𝑥 = 0

This is the linearized EOM around 𝑥 = 0. Using numerical values given in the problem
𝐿 = 1,𝑚 = 1, 𝑘 = 1000𝑁/𝑚, 𝜃0 =

𝜋
4 , it becomes

𝑥̈ + 1000
1

1 + �tan 𝜋
4
�
2𝑥 = 0

𝑥̈ + 500𝑥 = 0

Therefore the linearized stiffness is 500𝑥 while the nonlinearized stiffness is

⎡
⎢⎢⎢⎢⎢⎢⎢⎣
𝑘

⎛
⎜⎜⎜⎜⎜⎜⎜⎝
�𝐻2 + (𝐿 + 𝑥)2 − √𝐻2 + 𝐿2

�𝐻2 + (𝐿 + 𝑥)2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
(𝐿 + 𝑥)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
𝐿=1,𝜃=450

= 1000

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�
�tan 𝜋

4
�
2
+ (1 + 𝑥)2 −

�
�tan 𝜋

4
�
2
+ 1

�
�tan 𝜋

4
�
2
+ (1 + 𝑥)2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(1 + 𝑥)

= 1000

⎛
⎜⎜⎜⎜⎜⎜⎜⎝
�(𝑥 + 1.0)2 + 1.0 − 1.4142

�(𝑥 + 1.0)2 + 1.0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
(1 + 𝑥)

Here is a plot of linearized vs. non-linearized stiffness for 𝑥 = −1⋯1
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1.3 part(c)
The spring extension Δ is first found by assuming there is a point 𝐴 at 𝑥 = 0 and point 𝐵
where the spring is attached to the ceiling. Hence

A

B
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Δ̇ = (𝑢̇𝐴 − 𝑢̇𝐵)𝑒𝐴/𝐵
= �𝑥̇ ̂𝚤 − 0 ̂𝚥� ⋅ �cos𝜃0 ̂𝚤 − sin𝜃0 ̂𝚥�
= 𝑥̇ cos𝜃0

Therefore
Δ = 𝑥 cos𝜃0

Now we repeat the same calculations but using Δ = 𝑥 cos𝜃0 for the spring extension.

𝑇 =
1
2
𝑚𝑥̇2

𝑉 =
1
2
𝑘Δ2

=
1
2
𝑘(𝑥 cos𝜃0)

2

Hence the Lagrangian Φ is

Φ = 𝑇 − 𝑉

=
1
2
𝑚𝑥̇2 −

1
2
𝑘(𝑥 cos𝜃0)

2

Now the equation of motion for coordinate 𝑥 is (using the standard Lagrangian form)

𝑑
𝑑𝑡�

𝜕Φ
𝜕𝑥̇ �

−
𝜕Φ
𝜕𝑥

= 0

It is equal to zero above, since there is no generalized force associated with coordinate 𝑥.
Now we just need to evaluate each part of the above expression to obtain the EOM.

𝜕Φ
𝜕𝑥̇

= 𝑚𝑥̇

𝑑
𝑑𝑡�

𝜕Φ
𝜕𝑥̇ �

= 𝑚𝑥̈

and

𝜕Φ
𝜕𝑥

=
𝜕
𝜕𝑥�

1
2
𝑚𝑥̇2 −

1
2
𝑘(𝑥 cos𝜃0)

2�

= −𝑘(𝑥 cos𝜃0) cos𝜃0

= −𝑘𝑥 cos2 𝜃0



9

Hence EOM becomes

𝑑
𝑑𝑡�

𝜕Φ
𝜕𝑥̇ �

−
𝜕Φ
𝜕𝑥

= 0

𝑚𝑥̈ + 𝑘𝑥 cos2 𝜃0 = 0

But cos𝜃0 =
𝐿

√𝐻2+𝐿2
hence

𝑚𝑥̈ + 𝑘𝑥 𝐿2

𝐻2+𝐿2 = 0

This is the same as the EOM for the linearized case found in part(c)
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1.4 part(d)
Now we need to solve numerically the nonlinear EOM found in part(a) which is

𝑚𝑥̈ + 𝑘

⎛
⎜⎜⎜⎜⎜⎜⎜⎝
�𝐻2 + (𝐿 + 𝑥)2 − √𝐻2 + 𝐿2

�𝐻2 + (𝐿 + 𝑥)2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
(𝐿 + 𝑥) = 0

using 𝑚 = 1, 𝑘 = 1000, 𝐿 = 1, 𝜃0 = 450. For IC we use 𝑥(0) = 0.1, 𝑥′(0) = 0 for first case, and
for second case using 𝑥(0) = 0.5, 𝑥′(0) = 0. This is a plot showing both responses on same
diagram

The period for the response for case of IC given by x(0) = 0.5 is seen to be about 0.375
seconds and for the case 𝑥(0) = 0.1 it is 0.275 sec.

