
Solving the advection PDE in explicit FTCS, Lax, Implicit FTCS and

Crank-Nicolson methods for constant and varying speed.

Accuracy, stability and software animation

Report submitted for fulfillment of the Requirements for MAE 294

Masters degree project

Supervisor: Dr Donald Dabdub, UCI.

Written by Nasser M. Abbasi. Masters degree candidate student.

Mechanical engineering department

University of California, Irvine

Contents

1 Introduction 3
1.1 Backward difference (Upwind) . 4
1.2 Forward difference (downwind) . 5
1.3 Center difference . 5

2 Numerical schemes 6
2.1 Explicit Methods . 6

2.1.1 FTCS . 6
2.1.2 Downwind . 6
2.1.3 Upwind . 6
2.1.4 LAX . 6
2.1.5 Lax-Wendroff . 7
2.1.6 Leap-frog . 7

2.2 Implicit Methods . 7
2.2.1 Implicit FTCS . 7
2.2.2 Wendrof . 8
2.2.3 Crank-Nicolson . 8

3 Stability analysis 9
3.1 Stability analysis for FTCS . 10
3.2 Stability analysis of the downwind method . 10
3.3 Stability analysis of the upwind method . 11
3.4 Stability analysis of Lax . 12
3.5 Stability of Lax-Wendroff . 12

1

3.6 Stability analysis of the Implicit FTCS . 12

4 Solution Results and Output 14
4.1 Case 1 . 14
4.2 Case 2 . 15
4.3 Case 3 . 15
4.4 Case 4 . 15
4.5 case 5 . 16
4.6 case 6 . 18
4.7 case 7 . 18
4.8 case 8 . 19
4.9 CPU comparison tables . 20
4.10 Accuracy comparison tables . 23

5 Conclusion 24

6 Appendix 25
6.1 Plots . 25

6.1.1 case 1 . 25
6.1.2 case 2 . 27
6.1.3 case 3 . 29
6.1.4 case 4 . 31
6.1.5 case 5 . 33
6.1.6 case 6 . 35
6.1.7 case 7 . 37
6.1.8 case 8 . 39

6.2 Source code . 41

7 References 48

2

1 Introduction

The goal of this project is to analyze and compare different numerical methods for solving the first order
advection PDE.

Following the analytical analysis for stability of the numerical scheme, animation were done to visually
illustrate and confirm these results. This was carried for different parameters. The animation was programmed
in Mathematica and saved to animated gif files which was then loaded into the HTML version of this report
located here .

Fortran 95 was used for the computation part, while Mathematica was used for the animation and graphics
part.

The above link contains all the supporting material for the project, including the Fortran program (in source
and windows executable format) used to carry the main computation, and the Mathematica program used to do
the animation and the Unix bash file used to process the computation for different parameters.

The specific PDE example used for the analysis and animation was the one provided by Professor Donald
Dabdub for the final exam for his MAE 185 course (Numerical methods for mechanical engineers) in spring 2006.
This PDE is described below:

Solve numerically
∂c

∂t
+ u

∂c

∂x
= 0

Where c(x, t) is the concentration of a given material as a function of time and space.
The above is solved for the following 2 cases

1. u (the advection speed, or the speed at which the mass is being transported) is a constant value given as
(2 ft/min.

2. u is a function of time defined as u(t) = t
20 ft/min

The problem parameters are:

t ≥ 0

0 ≤ x ≤ L

Where L = 100 feet.. Initial conditions are

c (x, 0) = F (x) =

{
1 + cos

(
π
(
x−30
5

))
25 ≤ x ≤ 25

0 otherwise

The boundary conditions are

c (0, t) = 0

c(L, t) = 0

This PDE is an example of an IBVP (Initial and Boundary Value Problem).
Different numerical methods are used to solve the above PDE. The methods are compared for stability using

Von Neumann stability analysis.
The numerical methods are also compared for accuracy. This was done by comparing the numerical solution

to the known analytical solution at each time step. The comparison was done by computing the root mean
square error (RMSE) between the numerical and the analytical solution at each time step.

The method with the least RMSE at the end of the simulation is considered the most accurate.
The above PDE has a known analytical solution which is

C (x, t) = F (x− ut)

3

/my_notes/advection_PDE/index.htm

The above analytical solution indicates that the initial concentration will move from left to right with the
advection speed u.

The formulation of each numerical method is shown below. h is used to represent ∆x, the space between 2
space grid point, or the space step size, and τ is used to represent ∆t, the time step.

The space line has N grid points. The spacing h was fixed at 0.01 ft for all the methods and for all the
test cases, while τ was changed. This made comparing the different methods simpler. The following diagram
illustrates the discretization used.

Should we consider the lower left and the lower right grid points above as part of the initial conditions, or
part of the boundary conditions?

Stability of each method is derived. Stability is important, since by the Lax-Richtmyer equivalence theorem1,
stability implies convergence of the solution. Convergence of the numerical solutions implies that as the step size
becomes smaller, the numerical solution converges to the analytical solution.

Explicit and implicit numerical methods are used. When solving for the future value of the solution at a
single node in terms of only past values, the method is called an explicit method. In other words, when the only
unknown is the future value of the solution at a single node, and everything else on the right hand side of the
finite difference equation is a solution derived at earlier time step, the method is explicit.

An implicit method is one in which the finite difference equation contains the solution at a at future time at
more than one node. In other words, future solution are being solved for at more than one node in terms of
the solution at earlier time. Implicit methods therefor are usually solved by matrix methods by solving Ax = b
where b represents present present known solution values, and x are the unknown future solution values, and A
is the coefficient matrix which will usually be block diagonal (or tri diagonal) in shape.

In the derivations below, the notation of Cn
i is used to indicate the solution at time step n and at space node

i. Hence C (xi, tn) is written as Cn
i . This notation seems to be more clear than the Ci,n notation.

Different finite difference schemes for solving a PDE are obtained by using different methods of approximating
the derivative terms in the PDE.

This will be illustrated using the space derivative ∂c
∂x . This derivative can be approximated in one of the

following 3 ways (all at time step n)

1.1 Backward difference (Upwind)

∂c

∂x
≈

Cn
i − Cn

i−1

h
1Richtmyer and Morton 1967. p45): ”Given a properly posed linear initial value problem and a finite difference approximation to

it that satisfies the consistency condition, stability is the necessary and sufficient condition for convergence.”

4

1.2 Forward difference (downwind)

∂c

∂x
≈

Cn
i+1 − Cn

i

h

1.3 Center difference

∂c

∂x
≈

Cn
i+1 − Cn

i−1

2h

The following are the derivation of a number of methods for solving the advection PDE obtained by using
the above definitions for the derivative when applied to both space and time.

