
Homework #8 
EMA 545, Spring 2013 

 
Problem 1: (40 points) 

a.) Find the nonlinear equation of motion for the system pictured below.  The block 
has mass m and the guide can be approximated as frictionless.  In the position 
shown the spring is unstretched and the angle between the spring and guide bar is 
0. 

b.) Linearize your equation of motion for small deflections from the position shown 
(i.e. using a Taylor series expansion on k(x) about x=0).  Use a computer to plot 
k(x) versus the linear approximation for L=1 m, k=1000 N/m and 0 = 45 degrees 
for x ranging from -1 m to +1 m. 

c.) Find the equations of motion for the system using the stiff spring approximation 
and assuming small displacements from an equilibrium position defined by L=1 
m, k=1000 N/m and 0 = 45 degrees.  Compare your result with your linearized 
result from part (b). 

d.) Using m=1, find the response of the nonlinear system (in part a) using ode45 and 
plot the displacement of the mass over a few cycles when it is released from rest 
at x(0)=0.1 and also at x(0)=0.5 meters.  Overlay both curves on the same set of 
axes.  How does the period of the response compare with the linearized natural 
frequency in each case?  In what other way(s) does the nonlinearity manifest itself 
in the response of the system when x(0)=0.5? 
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Problem 2: Exercise 1.27 from Ginsberg. 

A standard model for a wing has a translational spring ky and a torsional spring kT 
representing the elastic rigidity.  Point E represents the elastic center because static 
application of a vertical force at that point results in upward displacement without an 
associated rotation.  The design of the wing is such that horizontal movement of point E 
is negligible.  The lift force L acts at point P, which is called the center of pressure.  The 
lift force may be treated as known.  When the wing is in its static equilibrium position, 
points G, E and P form a horizontal line.  Point G is the center of mass, and the radius of 
gyration of the wing about that point is rG.  Denote the mass of the wing m.  Derive the 
equations of motion for the wing, assuming small displacements (and small rotational 
displacements).  Put the equations in matrix form and check the units and sign of each 



term in your EOM.  (Hint: use the displacement of the center of gravity and the rotation 
of the wing as generalized coordinates.) 
 

   
 
Problem 3: Use the power balance method and the stiff spring approximation to find the 
equation of motion of the system pictured in Problem 1.16. 
 
Problem 4: Exercise 1.33 from Ginsberg: (be very careful to write a correct expression 
for the acceleration of the small block.)  Check the unit and sign of each term in your 
EOM. 

 
 
Problem 5: Exercise 1.30 from Ginsberg:  Use the stiff spring approximation and 
assume small deflections of both bars.  Check the units and sign of each term in your 
EOM.  Gravity acts downward (same direction as the force, F). 

 
 

Problem 6: Exercise 4.1 in Ginsberg.  Solve the eigenvalue problem by hand to get the 
natural frequencies and mode shapes.  You may check your answers with Matlab. 





Matt Allen
Sticky Note
This is also quite straightforward with the power balance method.



% Part (b) 
% Plot nonlinear k(x) for large deformations of spring-mass system. 
% M.S. Allen, Spring 2011, EMA 545 
  
k=1000; %N/m 
L = 1; %m 
theta = 45*pi/180; % rad 
xs = [-1:0.01:1]; % m 
h = L*tan(theta); 
  
kx = k*((h^2+(L+xs).^2).^(1/2)-
sqrt(h^2+L^2)).*((L+xs)./(h^2+(L+xs).^2).^(1/2)); 
  
klin = k*(L^2/(h^2+L^2)); 
  
figure(1) 
plot(xs,kx,xs,klin*xs,'-.'); set(get(gca,'Children'),'LineWidth',2); 
grid on; 
xlabel('Disp x (m)'); ylabel('Spring Force (N)'); 
title('Spring Force-Displacement Curve'); 
legend('Nonlinear','Linear'); 
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% Part (d) 
% Find response to a small disturbance. 
m=1; 
wn_lin = sqrt(klin/m) 
  



eom = @(t,x) [x(2)+0*t; -(1/m)*(k*((h^2+(L+x(1)).^2).^(1/2)-
sqrt(h^2+L^2)).*((L+x(1))./(h^2+(L+x(1)).^2).^(1/2)))] 

[ts1,y1]=ode45(eom,[0,1],[0.1; 0]); 
[ts2,y2]=ode45(eom,[0,1],[0.5; 0]); 

figure(2) 
plot(ts1,y1(:,1),ts2,y2(:,1)); hold on; grid on; 
xlabel('Time (s)'); ylabel('Response (m)'); 
title('Response of Nonlinear System'); 
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The period of the nonlinear response in each case is given below (found using 
ginput on the plot).  The linearized natural frequency is 22.36 rad/s and the corresponding 
period is 0.281 seconds. 

Initial 
Displacement Period (s) 

x0=0.1 0.2823
x0=0.5 0.3698
x0=0.53 0.5311
The behavior of the system is quite peculiar.  The period becomes longer 

(frequency lower) as the system approaches the region where the stiffness vanishes.  As 
shown, with a slightly larger initial displacement of 0.53, the mass almost comes to rest 
as the mass approaches x=-1, which is the other equilibrium position. Incidentally, the 
body panels of a hypersonic aircraft, which I am studying as part of an Air Force grant, 
can behave very similarly.  They buckle due to thermal expansion and then as they 
vibrate they may jump between two equilibria.      





Matt Allen
Sticky Note
Here is an alternate method using Newton-Euler with the stiff spring approximation.







Matt Allen
Note
Here I make the EOM symmetric by adding cos(\theta)*(eq 2) + (eq 1) and putting that in place of eq 1.  This is not necessary, but it shows that the equations can be made symmetric.
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