The linearized EOM is 𝑥̈ + 500𝑥 = 0 and hence 𝜔2
𝑛 = 500 or 𝜔𝑛 = √500 = 22.361 rad/sec,

hence 𝑇 = 2𝜋
𝜔𝑛

= 2𝜋
22.361 = 0.281 sec .

We notice this agrees well with the period of the response of the nonlinear equation for
only the case 𝑥 = 0.1.This is because 𝑥 = 0.1 is very close to 𝑥 = 0 the point at which the
linearization happened. Therefore, the linearized EOM gave an answer of 0.281 sec that is
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very close the more exact value of 0.275 seconds. But when the initial conditions changed
to 𝑥(0) = 0.5, then 𝑇 found from linearized EOM does not agree with the exact value of
0.375 seconds.

This is because 𝑥 = 0.5 is far away from the point 𝑥 = 0 where the linearized was done.
Hence the linearized EOM can be used for only initial conditions that are close to the
point where the linearization was done.

Additionally, the nonlinearity manifests itself in the response of the system by noticing
that the frequency of the free vibration response has actually changed depending on
initial conditions. In a linear system, only the phase and amplitude of the free vibration
response will change as initial conditions is changed, while the natural frequency of
vibrations does not change.

2 problem 2
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Use 𝑦 and 𝜃 as generalized coordinates as shown in this diagram in the positive direction


G

Ky

l

l

L

y

u E

u B

Using Lagrangian method, we start by finding the kinetic energy of the system, then the
potential energy.

𝑇 =
1
2
𝑚𝑦̇2 +

1
2
�𝑚𝑟2𝐺�𝜃̇2

For the potential energy, there will be potential energy due to 𝑘𝑦 spring extension and
due to 𝑘𝑇 spring angle of rotation in system. From the diagram above, we see that, for
small angle 𝜃

𝑉 =
1
2
𝑘𝑦Δ2 +

1
2
𝑘𝑇𝜃2

To find Δ we use the stiff spring approximation. Let the point the spring is attached at
the top be 𝐵, then

Δ̇ = (𝑢̇𝐸 − 𝑢̇𝐵)𝑒𝐸/𝐵
= ��𝑙𝜃̇ − 𝑦̇� ̂𝚥 − 0� ⋅ �− ̂𝚥�

= �𝑙𝜃̇ − 𝑦̇� ̂𝚥 ⋅ �− ̂𝚥�

= �𝑦̇ − 𝑙𝜃̇�

Hence
Δ = 𝑦 − 𝑙𝜃

Therefore, the potential energy now can be found to be

𝑉 =
1
2
𝑘𝑦�𝑦 − 𝑙𝜃�

2
+
1
2
𝑘𝑇𝜃2
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Therefore, the Lagrangian Φ is

Φ = 𝑇 − 𝑉

=
1
2
𝑚𝑦̇2 +

1
2
�𝑚𝑟2𝐺�𝜃̇2 −

1
2
𝑘𝑦�𝑦 − 𝑙𝜃�

2
−
1
2
𝑘𝑇𝜃2

We now find the equations for each coordinate. For 𝑦

𝜕Φ
𝜕𝑦̇

= 𝑚𝑦̇

𝑑
𝑑𝑡
𝜕Φ
𝜕𝑦̇

= 𝑚𝑦̈

𝜕Φ
𝜕𝑦

= −𝑘𝑦�𝑦 − 𝑙𝜃�

Hence EOM is

𝑑
𝑑𝑡
𝜕Φ
𝜕𝑦̇

−
𝜕Φ
𝜕𝑦

= 𝑄𝑦

𝑚𝑦̈ + 𝑘𝑦�𝑦 − 𝑙𝜃� = 𝑄𝑦

We just need to find 𝑄𝑦 the generalized force in the 𝑦 direction. Using virtual work, we
make small virtual displacement 𝛿𝑦 in positive 𝑦 direction while fixing all other gener-
alized coordinates from moving (in this case 𝜃) and then find out the work done by
external forces. In this case, there is only one external force which is 𝐿. Hence