5

2 Numerical schemes

2.1 Explicit Methods

2.1.1 FTCS

With FTCS, the forward time derivative, and the centered space derivative are used. Hence the advection PDE
can be written as

Cn+1
i − Cn

i

τ
= −u

(
Cn
i+1 − Cn

i−1

2h

)
(0)

Solving for Cn+1
i results in

Cn+1
i = Cn

i − uτ

2h

(
Cn
i+1 − Cn

i−1

)
(1)

This method will be shown to be unconditionally unstable.

2.1.2 Downwind

Here, the forward time derivative for∂C∂t is used and also the forward space derivative for∂C∂x . This results in

Cn+1
i − Cn

i

τ
= −u

(
Cn
i+1 − Cn

i

h

)

Cn+1
i = Cn

i − uτ

h

(
Cn
i+1 − Cn

i

)
This method will be shown to be unconditionally unstable as well.

2.1.3 Upwind

Here, the forward time derivative for ∂C
∂t is used, and the backward derivative for∂C∂x is used. This results in

Cn+1
i − Cn

i

τ
= −u

(
Cn
i − Cn

i−1

h

)

Cn+1
i = Cn

i − uτ

h

(
Cn
i − Cn

i−1

)
This will be shown to be stable if uτ

h ≤ 1

2.1.4 LAX

Looking at the FTCS eq (1) above, and shown below again

Cn+1
i = Cn

i − uτ

2h

(
Cn
i+1 − Cn

i−1

)
The term Cn

i above is replaced by its average value
Cn

i+1+Cn
i−1

2 to obtain the LAX method

Cn+1
i =

1

2

(
Cn
i+1 + Cn

i−1

)
− uτ

2h

(
Cn
i+1 − Cn

i−1

)
(4)

This method will be shown to be stable if uτ
h ≤ 1

6

2.1.5 Lax-Wendroff

By using the second-order finite difference scheme for the time derivative, the method of Lax-Wendroff method
is obtained

Cn+1
i = Cn

i − uτ

2h

(
Cn
i+1 − Cn

i−1

)
+

u2τ2

2h2
(
Cn
i+1 + Cn

i−1 − 2Cn
i

)
2.1.6 Leap-frog

In this method, the centered derivative is used for both time and space. This results in

Cn+1
i − Cn−1

i

2τ
= −u

(
Cn
i+1 − Cn

i−1

2h

)
This method requires a special starting procedure due to the term Cn−1

i . Another scheme such as Lax can
be used to kick start this method.

2.2 Implicit Methods

2.2.1 Implicit FTCS

Given the explicit FTCS derived above

Cn+1
i − Cn

i

τ
= −u

(
Cn
i+1 − Cn

i−1

2h

)
The above is modified it by evaluating the space center derivative at time step n+ 1 instead of at time step

n, this results in

Cn+1
i − Cn

i

τ
= −u

(
Cn+1
i+1 − Cn+1

i−1

2h

)
(5A)

Hence

Cn+1
i +

uτ

2h
Cn+1
i+1 − uτ

2h
Cn+1
i−1 = Cn

i (5B)

Writing it in matrix form, first letting α = uτ
2h results in

1 0 0 0 · · · 0 0

−α 1 α 0 · · · 0 0

0 −α 1 α · · · 0 0

0 0 −α 1 α · · · 0
...

0 0 0 0 0 0 1





Cn+1
0

Cn+1
1

Cn+1
2

Cn+1
3
...

Cn+1
N−1


=



Cn
0

Cn
1

Cn
2

Cn
3
...

Cn
N−1


Where N is the number of space grid points.
The above is written as

Ax = b

Solving for x, which represents the solution at time step n + 1 or at time t = (n+ 1) τ . b represents the
current solution at time step n, and A is the matrix of the coefficients shown above.

Due to the form of the A matrix, (Called tri diagonal, or Block diagonal), an algorithm that takes advantages
of this form is used. This is called the Thomas algorithm. This greatly speeds up the solution. If we had used a
general algorithm to solve this system such as the Gauss elimination method, it would have been much slower,

7

making the implicit method not practical to use. (Some tests on the same data showed the Thomas algorithm to
be 50 times faster than Gaussian elimination).

2.2.2 Wendrof

This method uses center difference for the derivative around the space step
(
i+ 1

2

)
h and the time step

(
n+ 1

2

)
τ

This leads to the following scheme(
1− uτ

h

)
Cn+1
i +

(
1 +

uτ

h

)
Cn+1
i+1 =

(
1 +

uτ

h

)
Cn
i +

(
1− uτ

h

)
Cn
i+1

This can also be solved using similar matrix method to that used for the implicit FTCS. This method is not
used in this report.

2.2.3 Crank-Nicolson

By taking the average of the explicit FTCS and the implicit FTCS formulations (shown again below), the C-N
scheme is derived

Cn+1
i − Cn

i

τ
= −u

(
Cn
i+1 − Cn

i−1

2h

)
Cn+1
i − Cn

i

τ
= −u

(
Cn+1
i+1 − Cn+1

i−1

2h

)
Taking the average of the above results in

Cn+1
i − Cn

i

τ
= −u

2

(
Cn
i+1 − Cn

i−1

2h

)
− u

2

(
Cn+1
i+1 − Cn+1

i−1

2h

)

Cn+1
i +

uτ

4h
Cn+1
i+1 − uτ

4h
Cn+1
i−1 = Cn

i − uτ

4h
Cn
i+1 +

uτ

4h
Cn
i−1

Now the system Ax = b is setup to solve for future values as follows. Let α = uτ
4h , the system can be written

as 

1 0 0 0 0 0

−α 1 α 0 0 0

0 −α 1 α 0 0

0 0 −α 1 α 0

0 0 0 −α 1 0

0 0 0 0 0 1





Cn+1
0

Cn+1
1

Cn+1
2

Cn+1
3
...

Cn+1
N−1


=



Cn
0

Cn
1 − αCn

2 + αCn
0

Cn
2 − αCn

3 + αCn
1

Cn
3 − αCn

4 + αCn
2

...

Cn
N−1


Thomas algorithm is used to solve the above system for Cn+1

i .

8

3 Stability analysis

A numerical solution is stable if the ”energy content” remain below some limiting value no matter how long the
solution is integrated. In essence, this means that the solution does not ’blow up’ after some time. This can be
called BIBO stability (Bounded In Bounded Out).

