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Abstract—The proper orthogonal decomposition (POD) 
technique (also known as the Karhunen-Loève transform) 
has been used as a model reduction tool for many 
applications in engineering and science. In principle, one 
begins with an ensemble of data, called snapshots, collected 
from an experiment or laboratory results. The POD 
technique is then used to produce a set of basis elements 
that can span the original snapshot collection using the 
fewest possible degrees of freedom. It is such capability that 
allows us to extract the representative characteristics of a 
cancer from a collection of DNA microarray samples 
known to be cancerous. The resulting few POD elements 
can be regarded as dominant cancerous patterns, which can 
be used to determine whether an arbitrary DNA microarray 
sample is cancerous. In our study, we consider two types of 
cancers, liver and bladder. DNA microarray data are 
downloaded from the Stanford Microarray Database. Our 
findings indicate that the POD method can successfully 
detect both cancer types, although our approach can be 
applied to other types of disease or cancer. 
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 1. INTRODUCTION 

Our objective in this paper is to use a pattern recognition 
technique on DNA data expressed in microarrays to detect 
cancer. We start with a collection of DNA microarray data 
of individuals who suffer a specific type of cancer. Each 
DNA microarray contains the expressions of thousands of 
individual genes on a single surface that is about the size of 
a microscope slide. Such image allows one to see genes that 
are induced or repressed in an experiment. Thus signatures 
of a cancer may be encrypted in the DNA microarrays, and 
once found, can be used for detection. To extract such 
representative patterns out of an ensemble of cancerous 
samples, we employ the proper orthogonal decomposition 
(POD) method. The detail of the POD method can be found 
in Section 2. The DNA microarray data we use in this 
paper are from the liver cancer [1] and the gastric cancer 
[2] studies. Both sets are downloaded from the Stanford 
Microarray Database, genome-www5.stanford.edu. In each 
case, we have both the cancerous (100+) and normal (70+) 
samples. Only 85% of the cancerous samples are randomly 
selected for the POD method use, the rest and the normal 
samples are reserved for identifying and detecting purposes. 

The study is repeated 100 times with a different set of 85% 
cancerous samples each time. Our results indicate that we 
can positively identify the cancerous samples at all times. 
The details of our studies are described in Section 3.  It is 
noteworthy to mention that although our study focuses on 
liver and bladder cancers, the method is not necessarily 
restricted to these types of diseases. 
 
 2. MATHEMATICAL FORMULATION FOR POD 

The POD method has received much attention in recent 
years as a tool to reduce the complexity and dimensions of 
dynamical models in engineering and science [3]-[5]. In 

principle, one begins with an ensemble of data ( ){ } sn
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called snapshots, collected from an experiment or 
laboratory results. The POD technique is then used to 

produce a basis ( ){ } sn
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whose first few elements contain 

all the dominant features of the entire snapshots collection. 
In other words, the primary component 

1Φ  captures most of 

the essential features of the original ensemble, while 
subsequent basis elements capture more of the smaller and 
finer variability between the snapshots. As a result, we wish 
to choose the primary component

1Φ  such that the quantity  
�

=

Φ
sn

i
iV

1

2

1,  (1) 

is as large as possible with ⋅⋅ , denotes the inner product. 

By assuming 1Φ  is a linear combination of the snapshots, 
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vector assigned to the snapshots. Thus maximizing the 
quantity in (1) is equivalent to maximizing the following 
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where θ is the covariance matrix of the snapshots with its  

(i, j) component, ji,θ , defined by 

ssjiji njniVV ,,1,,,1,,, �� ===θ . (4) 

Note that with distinct snapshots, the covariance 
matrixθ is symmetric positive definite and thus the 

weighting vector that maximizes (3) will also maximize  
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In this process, the weighting vector for the primary 
component is exactly the dominant eigenvector of θ  



corresponding to the largest eigenvalue. Let us denote the 
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Once the POD basis elements are found, they can be used 
for comparison with other images. Projections form a 
simple way of implementing the comparison.  If V  is an 
arbitrary image to be tested, then 
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measures of the correlation between V  with POD 
elements. The larger the magnitude of ( )VPΦ  the greater 

the correlation there is between the image V  and the 
original set of images. Due to the dominance and optimality 
of the POD basis only a first few elements are needed in the 
projection (8). In our study, we seek solely 1Φ  as  
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 3. CASE STUDIES 

As an application of the method, we examined DNA 
microarray data from references [1] and [2].  The data were 
obtained from the Stanford Microarray Database at 
genome-www5.stanford.edu.  This analysis used the 
log(base 2) of the R/G normalized ratio (mean).  Data for 
each of these references contain normal tissue samples in 
addition to the samples from tumorous tissue.  Genes were 
only included in the analysis if good data were present in 
over  80% of the samples.  For samples which were missing 
data for a particular gene, the missing value was imputed 
with the average of the values for that gene from the other 
samples.  After imputing the missing data, the average 
value for each gene was removed.   If this is not done, the 
method requires more than just the principal component to 
distinguish between the normal and cancerous tissue 
samples. 
 
The principal component was determined using a random 
selection of the tumorous tissue samples.  Projections onto 
this principal component were performed for all the 
tumorous samples, as well as all of the normal tissue 
samples.  We then compare the projections for the normal 
and tumorous samples.  If the principal component derived 
from the tumorous samples is significantly different from 
that for a normal tissue sample, the normal tissue 
projections should differ considerably from the tumorous 
tissue projections. 