𝛿𝑊 = 𝐿𝛿𝑦

Therefore 𝑄𝑦 = 𝐿 since that is the force that is multiplied by 𝛿𝑦. Hence EOM for 𝑦 is now
found

𝑚𝑦̈ + 𝑘𝑦�𝑦 − 𝑙𝜃� = 𝐿

verification: As 𝐿 increases, then we see that 𝑦′′ gets larger. This makes sense since 𝑦 is
upwards acceleration, so wing accelerates in the same direction.

Now we find EOM for 𝜃

𝜕Φ
𝜕𝜃̇

= 𝑚𝑟2𝐺𝜃̇

𝑑
𝑑𝑡
𝜕Φ
𝜕𝜃̇

= 𝑚𝑟2𝐺𝜃̈

𝜕Φ
𝜕𝜃

= 𝑘𝑦𝑙�𝑦 − 𝑙𝜃� − 𝑘𝑇𝜃
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Therefore the EOM is

𝑑
𝑑𝑡
𝜕Φ
𝜕𝜃̇

−
𝜕Φ
𝜕𝜃

= 𝑄𝜃

𝑚𝑟2𝐺𝜃̈ − 𝑘𝑦𝑙�𝑦 − 𝑙𝜃� + 𝑘𝑇𝜃 = 𝑄𝜃

𝑚𝑟2𝐺𝜃̈ − 𝑘𝑦𝑙𝑦 + 𝑘𝑦𝑙2𝜃 + 𝑘𝑇𝜃 = 𝑄𝜃

𝑚𝑟2𝐺𝜃̈ − 𝑘𝑦𝑙𝑦 + �𝑘𝑇 + 𝑘𝑦𝑙2�𝜃 = 𝑄𝜃

We just need to find 𝑄𝜃 the generalized force in the 𝜃 direction. Using virtual work, we
make small virtual displacement 𝛿𝜃 in positive 𝜃 direction (i.e. anticlock wise) while
fixing all other generalized coordinates from moving (in this case 𝑦) and then find out
the work done by external forces. In this case, there is only one external force which is 𝐿.
When wemake 𝛿𝜃 rotation in the positive 𝜃 direction, the displacement where the force 𝐿
acts is (𝑙 + 𝑠)𝛿𝜃 for small angle. But this displacement is in the downward direction, hence
it is negative, since we are using 𝑦 as positive upwards. Hence

𝛿𝑊 = −𝐿(𝑙 + 𝑠)𝛿𝜃

Therefore 𝑄𝜃 = −𝐿(𝑙 + 𝑠) since that is the force that is multiplied by 𝛿𝜃.Hence EOM for 𝜃
is now found

𝑚𝑟2𝐺𝜃̈ − 𝑘𝑦𝑙𝑦 + �𝑘𝑇 + 𝑘𝑦𝑙2�𝜃 = −𝐿(𝑙 + 𝑠)

Verification: As 𝐿 gets larger, then 𝜃̈ gets negative (since 𝐿 has negative sign). This makes
sense, since as 𝐿 gets larger, the rotation as shown in the positive direction will change
sign and the wing will now swing the opposite direction (i.e. anticlockwise).