Hence one way to analyze the stability of the numerical solution is to determine an expression that relates
the amplitude of the solution between 2 time steps, and to determine if this ratio remain less than or equal to a
unity as more and more time steps are taken.

This type of analysis is called Von Neumann stability analysis for numerical methods.
The analysis is based of finding an expression for the magnification factor of the wave amplitude at each

step. The solution will be stable if this magnification factor is less than one.
Let the magnification factor be ξ. The numerical scheme is stable iff

|ζ| ≤ 1

The Courant–Friedrichs–Lewy (CFL) criteria for stability says that

|ζ| ≤ 1 ⇔
∣∣∣uτ
h

∣∣∣ ≤ 1

Where u, h, and τ are as defined above: u is the wave speed, h = ∆x and τ = ∆t.
The number uτ

h is also called the courant number .
Some numerical methods will be shown to be unconditionally unstable (such as explicit FTCS and the

explicit upwind). This means that even if courant number was ≤ 1, the numerical solutions will eventually
become unstable.

Some explicit methods such as LAX, are conditionally stable if the courant number was ≤ 1.
Implicit methods are unconditionally stable, hence courant number is not used for these methods. However,

this does not mean one can take as large step as one wants with the implicit methods, since accuracy will be
affected even if the solution remain stable.

Hence, the best numerical scheme is one in which the largest step size can be taken, with the least amount of
inaccuracy in the numerical solution while remaining stable.

For numerical scheme that are conditionally stable, it can be seen from the CFL condition that for a fixed
speed u and fixed h, the maximum time step that can be taken is given by

τmax ≤ h

u

It can be immediately seen from above, that for the case when the advection speed is varying and is a
function of time such as the case when u (t) = t

20 implying that the speed is increasing with time, then when

using a fixed time step τ it will eventually become larger than h
u and the numerical scheme will be unstable. This

is because as u (t) is becoming larger and larger, while h is fixed, the term h
u will become smaller and smaller.

Hence to keep the courant number uτ
h ≤ 1 , the time step taken must remain less than h

u , hence using a fixed
time step with increasing u will eventually lead to instability.

This will affect the explicit methods that are conditionally stable such as the LAX method, since the Lax
method is explicit and depends on satisfying the CFL all the time for its stability. Implicit methods are stable
for any time step.

In the following we derive the details of the stability analysis and use Von Neumann analysis to derive an
expression for the amplification factor ζ for different numerical schemes.

So to summarize:

1. Explicit FTCS is unconditionally unstable.

2. Explicit LAX is stable if uτ
h ≤ 1, or in other words, τmax ≤ h

u

3. Implicit FTCS and C-R are stable for all τ

9

3.1 Stability analysis for FTCS

Using Von Neumann method, the following trial solution to the PDE is assumed

c (x, t) = A (t) ejkx

where j =
√
−1 and k is the wave number and A is the amplitude of the wave, as a function of time.

Hence the solution at time step n and at x = xi = ih is written as

Anejkih (2)

Substitute this trial solution (2) into the (1) results in

An+1ejkih = Anejkih − uτ

2h

(
Anejk(i+1)h −Anejk(i−1)h

)
(3)

Let ξ be the ratio of the amplitude of the wave at time step n+ 1 relative to that at time step n. hence

ξ =
An+1

An

Divide (3) by An results in

ξejkih = ejkih − uτ

2h

(
ejk(i+1)h − ejk(i−1)h

)
Divide the above by ejkih

ξ = 1− uτ

2h

(
ejkh − e−jkh

)
= 1− uτ

h
j sin (kh)

Hence

|ξ| =
√
1 +

(uτ
h

sin (kh)
)2

This implies that |ξ| ≥ 1 regardless of the time step τ selected or the space step h, hence

FTCS is unconditionally unstable.

For a fixed speed u, the instability can be delayed by making τ
h smaller, but it could not be prevented.

Eventually this numerical solution will blow up. This will be illustrated below in an animation. See case 3 and 4
as examples.

The instability can be delayed by making τ smaller for a fixed h, or by making h larger for a fixed τ .

3.2 Stability analysis of the downwind method

Cn+1
i = Cn

i − uτ

h

(
Cn
i+1 − Cn

i

)
Substitute the trial solution Anejkih into the above

An+1ejkih = Anejkih − uτ

h

(
Anejk(i+1)h −Anejkih

)
ξ = 1− uτ

h

(
ejkh − 1

)
= 1 +

uτ

h
− uτ

h
ejkh

= 1 +
uτ

h
− uτ

h
(cos (kh) + j sin (kh))

= 1 +
uτ

h
(1− cos kh)− j

uτ

h
sin kh

10

Let uτ
h = λ

Hence

ξ = 1 + λ (1− cos kh)− jλ sin kh

|ξ|2 = (1 + λ (1− cos kh))2 + (λ sin kh)2

= 1 + 2λ (1− cos kh) + λ2 (1− cos kh)2 + λ2 sin2 kh

= 1 + 2λ (1− cos kh) + λ2
(
1− 2 cos kh+ cos2 kh

)
+ λ2 sin2 kh

= 1 + 2λ− 2λ cos kh+ λ2 − 2λ2 cos kh+ λ2 cos2 kh+ λ2 sin2 kh

= 1 + 2λ− 2λ cos kh+ 2λ2 − 2λ2 cos kh

= 1 + 2λ (1 + λ) (1− cos kh)

Hence for stability it is required that

|1 + 2λ (1 + λ) (1− cos kh)| ≤ 1

or

2λ (1 + λ) (1− cos kh) ≤ 0

since λ = uτ
h , a positive quantity, then the above condition can not be satisfied. Hence the downwind method

is unconditionally unstable.

3.3 Stability analysis of the upwind method

Cn+1
i = Cn

i − uτ

h

(
Cn
i − Cn

i−1

)
Substitute the trial solution Anejkih into the above

An+1ejkih = Anejkih − uτ

h

(
Anejkih −Anejk(i−1)h

)
ξ = 1− uτ

h

(
1− e−jkh

)
= 1− uτ

h
+

uτ

h
e−jkh

= 1− uτ

h
+

uτ

h
(cos (kh)− j sin (kh))

= 1− uτ

h
(1− cos kh)− j

uτ

h
sin kh

Let uτ
h = λ

Hence

ξ = 1− λ (1− cos kh)− jλ sin kh

Hence

|ξ|2 = (1− λ (1− cos kh))2 + (λ sin kh)2

= 1− 2λ (1− cos kh) + λ2 (1− cos kh)2 + λ2 sin2 kh

= 1− 2λ+ 2λ cos kh+ λ2
(
1 + cos2 kh− 2 cos kh

)
+ λ2 sin2 kh

= 1− 2λ+ 2λ cos kh+ λ2 + λ2 cos2 kh− 2λ2 cos kh+ λ2 sin2 kh

= 1− 2λ+ 2λ cos kh+ 2λ2 − 2λ2 cos kh

= 1− 2λ (1− λ) (1− cos kh)

11

Hence for stability it is required that

|1− 2λ (1− λ) (1− cos kh)| ≤ 1

or

−2λ (1− λ) (1− cos kh) ≤ 0

Which will be true only if (1− λ) ≥ 0 or λ ≤ 1 hence this implies

uτ

h
≤ 1

Hence the upwind method is stable if the CFL condition is satisfied. This will be seen as the same stability
condition for the Lax method below.