3.1 Chen Liver Cancer Data 

Reference [1] contained data from 76 normal tissue samples 
and 105 primary liver tumor samples.  We find the 
principal component of the tumorous samples using the 
POD analysis.  The analysis was performed 100 times, each 
time using a different set of 85 of the tumor samples 
selected at random. The remaining 20 tumor samples were 
reserved for testing purposes.   
 
The projections for all of the samples onto the principal 
components for each case are summarized in Figure 1.  In 
this figure, the horizontal axis is the case number and the 
vertical axis represents the projections for the samples onto 
the principal component.  Samples 1 through 105 were the 
tumorous samples whereas samples 106 through 181 were 
the normal tissue samples.  Figure 1 shows that a very large 
percentage of the normal tissue samples (samples 106 
through 181) have negative projections onto the principal 
component.  The tumorous samples (samples 1 through 
105) show more variability, but about 75% of them show 
positive projections. 

 
Figure 1 – Projections onto Principal Component – Chen 

Liver Cancer Data 
 

 
Figure 2 – Percentile Limits vs. Standard Normal 

Distribution – Chen Liver Cancer Data 



We generated statistics for the projections of the tumorous 
samples to find the sample mean and standard deviation for 
each of the 100 cases.  We then averaged these values to 
determine an average mean and standard deviation value 
for tumorous samples.  The projections for the tumorous 
samples tend to be normally distributed.  To show this, we 
‘normalized’ the projections by subtracting the mean and 
dividing the result by the standard deviation. The 
projections were then sorted into ascending order, and the 
percentile values were plotted against those from a standard 
normal distribution.  The results are shown in the top plot 
of Figure 2.  If the projections are normally distributed, the 
percentile values should fall close to the middle line shown 
on the Figure.  The top and bottom line on the Figure show 
the mean plus and minus three sigma values.  The 
percentile values for the tumorous sample projections line 
up fairly well with those from the standard normal. Thus, it 
is a reasonable to assume that these projections are 
normally distributed.  

 

 
Figure 3 – 95% Confidence Intervals for Mean– Chen Liver 

Cancer Data 
 

 
Figure 4 – Normal Density Functions and Probability of 

Cancer– Chen Liver Cancer Data 
 

Similar statistics were generated for the projections from 
the normal tissue samples, with the percentile values 
plotted against those from a standard normal distribution in 
the bottom plot of Figure 2.  From this figure, it also seems 
reasonable to consider the projections from the normal 
tissue samples as being normally distributed. 
 
The 95% confidence intervals for the means are shown in 
Figure 3 as a function of the case number.  This figure 
shows the consistency of the mean values for the 
projections, regardless of which tumor samples were used 
in determining the principal component. 
 
The normal probability density functions for the projections 
are shown in the top plot of Figure 4.  This figure shows 
that if the projection of a sample is positive, the sample is 
almost certainly tumorous.  There is about a 25% 
probability of a tumorous sample having a negative 
projection.  The probability of cancer as a function of the 
projection value is shown as the bottom curve of Figure 4.  
The figure shows that as the projection value becomes more 
negative, it becomes less likely for the sample to be 
cancerous. 

 
3.2 Chen Bladder Cancer Data 

A similar analysis was performed using the Chen bladder 
cancer data from Reference [2].  The data used in this 
analysis consisted of 103 cancerous tissue samples and 21 
normal tissue samples.  Similar to the analysis in section 
3.1, the principal component for the tumorous samples was 
performed 100 times, each time using 83 randomly selected 
samples for the principal component analysis.  The 
resulting projections onto the principal components are 
shown in Figure 5.  Examination of the figure shows that 
there is much more variability for the projections.  About 
40% of the projections from tumorous samples are 
negative.   
 

 
Figure 5 – Projections onto Principal Component – Chen 

Bladder Cancer Data 



 
Figure 6 - Percentile Limits vs. Standard Normal 

Distribution – Chen Bladder Cancer Data 

Figure 7 – 95% Confidence Intervals for Means – Chen 
Bladder Cancer Data 

 
Figure 8 – Normal Density Functions – Chen Bladder 

Cancer Data 
 

We plotted percentile values against those for a standard 
normal distribution (Figure 6).  Once again, we can see that 
the normal distribution assumption is not unreasonable, 
although there is more variability in the normal tissue 

sample data.  95% Confidence intervals for the mean are 
shown in Figure 7.  This figure shows the sensitivity of the 
results with regard to which samples were used for the POD 
process.  The normal probability distribution functions are 
plotted in the top plot of Figure 8, with the probability of a 
sample being cancerous plotted as a function of the 
projection value in the bottom plot of Figure 8.  Once 
again, the Figure shows that if a sample has a positive 
projection, it is almost certainly tumorous.  If the projection 
is negative, however, there is about a 40% probability that 
the sample is tumorous. 
 
 4.  SUMMARY AND CONCLUSIONS 

The above study showed an example of how the Proper 
Orthogonal Decomposition method can be used for a simple 
pattern recognition application.  The principal component 
of a set of images is found.  The magnitude of the 
projection of an arbitrary image onto the principal 
component is a measure of the correlation of an arbitrary 
image with the original set of data. 

 
As a practical application, the process was used to form the 
principal components for a set of DNA microarray data for 
tumorous samples.  Then projections were made for normal 
tissue samples, as well as other tumorous samples, against 
the principal components.   
 
The analysis was performed using data from two different 
studies.  In both cases, positive projections indicate 
tumorous samples.  However, the method is prone to false 
negatives; in the liver cancer study 25% of the tumorous 
samples had negative projections, while 40% of the 
tumorous samples in the bladder cancer study had negative 
projections. 
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