Now we can make the matrix of EOM

𝑀𝑋′′ + 𝑘𝑋 = 𝑄
⎛
⎜⎜⎜⎜⎜⎜⎝
𝑚 0

0 𝑚𝑟2𝐺

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝
𝑦̈

𝜃̈

⎞
⎟⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

𝑘𝑦 −𝑙𝑘𝑦

−𝑙𝑘𝑦 𝑘𝑇 + 𝑘𝑦𝑙2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝
𝑦

𝜃

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

𝐿
−𝐿(𝑙 + 𝑠)

⎞
⎟⎟⎟⎟⎟⎠

Notice that for [𝑘] the matrix is symmetric as expected, and also positive on the diagonal
as expected. The mass matrix [𝑚] is symmetric and positive definite as well.
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3 problem 3

Let 𝜃 be the small angle of rotation that the rod rotates by in the anti clockwise direction.
Let the point the spring is fixed be 𝐵 and the moving point where the spring is attached
to the rod be 𝐴.To find spring extension Δ we use the stiff spring approximation. Let the
angle 𝛼 = 53.130, hence

Δ̇ = (𝑢̇𝐴 − 𝑢̇𝐵) ⋅ e𝐴/𝐵

= ��
𝐿
3
𝜃̇� ̂𝚥 − 0� ⋅ �cos𝛼 ̂𝚤 + sin𝛼 ̂𝚥�

=
𝐿
3
𝜃̇ sin𝛼
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Hence
Δ =

𝐿
3
𝜃 sin𝛼

Using Lagrangian method, we start by finding the kinetic energy of the system, then the
potential energy. 𝜃 is the only generalized coordinate. Assume bar has mass𝑚 and hence
𝐼 = 𝑚𝐿2

3

𝑇 =
1
2
𝐼𝜃̇2

For the potential energy, there will be potential energy due to 𝑘 spring extension. From
the diagram above, we see that

𝑉 =
1
2
𝑘�
𝐿
3
𝜃 sin𝛼�

2

Therefore, the Lagrangian Φ is

Φ = 𝑇 − 𝑉

=
1
2
𝐼𝜃̇2 −

1
2
𝑘
𝐿2

9
𝜃2 sin2 𝛼

Now we find EOM for 𝜃

𝜕Φ
𝜕𝜃̇

= 𝐼𝜃̇

𝑑
𝑑𝑡
𝜕Φ
𝜕𝜃̇

= 𝐼𝜃̈

𝜕Φ
𝜕𝜃

= −
𝑘𝐿2 sin2 𝛼

9
𝜃

Therefore the EOM is

𝑑
𝑑𝑡
𝜕Φ
𝜕𝜃̇

−
𝜕Φ
𝜕𝜃

= 𝑄𝜃

𝐼𝜃̈ +
𝑘𝐿2 sin2 𝛼

9
𝜃 = 𝑄𝜃

We now need to find the generalized force due to virtual 𝛿𝜃 rotation using the virtual
work method. There are 2 external forces, the damping force which will have negative
sign since it takes energy away from the system, and the external force 𝐹 which will add
energy hence will have positive sign.

We start by making 𝛿𝜃 and then find the work done by these 2 forces.



17

Work done by 𝐹 is 𝐹𝐿𝛿𝜃 since the displacement is 𝐿𝛿𝜃 for small angle. Now the work
done by damping is�𝑐𝐿3 𝜃̇�

𝐿
3𝛿𝜃 hence total work is

𝛿𝑊 = 𝐹𝐿𝛿𝜃 − �𝑐
𝐿
3
𝜃̇�

𝐿
3
𝛿𝜃

= �𝐹𝐿 − 𝑐
𝐿2

9
𝜃̇�𝛿𝜃

Notice that work due to damping was added with negative sign since damping removes
energy from the system.

Hence 𝑄𝜃 = �𝐹𝐿 − 𝑐𝐿
2

9 𝜃̇� therefore the EOM is

𝐼𝜃̈ +
𝑘𝐿2 sin2 𝛼

9
𝜃 = 𝐹𝐿 − 𝑐

𝐿2

9
𝜃̇

𝐼𝜃̈ + 𝑐
𝐿2

9
𝜃̇ +

𝑘𝐿2 sin2 𝛼
9

𝜃 = 𝐹𝐿

Hence the damping coefficient is 𝑐𝐿
2

9 .
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4 problem 4

Let 𝑥1 and 𝑥2 be the generalized coordinates as shown in this diagram

x 1

x 2

Let mass of cart be 𝑚1 and mass of small sliding block be 𝑚2 (at the end, they will be
replaced by values given). Let 𝑘 for spring attached to wall be 𝑘1 and 𝑘 for spring for small
block be 𝑘2.We start by finding the kinetic energy of the system