3.4 Stability analysis of Lax

Replace the trial function from (2) in Lax formulation in (4) and obtain

An+1ejkih =
1

2

(
Anejk(i+1)h +Anejk(i−1)h

)
− uτ

2h

(
Anejk(i+1)h −Anejk(i−1)h

)
Divide by Anejkih , the magnification factor ζ is obtained

ζ =
1

2

(
ejkh + e−jkh

)
− uτ

2h

(
ejkh − e−jkh

)
= cos (kh)− j

uτ

h
sin (kh)

Hence

|ζ| =
√
cos2 (kh) +

(uτ
h

)2
sin2 (kh)

Since cos2 (kh) ≤ 1 and sin2 (kh) ≤ 1, then it is seen that |ζ| ≤ 1 if uτ
h ≤ 1

Hence the following is the condition for stability

τ ≤ h

u

As mentioned earlier, this is called the CFL condition.
The Lax method is stable for τ ≤ h

u however, a modified version of this method is more accurate, which is
the Lax-Wendroff method.

3.5 Stability of Lax-Wendroff

This is the same as the Lax method. The method is stable if τ ≤ h
u

3.6 Stability analysis of the Implicit FTCS

Replace the trial function from (2) in (5B) results in

An+1ejkih +
uτ

2h
An+1ejk(i+1)h − uτ

2h
An+1ejk(i−1)h = Anejkih

Divide by Anejkih

12

ξ +
uτ

2h
ξejkh − uτ

2h
ξe−jkh = 1

ξ
(
1 +

uτ

2h
ejkh − uτ

2h
e−jkh

)
= 1

ξ
(
1 + j

uτ

h
sin (kh)

)
= 1

ξ =
1

1 + j uτh sin (kh)
=

1− j uτh sin (kh)

1 + uτ
h sin (kh)

Hence

|ξ| =

√
1 +

(
uτ
h

)2
sin2 (kh)

1 + uτ
h sin (kh)

< 1

Hence this shows that the

Implicit FTCS method is unconditionally stable.

This property is common to all implicit methods.
Even though the implicit FTCS is stable, it is not very accurate. See case 8 below for an example.

13

4 Solution Results and Output

For the Fortran implementation, the following methods are implemented. The explicit FTCS, Explicit Lax,
Implicit FTCS, and Implicit Crank-Nicolson.

For each method, the following was generated

1. CPU time used for the run.

2. snap shot of the solution at t = 0, t = 15, and t = 30 minutes.

3. RMSE between the numerical solution and the analytical solution.

4. Animation of the numerical solution. The animation was done by taking snapshots of the solution at
regular intervals in Fortran. These were saved to disk. Then Mathematica was used to generate the
animation and the plots.

To compare the stability and accuracy of the methods, the time step was changed (increased) and a new run
was made. 8 different values of time steps are used. So there are 8 tests cases. These 8 test cases were run for
both fixed speed (u = 2 ft/min) and for u = t

20 ft/min.
This table below summarizes these cases. The appendix contains all the plots. The animations are added as

HTML links.

4.1 Case 1

τ = 0.0001 sec, h = 0.1 ft

Speed Method CPU time (sec) RMSE Animation (2D) plots

U=2 Explicit FTCS 20 0.0546

Explicit LAX 31 0.0543

Implicit FTCS 45 0.0548

C-R 49 0.0544

U=t/20 Explicit FTCS 21 0.003

Explicit LAX 31 0.0031

Implicit FTCS 67 0.0031

C-R 69 0.0032

Note the following: The explicit FTCS remained stable throughout the run due to the small time step. All
other methods were stable as well during the run. For the CPU for the varying u case, notice that for the
implicit methods this value is larger than the CPU for the same methods but when u is fixed. This is due to the
fact that the matrix A is no longer constant, and must be recomputed at each time step before calling Thomas
algorithm to solve Ax = b system.

Also notice that the CPU time for the implicit methods is larger than the explicit methods. This is due to
the extra computational cost in solving Ax = b. Even when using Thomas algorithm, this is still more expensive
than the explicit methods when number of time steps is large.

14

4.2 Case 2

τ = 0.001 sec, h = 0.1 ft

Speed Method CPU time (sec) RMSE Animation (2D) plots

U=2 Explicit FTCS 2.42 0.01264

Explicit LAX 3.48 0.0057

Implicit FTCS 4.7 0.00742

C-R 4.9 0.00575

U=t/20 Explicit FTCS 2.5 0.00352

Explicit LAX 3.5 0.00329

Implicit FTCS 7 0.00337

C-R 7.5 0.0033

The explicit FTCS is stable for most of the run, near the end it is starting to be become unstable.
Notice that around 26 minutes that ”bubbles” are starting to show up in the numerical solution downstream.

This is a characteristic of how this method becomes unstable.
This will be more clear in the next test cases when the time step is made larger. For the varying speed case,

the explicit method using the same time step remained stable during the whole 30 minutes. This is because the
average speed was less than 2 ft/min, hence the mass did not have to travel as long a distance as with fixed
speed of u = 2, and so the instability did not show up. Mathematically this can be explained by looking at the
term uτ

h , hence for smaller u, the courant number is smaller. Notice also the RMSE is smaller for variable speed
compared to fixed speed. Again this is related to the smaller average speed making the courant number smaller.

4.3 Case 3

In this case, we slightly make the time step longer than before. We start to see the instability of FTCS.
τ = 0.0013 sec, h = 0.1 ft, uτ

h = 0.026 ≤ 1 for fixed u

Speed Method CPU time (sec) RMSE Animation (2D) plots

U=2 Explicit FTCS 1.9 0.0494

Explicit LAX 2.78 0.01125

Implicit FTCS 3.7 0.01245

C-R 3.9 0.01128

U=t/20 Explicit FTCS 2.0 0.00365

Explicit LAX 2.9 0.00331

Implicit FTCS 5.56 0.00346

C-R 6 0.00331

For explicit FTCS, The solution now starting to show instability at 25 minutes. Lax remained stable since
CFL is satisfied. Explicit FTCS is becoming less accurate as well. Explicit Lax is most accurate at this time
step.

