Math 320 (Smith): Practice Exam 1

1. The autonomous ODE given by

$$
\begin{equation*}
\frac{d P(t)}{d t}=-\left(b P^{2}(t)-a P(t)+h\right), \quad a>0, \quad b>0, \quad h>0 \tag{1}
\end{equation*}
$$

models a logistic population with harvesting, for example, the population of fish in a lake from which h fish per year are removed by fishing.
(a) Consider $a=6$ and $b=1$. How does the number of critical points depend on the parameter h ? What are the values of h that yield real-valued critical point(s)?
(b) Consider $a=6, b=1$ and $h=7$. Find and classify the critical points. Make a (rough) sketch of the direction field.
(c) For $a=6, b=1, h=7$, and starting from the initial condition $P(0)=3$, find the limiting behavior for large time $t \rightarrow \infty$.
2. The following augmented coefficient matrix results from elementary row operations on a 3×3 system of linear algebraic equations $\mathbf{A x}=\mathbf{b}$.

$$
\left[\begin{array}{cccc}
-1 & 1 & 1 & 2 \tag{2}\\
0 & 5 & -k & 4 \\
0 & 0 & k & p+3
\end{array}\right]
$$

Consider 2 different values of the parameter p : (a) $p=-3$, and (b) $p=-2$.
Determine for what values of k the system has (i) a unique solution, (ii) no solution, and (iii) infinitely many solutions.

FOR PART (a) ONLY when $p=-3$: Find all solutions in cases (i) and/or (iii), and write the solution \mathbf{x} in vector form.
3. Given

$$
\begin{equation*}
\frac{d y}{d x}=-\frac{y(x)}{(x-1)}+\frac{\exp (-x)}{(x-1)}, \quad y(0)=2 \tag{3}
\end{equation*}
$$

(a) Find the exact solution. For what values of x is the solution defined?
(b) Use one step of the Forward Euler method with step size h to find an approximation for $y(h)$.
4. (20 points) Consider the initial value problem

$$
\begin{equation*}
\frac{d y}{d x}=-\frac{5}{2} x^{4} y^{3}, \quad y(0)=-1 \tag{4}
\end{equation*}
$$

(a) Find $y(x)$ explicitly. For what values of x is the solution defined?
(b) Use one step of the Modified Euler (Improved Euler, RK2) method with step size h to find an approximation for $y(h)$.
5. (5 points) TRUE or FALSE: The initial value problem

$$
\begin{equation*}
\frac{d y}{d t}=(y-1)^{3 / 2}, \quad y(1)=2 \tag{5}
\end{equation*}
$$

is guaranteed to have a unique solution in a subrange of $-\infty<t<\infty$.