𝑇 =
1
2
𝑚1𝑥̇21 +

1
2
𝑚2𝑣2

where 𝑣 is the velocity of the block. To find this 𝑣 it is easier to resolve components on the
𝑥 and 𝑦 direction. Therefore we find that

𝑣⃗ = 𝑥̇2 sin𝜃𝑗 + (𝑥̇2 cos𝜃 + 𝑥̇1)𝑖
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x 2 sin

x 2 cos  x 1



x 2



Hence

�𝑣⃗�2 = (𝑥̇2 sin𝜃)
2 + (𝑥̇2 cos𝜃 + 𝑥̇1)

2

= �𝑥̇22 sin2 𝜃� + �𝑥̇22 cos2 𝜃 + 𝑥̇21 + 2𝑥̇2𝑥̇1 cos𝜃�

= 𝑥̇22�sin2 𝜃 + cos2 𝜃� + 𝑥̇21 + 2𝑥̇2𝑥̇1 cos𝜃
= 𝑥̇22 + 𝑥̇21 + 2𝑥̇2𝑥̇1 cos𝜃

Therefore
𝑇 =

1
2
𝑚1𝑥̇21 +

1
2
𝑚2�𝑥̇22 + 𝑥̇21 + 2𝑥̇2𝑥̇1 cos𝜃�

Now we find the potential energy.

𝑉 =
1
2
𝑘1𝑥21 +

1
2
𝑘2𝑥22 − 𝑚2𝑔(𝑥2 sin𝜃)

There are no external forces, hence generalized forces 𝑄𝑥1, 𝑄𝑥2 are zero. The Lagrangian
Φ is

Φ = 𝑇 − 𝑉

=
1
2
𝑚1𝑥̇21 +

1
2
𝑚2�𝑥̇22 + 𝑥̇21 + 2𝑥̇2𝑥̇1 cos𝜃� −

1
2
𝑘1𝑥21 −

1
2
𝑘2𝑥22 + 𝑚2𝑔(𝑥2 sin𝜃)

Now we find EOM for 𝑥1 is

𝜕Φ
𝜕𝑥̇1

= 𝑚1𝑥̇1 + 𝑚2𝑥̇1 + 𝑚2𝑥̇2 cos𝜃

𝑑
𝑑𝑡

𝜕Φ
𝜕𝑥̇1

= 𝑚1𝑥̈1 + 𝑚2𝑥̈1 + 𝑚2𝑥̈2 cos𝜃

= (𝑚1 + 𝑚2)𝑥̈1 + 𝑚2𝑥̈2 cos𝜃
𝜕Φ
𝜕𝑥1

= −𝑘1𝑥1
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Therefore the EOM for 𝑥1 is
𝑑
𝑑𝑡

𝜕Φ
𝜕𝑥̇1

−
𝜕Φ
𝜕𝑥1

= 0

(𝑚1 + 𝑚2)𝑥̈1 + 𝑚2𝑥̈2 cos𝜃 + 𝑘1𝑥1 = 0

Now we replace the actual values for 𝑚1 = 2𝑚,𝑚2 = 𝑚, 𝑘1 = 3𝑘 hence

3𝑚𝑥̈1 + 𝑚𝑥̈2 cos𝜃 + 3𝑘𝑥1 = 0

Now we find EOM for 𝑥2 is
𝜕Φ
𝜕𝑥̇2

= 𝑚2(𝑥̇2 + 𝑥̇1 cos𝜃)

𝑑
𝑑𝑡

𝜕Φ
𝜕𝑥̇1

= 𝑚2(𝑥̈2 + 𝑥̈1 cos𝜃)