4.4 Case 4

In this case, we slightly make the time step even longer than before. Now FTCS becomes more unstable.
τ = 0.0015 sec, h = 0.1 ft, uτ

h = 0.03 ≤ 1.

15

Speed Method CPU time (sec) RMSE Animation (2D) plots

U=2 Explicit FTCS 1.73 0.15249

Explicit LAX 2.56 0.000563

Implicit FTCS 3.34 0.009005

C-R 3.45 0.00565

U=t/20 Explicit FTCS 1.84 0.00380

Explicit LAX 2.53 0.00336

Implicit FTCS 4,73 0.00358

C-R 5 0.003373

FTCS Instability starts at around 20 minutes. LAX remained stable since CFL is satisfied. Lax remained
the most accurate at this time step. It accuracy actually improved as the time step became larger.

4.5 case 5

Again the time step is made longer than before. Now the explicit FTCS is completely unstable.
τ = 0.045 sec, h = 0.1 ft
For the case of fixed U , we have uτ

h = 2×0.045
0.1 = 0.9 ≤ 1, while for varying U , the maximum value will

be at the end of the run, which is 30/20 = 1.5 ft/min., hence the CFL condition is changing, with a value of
1.5×0.045

0.1 = 0.675 at the end of the run which is still ≤ 1

Speed Method CPU time (sec) RMSE Animation (2D) plots

U=2 Explicit FTCS 0.73 blows up

Explicit LAX 0.281 0.000162

Implicit FTCS 0.437 0.1306

C-R 0.4 0.01028

U=t/20 Explicit FTCS 0.28 blow up

Explicit LAX 0.3 0.01117

Implicit FTCS 0.40 0.0386

C-R 0.4 0.01197

For the varying speed case, the explicit FTCS remained stable for the duration of the run as compared to the
case with the fixed speed. This is because the average wave speed is less than with the fixed wave speed case.

The magnification factor depends on the speed of the wave.

|ξ| =
√
1 +

(uτ
h

sin (kh)
)2

With the varying speed case, the coefficient uτ
h was smaller during the whole run, since the maximum speed

u attained will be 1.5 ft/min. as compared to 2 ft/min. in the fixed u case.

We see than the smaller the speed u the smaller the magnification (with everything else being fixed).

If we have run the simulation a little longer for the varying speed case, we will see the instability with explicit
FTCS. This below is a diagram showing 2 runs using the explicit FTCS both with u = t

20 ft/min, one was run
for 30 minutes, and the second for 53 minutes. The run to 30 minutes showed no instability while the run for 53
minutes showed the instability. This show the explicit FTCS will eventually become unstable.

16

This is an animation of the above

17

4.6 case 6

In this case, the time step is increased so that uτ
h is just above the CFL condition.

Notice now that the Explicit LAX method become unstable as expected. The other implicit methods remain
stable. the explicit FTCS method now is completely unstable. The implicit FTCS method is starting to become
less accurate.

τ = 0.05025 sec, h = 0.1 ft, uτ
h = 2×0.05025

0.1 = 1. 005 > 1

Speed Method CPU time (sec) RMSE Animation (2D) plots

U=2 Explicit FTCS 0.7 blows up N/A blows up

Explicit LAX 0.25 0.1006

Implicit FTCS 0.5 0.13945

C-R 0.468 0.01104

U=t/20 Explicit FTCS 0.28 blows up N/A blows up

Explicit LAX 0.31 0.04385

Implicit FTCS 0.45 0.0428

C-R 0.56 0.01317

Notice that explicit LAX takes much less CPU than any other method.

4.7 case 7

τ = 0.06 sec, h = 0.1 ft, uτ
h = 2×0.06

0.1 = 1. 2 > 1

Speed Method CPU time (sec) RMSE Animation (2D) plots

U=2 Explicit FTCS 0.65 blows up N/A blows up

Explicit LAX 0.9 blows up

Implicit FTCS 0.42 0.1531

C-R 0.41 0.01244

U=t/20 Explicit FTCS 0.265 blows up N/A blows up

Explicit LAX 0.29 0.01389

Implicit FTCS 0.36 0.0493

C-R 0.36 0.01525

Notice that the CPU for the implicit method when speed is fixed is now higher than the CPU for the explicit
methods. This can be explained as follows: since the time step now is larger than before, the number of times to
solve Ax = b has been reduced. This made the implicit methods faster.

This implies that

Using a relatively large time step, implicit methods become faster than the explicit methods.

18

4.8 case 8

τ = 0.07 sec, h = 0.1 ft, uτ
h = 2×0.07

0.1 = 1. 4 > 1

Speed Method CPU time (sec) RMSE Animation (2D) plots

U=2 Explicit FTCS 0.5 blows up N/A blows up

Explicit LAX 0.89 blows up

Implicit FTCS 0.453 0.1653

C-R 0.36 0.01403

U=t/20 Explicit FTCS 0.234 blows up N/A blows up

Explicit LAX 0.2187 0.01564

Implicit FTCS 0.344 0.0557

C-R 0.312 0.0174

19

4.9 CPU comparison tables

As expected, CPU time usage will be less as the time step is increased. There is an anomaly cased noticed where
the CPU time increased for the Lax method when the time step is increased from 0.05025 to 0.06 , This needs
further investigation.

This table below summarizes the CPU time in seconds used by each method for the case of constant speed
as time step is increased.

τ sec Explicit FTCS Explicit LAX Implicit FTCS C −R

0.0001 20 31 45 49

0.001 2.42 3.48 4.7 4.9

0.0013 1.9 2.78 3.7 3.9

0.0015 1.7 2.56 3.34 3.45

0.045 0.73 0.281 0.43 0.4

0.05025 0.7 0.25 0.5 0.468

0.06 0.65 0.9 0.4 0.41

0.07 0.5 0.89 0.45 0.36

This is the plot of the above table

This table below summarizes the CPU time in seconds used by each method for the case of varying speed
as time step is increased.

τ sec Explicit FTCS Explicit LAX Implicit FTCS C −R

0.0001 21 31 67 69

0.001 2.5 3.5 7 7.5

0.0013 2 2.9 5.56 6

0.0015 1.8 2.53 4.73 5

0.045 0.28 0.54 0.45 0.45

0.05025 0.28 0.31 0.45 0.56

0.06 0.265 0.29 0.36 0.36

0.07 0.23 0.22 0.33 0.31

This is the plot of the above table

20

This plot below compares the CPU time for each method when the speed is constant vs. when the speed was
changing with time.