= 𝑚2 cos𝜃𝑥̈1 + 𝑚2𝑥̈2
𝜕Φ
𝜕𝑥2

= −𝑘2𝑥2 + 𝑚2𝑔 sin𝜃

Therefore the EOM for 𝑥2 is
𝑑
𝑑𝑡

𝜕Φ
𝜕𝑥̇2

−
𝜕Φ
𝜕𝑥2

= 0

𝑚2 cos𝜃𝑥̈1 + 𝑚2𝑥̈2 + 𝑘2𝑥2 − 𝑚2𝑔 sin𝜃 = 0

Now we replace the actual values for 𝑚1 = 2𝑚,𝑚2 = 𝑚, 𝑘2 = 𝑘 hence

𝑚 cos𝜃𝑥̈1 + 𝑚𝑥̈2 + 𝑘𝑥2 = 𝑚2𝑔 sin𝜃

Now we can make the matrix of EOM

𝑀𝑋′′ + 𝑘𝑋 = 𝑄
⎛
⎜⎜⎜⎜⎜⎝

3𝑚 𝑚 cos𝜃
𝑚 cos𝜃 𝑚

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝
𝑥̈1
𝑥̈2

⎞
⎟⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎜⎝
3𝑘 0
0 𝑘

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝
𝑥1
𝑥2

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

0
𝑚2𝑔 sin𝜃

⎞
⎟⎟⎟⎟⎟⎠

Hence

𝑚

⎛
⎜⎜⎜⎜⎜⎝

3 cos𝜃
cos𝜃 1

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝
𝑥̈1
𝑥̈2

⎞
⎟⎟⎟⎟⎟⎠ + 𝑘

⎛
⎜⎜⎜⎜⎜⎝
3 0
0 1

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝
𝑥1
𝑥2

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

0
𝑚2𝑔 sin𝜃

⎞
⎟⎟⎟⎟⎟⎠

Notice that there zeros now off diagonal in the [𝐾]matrix, which means the springs are
not coupled. (which is expected, as motion of one is not affected by the other). But mass
matrix [𝑚] has non-zeros off the diagonal. So the masses are coupled. i.e. EOM is coupled.
This means we can’t solve on EOM on its own and both have to be solved simultaneously.
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5 problem 5

There are 2 degrees of freedom, 𝜃1 and 𝜃2 as shown in this diagram, using anticlock wise
rotation as positive

1

2

The Lagrangian Φ = 𝑇 − 𝑉 where

𝑇 =
1
2
𝐼1𝜃̇2

1 +
1
2
𝐼2𝜃̇2

2

Where 𝐼1 =
𝑚1𝐿2

3 and 𝐼2 =
𝑚2𝐿2

12 + 𝑚2�
𝐿
4
�
2
(using parallel axis theorem). Hence 𝐼2 =

𝑚2𝐿2

12 +

𝑚2
𝐿2

16 =
7
48𝐿

2𝑚2

Nowwe find the potential energy, assuming springs remain straight (stiff spring assump-
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tion) and assuming small angles

𝑉 =
1
2
𝑘1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Δ1

�����������������3𝐿
4
𝜃1 +

3𝐿
4
𝜃2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

2

+
1
2
𝑘2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Δ2

�������������
𝐿𝜃1 +

𝐿
2
𝜃2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

2

+ 𝑚1𝑔
𝐿
2
𝜃1 − 𝑚2𝑔

𝐿
4
𝜃2

Hence
Φ = 𝑇 − 𝑉

= �
1
2
𝐼1𝜃̇2

1 +
1
2
𝐼2𝜃̇2

2� −
⎛
⎜⎜⎜⎜⎝
1
2
𝑘1�

3𝐿
4
𝜃1 +

3𝐿
4
𝜃2�

2

+
1
2
𝑘2�𝐿𝜃1 +

𝐿
2
𝜃2�

2

+ 𝑚1𝑔
𝐿
2
𝜃1 − 𝑚2𝑔

𝐿
4
𝜃2

⎞
⎟⎟⎟⎟⎠

Now we find EOM for 𝜃1

𝜕Φ
𝜕𝜃̇1

= 𝐼𝜃̇1

𝑑
𝑑𝑡

𝜕Φ
𝜕𝜃̇1

= 𝐼𝜃̈1

𝜕Φ
𝜕𝜃1

= −𝑘1�
3𝐿
4
𝜃2 +

3𝐿
4
𝜃1��

3𝐿
4 � − 𝑘2�

𝐿
2
𝜃2 + 𝐿𝜃1�(𝐿) − 𝑚1𝑔

𝐿
2

= −
3𝐿
4
𝑘1�

3𝐿
4
𝜃2 +

3𝐿
4
𝜃1� − 𝑘2𝐿�

𝐿
2
𝜃2 + 𝐿𝜃1� − 𝑚1𝑔

𝐿
2

Therefore the EOM for 𝜃1 is
𝑑
𝑑𝑡

𝜕Φ
𝜕𝜃̇1

−
𝜕Φ
𝜕𝜃1

= 𝑄𝜃1

𝐼1𝜃̈1 +
3𝐿
4
𝑘1�

3𝐿
4
𝜃2 +

3𝐿
4
𝜃1� + 𝑘2𝐿�

𝐿
2
𝜃2 + 𝐿𝜃1� + 𝑚1𝑔

𝐿
2
= 0

The generalized force is zero, since there is no direct external force acting on top rod.

Hence EOM for 𝜃1 is from above

𝑚1𝐿2

3
𝜃̈1 + 𝜃1

⎛
⎜⎜⎜⎜⎝𝑘1�

3𝐿
4 �

2

+ 𝑘2𝐿2
⎞
⎟⎟⎟⎟⎠ + 𝜃2

⎛
⎜⎜⎜⎜⎝𝑘1�

3𝐿
4 �

2

+ 𝑘2
𝐿2

2

⎞
⎟⎟⎟⎟⎠ = −𝑚1𝑔

𝐿
2

Now we find EOM for 𝜃2

𝜕Φ
𝜕𝜃̇2

= 𝐼𝜃̇2

𝑑
𝑑𝑡

𝜕Φ
𝜕𝜃̇2

= 𝐼𝜃̈2

𝜕Φ
𝜕𝜃2

= −𝑘1�
3𝐿
4
𝜃2 +

3𝐿
4
𝜃1��

3𝐿
4 � − 𝑘2�

𝐿
2
𝜃2 + 𝐿𝜃1��

𝐿
2�

+ 𝑚2𝑔
𝐿
4
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Therefore the EOM for 𝜃2 is

𝑑
𝑑𝑡

𝜕Φ
𝜕𝜃̇2

−
𝜕Φ
𝜕𝜃2

= 𝑄𝜃2

𝐼2𝜃̈2 + 𝑘1�
3𝐿
4
𝜃2 +

3𝐿
4
𝜃1��

3𝐿
4 � + 𝑘2�

𝐿
2
𝜃2 + 𝐿𝜃1��

𝐿
2�

− 𝑚2𝑔
𝐿
4
= 𝑄𝜃1

Now𝑄𝜃2is found by virtual work. Making a virtual displacement 𝛿𝜃2 while fixing 𝜃1 and
finding the work done by all external forces.

𝛿𝑊 = 𝐹
𝐿
2
𝛿𝜃2

Hence 𝑄𝜃2 = 𝐹𝐿
2 with positive sign since it add energy to the system. Hence EOM for 𝜃2

is
7
48

𝐿2𝑚2𝜃̈2 + 𝜃1

⎛
⎜⎜⎜⎜⎝𝑘1�

3𝐿
4 �

2

+ 𝑘2
𝐿2

2

⎞
⎟⎟⎟⎟⎠ + 𝜃2

⎛
⎜⎜⎜⎜⎝𝑘1�

3𝐿
4 �

2

+ 𝑘2�
𝐿
2�

2⎞⎟⎟⎟⎟⎠ = 𝑚2𝑔
𝐿
4
+ 𝐹

𝐿
2

Now we can make the matrix of EOM

𝑀𝑋′′ + 𝑘𝑋 = 𝑄
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑚1𝐿2

3 0

0 7
48𝐿

2𝑚2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝
𝜃̈1

𝜃̈2

⎞
⎟⎟⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑘1
9𝐿2

16 + 𝑘2𝐿2 𝑘1�
3𝐿
4
�
2
+ 𝑘2

𝐿2

2

𝑘1�
3𝐿
4
�
2
+ 𝑘2

𝐿2

2 𝑘1�
3𝐿
4
�
2
+ 𝑘2�

𝐿
2
�
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝
𝜃1

𝜃2

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−𝑚1𝑔
𝐿
2

𝑚2𝑔
𝐿
4 + 𝐹𝐿

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The matrix [𝑘] is coupled but the mass matrix [𝑚] is not.

6 problem 6

The inertia and stiffness matrices for a system are [𝑀] =

⎡
⎢⎢⎢⎢⎢⎣
4 0
0 2

⎤
⎥⎥⎥⎥⎥⎦ kg, [𝐾] =

⎡
⎢⎢⎢⎢⎢⎣
200 200
200 800

⎤
⎥⎥⎥⎥⎥⎦N/m.

determine the corresponding natural frequencies and modes of free vibration.