21

22

4.10 Accuracy comparison tables

This table below summarizes the RMS error from each numerical method as a function of changing the time
step size. This is for case of constant speed.

time step Explicit FTCS Explicit LAX Implicit FTCS C −R

0.0001 0.0546 0.0543 0.0548 0.0544

0.001 0.01264 0.0057 0.00742 0.00575

0.0013 0.0494 0.01125 0.01245 0.00128

0.0015 0.15249 0.00056 0.009 0.0056

0.045 blows up 0.000162 0.1306 0.01028

0.05025 blows up 0.1006 0.1394 0.011

0.06 blows up blows up 0.1531 0.01244

0.07 blows up blows up 0.1653 0.01403

Notice that the Lax method became more accurate when the time step was increased from 0.0001 to 0.04
seconds, then it starts to become less accurate as time step is increased. This is counter intuitive to what one
can expect. It will be interesting to investigate this further to obtain a mathematical explanation for this strange
phenomena.

The accuracy of the implicit FTCS, and C-R also increased slightly as the time step became larger from
0.0001 to 0.0015, then the implicit FTCS became worst in terms of accuracy as the time step increased.

C-R method accuracy did not deteriorate as much with increasing the time step. This shows the C-R scheme
to be more robust.

This table below summarizes the RMS error from each numerical method as a function of changing the time
step size. This is for case of changing speed.

time step Explicit FTCS Explicit LAX Implicit FTCS C −R

0.0001 0.003 0.003 0.003 0.0030

0.001 0.00352 0.00329 0.0033 0.0033

0.0013 0.00365 0.00331 0.00346 0.0033

0.0015 0.0038 0.00336 0.0035 0.00337

0.045 blows up 0.01117 0.0386 0.0119

0.05025 blows up 0.04385 0.0428 0.01317

0.06 blows up 0.01389 0.0493 0.01525

0.07 blows up 0.01564 0.0557 0.0174

The effect of having the speed defined as µ = t
20 is to delay instability for the explicit methods as time step is

increased. Notice also here the case where the Lax method became more accurate as the time step is increased
from 0.0001 to 0.0015.

23

5 Conclusion

4 different numerical finite difference schemes are examined for CPU time, stability and accuracy in solving the
advection PDE for constant speed and for a speed which is a function of time.

For accuracy, an interesting result is observed. The Lax scheme is the most accurate for Courant number
close to unity. This means as the time step is increased, the Lax become more accurate of the 4 methods. But
beyond the CFL condition, Both explicit methods (FTCS and Lax) became less accurate. Explicit FTCS became
unstable sooner than Lax, while the implicit methods remained stable.

The implicit FTCS was less accurate than the C-R method. This implies that one should use the Lax
method if one can be satisfied with a time step such that the courant number is close to a unit.

For stability, Crank-Nicolson was the most stable of all methods. Stability by itself is not sufficient condition
to use to select a numerical scheme. It must also be accurate. The C-R method has both these properties for
the range of the time steps considered. But as mentioned above, there is a range of time steps in which the Lax
method is more accurate than all the other methods.

For CPU usage, the explicit methods used less CPU time when the time step was small, up to 0.0015 sec .
This can be explained as follows: for small step size, the number of time to solve Ax = b is large. Hence the
implicit methods will be slower. As the time step is increased to the range of 0.045 sec and over, the implicit
methods actually became more CPU efficient due to the fact that the number of times to solve Ax = b is less
because the number of steps is less.

In conclusion, the selection of a finite difference scheme depends on many factors. Stability and accuracy
being the most important. The time step size plays a critical rule. For Courant number close to a unity, the Lax
method is the most attractive. For larger time steps, the C-R method should be considered.

24

6 Appendix

6.1 Plots

6.1.1 case 1

25

26

6.1.2 case 2

27

28

6.1.3 case 3

29

30

6.1.4 case 4

31

32

6.1.5 case 5

33

34

6.1.6 case 6

35

36

6.1.7 case 7

37

38

6.1.8 case 8

39

40

6.2 Source code

1 !***
2 !*
3 !* Solve the advection PDE using Explicit FTCS,
4 !* Explicit Lax, Implicit FTCS, and implicit Crank-Nicolson
5 !* methods for constant and varying speed.
6 !*
7 !* Solve dc/dt = -u dc/dx
8 !* u = t/20 ft/minute
9 !* and

10 !* u constant
11 !*
12 !* Compiler used: gnu 95 (g95) on Cygwin. Gcc 3.4.4
13 !* Date: June 20 2006
14 !*
15 !* by Nasser Abbasi
16 !***
17

18 PROGRAM advection
19 IMPLICIT NONE
20

21 REAL :: DT,DX,max_run_time,length,snapshot_∆, &
22 first_limit,second_limit
23 INTEGER :: N,SNAPSHOTS
24 character(10) :: cmd_arg ! to read time step from command line
25

26 INTEGER :: method ! 1=FTCS, 2=LAX, 3=Implicit FTCS, 4=C-R
27 INTEGER :: mode ! 1=Fixed wind speed, 2=speed function of time
28

29 REAL :: t_start, t_end, cpu_time_used,end_line(1002)
30 INTEGER :: ALL_DATA_FILE_ID
31 PARAMETER(ALL_DATA_FILE_ID=900)
32

33 ! Initialize data. All methods will use the same
34 ! parameters to make comparing them easier
35

36 ! read ∆ t from command line.
37 CALL getarg(1,cmd_arg)
38 cmd_arg=TRIM(cmd_arg)
39 print *,'= ', cmd_arg
40 read(cmd_arg,*)dt !∆ in time, in minutes
41

42 print *,'Dt=',DT
43

44 N = 1000 ! number of grid points in space
45 length = 100 ! length of space solution in feet
46

47 first_limit = 0.25*length
48 second_limit = 0.35*length
49

50 DX = length/N ! ∆ in space, in feets
51

52 max_run_time = 30.0 ! how long to run for in minutes
53 SNAPSHOTS = 200 ! number of snapshots per run. Used for animation
54

55 snapshot_∆ = max_run_time / SNAPSHOTS ! time between each snap shot
56

57 print *,'DT=',DT,' minutes, DX=',DX,' feets'
58 print *,'taking snapshots every ', snapshot_∆ ,' minutes'
59

60 DO mode=1,2
61 print*,'=======> processing mode ',mode
62 DO method=1,4 ! No enumeration data types in Fotran 90
63

64 CALL CPU_TIME(t_start) ! get current CPU time
65 CALL process(mode,method,N,DT,DX,max_run_time,snapshot_∆,&
66 first_limit,second_limit)
67 CALL CPU_TIME(t_end) ! get current CPU time
68

69 cpu_time_used = t_end - t_start
70

71 WRITE(*,FMT='(A,I2,A,F12.5)') 'CPU TIME used for method', method, ' = ', cpu_time_used
72 ! Now record test case parameters in last line

41

73 end_line=0
74 end_line(1)=cpu_time_used
75 end_line(2)=DT
76 end_line(3)=DX
77 end_line(4)=mode
78 end_line(5)=method
79

80 WRITE(UNIT=ALL_DATA_FILE_ID,FMT=*) end_line
81 CLOSE(ALL_DATA_FILE_ID)
82

83 END DO
84 END DO
85

86 END PROGRAM advection
87 !************************************
88 !*
89 !*
90 !************************************
91 SUBROUTINE process(mode,method,N,DT,DX,max_run_time,snapshot_∆,&
92 first_limit,second_limit)
93 IMPLICIT NONE
94

95 INTEGER, INTENT(IN) :: mode,method,N
96 REAL, INTENT(IN) :: DT,DX,max_run_time,snapshot_∆,&
97 first_limit,second_limit
98

99 INTEGER :: I
100 LOGICAL :: snap_shot_at_15_taken
101 INTEGER :: ALL_DATA_FILE_ID
102 PARAMETER(ALL_DATA_FILE_ID=900)
103 REAL :: snap_current_time
104 REAL :: current_time
105 REAL :: C(N) ! current solution
106 REAL :: CNEW(N) ! future solution
107 REAL :: CEXACT(N) ! current exact solution
108 REAL :: current_first_limit
109 REAL :: A(N,N),aa(N),b(2:N),cc(N-1),CTEMP(N) ! for C-R and implicit FTCS
110 REAL :: K,speed
111 REAL :: error,RMS ! root mean square error between current and initial sol.
112

113 current_time = 0.
114 snap_current_time = 0.
115

116 CALL initialize_solution(C,N,DX,first_limit,second_limit)
117 CEXACT = C
118 current_first_limit = first_limit
119

120 CALL pre_loop_initialization(mode,method,current_time,K, &
121 DT,DX,N,C,ALL_DATA_FILE_ID, &
122 A,aa,b,cc)
123

124 snap_shot_at_15_taken=.FALSE.
125

126 DO WHILE(current_time < max_run_time)
127

128 IF(snap_current_time ≥ snapshot_∆) THEN
129 snap_current_time = 0.
130 WRITE(UNIT=ALL_DATA_FILE_ID, FMT=*) current_time, error, C
131 END IF
132

133 SELECT CASE(method)
134

135 CASE(1:2)
136

137 IF(method==1) THEN ! ftcs
138 IF(mode==2)THEN
139 K = speed(mode,current_time)*DT/(2.*DX)
140 ENDIF
141

142 DO I = 2,N-1
143 CNEW(I) = C(I) - K * (C(I+1) - C(I-1))
144 END DO
145 ELSE !lax
146 IF(mode == 2) THEN
147 K = speed(mode,current_time)*DT/(DX)
148 ENDIF

42

149

150 DO I = 2,N-1
151 CNEW(I) = C(I) - K/2. * (C(I+1) - C(I-1)) + &
152 (K**2.)/2 * (C(I+1) +C(I-1)-2.*C(I))
153 END DO
154 END IF
155

156 CNEW(1) = C(1)
157 CNEW(N) = C(N) ! Boundary conditions
158 C=CNEW
159

160 CASE(3) ! implicit ftcs
161

162 IF(mode == 2) THEN ! only need to update Matrix for varying U
163 K = speed(mode,current_time)*DT/(2.*DX)
164

165 CALL init_A_matrix(A,K,N)
166 CALL init_diagonal_vectors(N,A,cc,aa,b)
167 END IF
168

169 CALL solve_thomas_algorithm(N,aa,b,cc,C,CNEW)
170 C = CNEW
171

172 CASE(4) ! C-R
173

174 IF(mode == 2) THEN !only need to update A if U changes
175 K = speed(mode,current_time)*DT/(4*DX) ! C-R
176 CALL init_A_matrix(A,K,N)
177 CALL init_diagonal_vectors(N,A,cc,aa,b)
178 END IF
179

180 CTEMP(1) = C(1)
181 CTEMP(N) = C(N)
182

183 DO I=2,N-1
184 CTEMP(I)=C(I)+K*C(I-1)-K*C(I+1)
185 END DO
186

187 CALL solve_thomas_algorithm(N,aa,b,cc,CTEMP,C)
188

189 END SELECT
190

191 IF(current_time≥15.0 .AND. (.NOT. snap_shot_at_15_taken)) THEN
192 snap_shot_at_15_taken = .TRUE.
193 CALL take_one_snap_shot(mode,method,15,N,C,DX)
194 END IF
195

196 current_time = current_time + DT
197 current_first_limit = current_first_limit + speed(mode,current_time)*DT
198 CALL get_current_exact_solution(CEXACT,N,current_first_limit,DX)
199 error = RMS(CEXACT,C,N)
200

201 snap_current_time = snap_current_time + DT
202

203 END DO
204

205 CALL take_one_snap_shot(mode,method,30,N,C,DX)
206

207 END SUBROUTINE process
208 !************************************
209 !*
210 !*
211 !************************************
212 SUBROUTINE pre_loop_initialization(mode,method,current_time,K,&
213 DT,DX,N,C,ALL_DATA_FILE_ID,&
214 A,aa,b,cc)
215 IMPLICIT NONE
216

217 INTEGER, INTENT(IN) :: mode,method,N,ALL_DATA_FILE_ID
218 REAL, INTENT(IN) :: C(N),DT,DX,current_time
219 REAL, INTENT(OUT) :: K,A(N,N),aa(N),b(2:N),cc(N-1)
220 REAL :: speed
221

222 SELECT CASE(method)
223 CASE(1) ! FTCS
224

43

225 K = speed(mode,current_time)*DT/(2.*DX)
226

227 IF(mode==1) THEN
228 OPEN(UNIT=ALL_DATA_FILE_ID, file='expAll.txt') ! all time shots
229 CALL print_to_file(C,'exp0.txt',N,DX)
230 ELSE
231 OPEN(UNIT=ALL_DATA_FILE_ID, file='exp_extraAll.txt') ! all time shots
232 CALL print_to_file(C,'exp_extra0.txt',N,DX)
233 END IF
234