�[𝑘] − 𝜔2[𝑀]�{Φ} = {0}
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Solving for eigenvalues

det

⎛
⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎣
200 200
200 800

⎤
⎥⎥⎥⎥⎥⎦ − 𝜔2

⎡
⎢⎢⎢⎢⎢⎣
4 0
0 2

⎤
⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎠ = 0

det

⎡
⎢⎢⎢⎢⎢⎣
200 − 4𝜔2 200

200 800 − 2𝜔2

⎤
⎥⎥⎥⎥⎥⎦ = 0

�200 − 4𝜔2��800 − 2𝜔2� − 2002 = 0
8𝜔4 − 3600𝜔2 + 120000 = 0

Hence, taking the positive square root only we find

𝜔1 = 20.341 rad/sec
𝜔2 = 6.0211 rad/sec

When 𝜔 = 𝜔1
⎡
⎢⎢⎢⎢⎢⎢⎣
200 − 4𝜔2

1 200

200 800 − 2𝜔2
1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩
Φ11

Φ21

⎫⎪⎪⎬
⎪⎪⎭
=

⎧⎪⎪⎨
⎪⎪⎩
0
0

⎫⎪⎪⎬
⎪⎪⎭

Let Φ11 be the arbitrary value 1 hence
⎡
⎢⎢⎢⎢⎢⎢⎣
200 − 4𝜔2

1 200

× ×

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

1
Φ21

⎫⎪⎪⎬
⎪⎪⎭
=

⎧⎪⎪⎨
⎪⎪⎩
0
×

⎫⎪⎪⎬
⎪⎪⎭

200 − 4𝜔2
1 + 200Φ21 = 0

Φ21 =
−200 + 4𝜔2

1
200

=
−200 + 4(20.341)2

200
= 7.2751

Hence the first mode associated with 𝜔 = 20.341 rad/sec is
⎧⎪⎪⎨
⎪⎪⎩

1
7.2751

⎫⎪⎪⎬
⎪⎪⎭

When 𝜔 = 𝜔2
⎡
⎢⎢⎢⎢⎢⎢⎣
200 − 4𝜔2

2 200

200 800 − 2𝜔2
2

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩
Φ12

Φ22

⎫⎪⎪⎬
⎪⎪⎭
=

⎧⎪⎪⎨
⎪⎪⎩
0
0

⎫⎪⎪⎬
⎪⎪⎭
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Let Φ12 be the arbitrary value 1 hence
⎡
⎢⎢⎢⎢⎢⎢⎣
200 − 4𝜔2

2 200

× ×

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

1
Φ22

⎫⎪⎪⎬
⎪⎪⎭
=

⎧⎪⎪⎨
⎪⎪⎩
0
×

⎫⎪⎪⎬
⎪⎪⎭

200 − 4𝜔2
2 + 200Φ22 = 0

Φ22 =
−200 + 4𝜔2

2
200

=
−200 + 4(6.0211)2

200
= −0.27493

Hence the first mode associated with 𝜔 = 6.0211 rad/sec is
⎧⎪⎪⎨
⎪⎪⎩

1
−0.27493

⎫⎪⎪⎬
⎪⎪⎭

Summary
𝜔𝑛 (rad/sec) mode shape

6.0211

⎧⎪⎪⎨
⎪⎪⎩

1
−0.27493

⎫⎪⎪⎬
⎪⎪⎭

20.341

⎧⎪⎪⎨
⎪⎪⎩

1
7.2751

⎫⎪⎪⎬
⎪⎪⎭

Verification using Matlab:

EDU>> M=[4 0;0 2]; K=[200 200;200 800];
EDU>> [phi,omega]=eig(K,M);
EDU>> sqrt(omega)

6.0211 0
0 20.3407

EDU>> phi(:,1)/abs(phi(1,1))

-1.0000
0.2749

EDU>> phi(:,2)/abs(phi(1,2))

1.0000
7.2749

Which matches the result derived. One mode shape has both displacement in phase, and
the other mode shape shows the displacements to be out of phase.
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