235 CASE(2) ! Lax
236

237 K = speed(mode,current_time)*DT/(DX)
238

239 IF(mode==1) THEN
240 OPEN(UNIT=ALL_DATA_FILE_ID, file='laxAll.txt') ! all time shots
241 CALL print_to_file(C,'lax0.txt',N,DX)
242 ELSE
243 OPEN(UNIT=ALL_DATA_FILE_ID, file='lax_extraAll.txt') ! all time shots
244 CALL print_to_file(C,'lax_extra0.txt',N,DX)
245 END IF
246

247 CASE(3) ! Implicit FTCS
248

249 K = speed(mode,current_time)*DT/(2.*DX)
250

251 CALL init_A_matrix(A,K,N)
252 CALL init_diagonal_vectors(N,A,cc,aa,b)
253

254 IF(mode==1) THEN
255 OPEN(UNIT=ALL_DATA_FILE_ID, file='impAll.txt') ! all time shots
256 CALL print_to_file(C,'imp0.txt',N,DX)
257 ELSE
258 OPEN(UNIT=ALL_DATA_FILE_ID, file='imp_extraAll.txt') ! all time shots
259 CALL print_to_file(C,'imp_extra0.txt',N,DX)
260 END IF
261

262 CASE(4) ! C-R
263

264 K = speed(mode,current_time)*DT/(4*DX) ! C-R
265

266 CALL init_A_matrix(A,K,N)
267 CALL init_diagonal_vectors(N,A,cc,aa,b)
268

269 IF(mode==1) THEN
270 OPEN(UNIT=ALL_DATA_FILE_ID, file='crAll.txt') ! all time shots
271 CALL print_to_file(C,'cr0.txt',N,DX)
272 ELSE
273 OPEN(UNIT=ALL_DATA_FILE_ID, file='cr_extraAll.txt') ! all time shots
274 CALL print_to_file(C,'cr_extra0.txt',N,DX)
275 END IF
276 END SELECT
277

278 WRITE(UNIT=ALL_DATA_FILE_ID, FMT=*) current_time,0, C
279

280 END SUBROUTINE pre_loop_initialization
281 !************************************
282 !*
283 !*
284 !************************************
285 SUBROUTINE init_diagonal_vectors(N,A,cc,aa,b)
286 IMPLICIT NONE
287

288 INTEGER, INTENT(IN) ::N
289 REAL, INTENT(IN) ::A(N,N)
290 REAL, INTENT(OUT) ::aa(N),b(2:N),cc(N-1)
291

292 INTEGER ::I,J
293

294 J=2
295 DO I=1,N-1
296 cc(I)=A(I,J)
297 J=J+1
298 END DO
299 cc(1)=0
300

44

301 DO I=1,N
302 aa(I)=A(I,I)
303 END DO
304

305 J=1
306 DO I=2,N
307 b(I)=A(I,J)
308 J=J+1
309 END DO
310

311 END SUBROUTINE init_diagonal_vectors
312 !************************************
313 !*
314 !*
315 !************************************
316 SUBROUTINE initialize_solution(C,N,DX,first_limit,second_limit)
317 IMPLICIT NONE
318

319 INTEGER, INTENT(IN) :: N
320 REAL, INTENT(IN) :: DX,first_limit,second_limit
321 REAL, INTENT(INOUT) :: C(0:N-1)
322

323 INTEGER :: I
324 REAL :: x, PI,av,R
325

326 PARAMETER(PI = ACOS(-1.))
327

328 x = 0
329 av = (second_limit+first_limit)/2.0
330 R = av - first_limit
331

332 C = 0.0
333

334 DO I=0,N-1
335

336 IF(x ≥ first_limit .AND. x ≤ second_limit) THEN
337 C(I) = 1 + COS(PI * (x-av)/R)
338 END IF
339

340 x = x + DX
341 END DO
342

343 END SUBROUTINE initialize_solution
344 !************************************
345 !*
346 !*
347 !************************************
348 SUBROUTINE print_to_file(C,file_name,N,DX)
349 IMPLICIT NONE
350

351

352 REAL, INTENT(IN) :: C(N),DX
353 INTEGER, INTENT(IN) :: N
354

355 CHARACTER* (*), INTENT(IN) :: file_name
356

357 INTEGER :: I
358 INTEGER :: FILE_ID
359 PARAMETER(FILE_ID=999)
360 REAL :: current_position
361

362 OPEN(UNIT=FILE_ID, file=file_name)
363

364 current_position = 0;
365 DO I=1,N
366

367 WRITE(UNIT=FILE_ID, FMT=*) current_position ,'\t', C(I)
368 current_position = current_position + DX
369

370 END DO
371

372 CLOSE(FILE_ID)
373

374 END SUBROUTINE print_to_file
375 !************************************
376 !*

45

377 !*
378 !************************************
379 SUBROUTINE init_A_matrix(A,K,N)
380 IMPLICIT NONE
381

382 INTEGER, INTENT(IN) ::N
383 REAL, INTENT(IN) ::K
384 REAL, INTENT(OUT) ::A(N,N)
385

386 INTEGER ::I
387

388 DO I = 2,N-1
389 A(I,I-1) = -K
390 A(I,I) = 1
391 A(I,I+1) = K
392 END DO
393

394 A(1,1) = 1
395 A(N,N) = 1
396

397 END SUBROUTINE init_A_matrix
398 !************************************
399 !*
400 !*
401 !************************************
402 SUBROUTINE solve_thomas_algorithm(N,aa,b,c,old_c,new_c)
403 IMPLICIT NONE
404

405 REAL, INTENT(IN) :: aa(N),b(2:N),c(N-1),old_c(N)
406 INTEGER, INTENT(IN) :: N
407 REAL, INTENT(INOUT) :: new_c(N)
408

409 INTEGER :: I
410 REAL :: alpha(N),beta(2:N),g(N)
411

412 alpha(1) = aa(1)
413 DO I=2,N
414 beta(I)=b(I)/alpha(I-1)
415 alpha(I)=aa(I)-beta(I)*c(I-1)
416 END DO
417

418 g(1)=old_c(1)
419 DO I=2,N
420 g(I)=old_c(I)-beta(I)*g(I-1)
421 END DO
422

423 new_c(N)=g(N)/alpha(N)
424 DO I=N-1,1,-1
425 new_c(I)=(g(I)-c(I)*new_c(I+1))/alpha(I)
426 END DO
427

428 END SUBROUTINE solve_thomas_algorithm
429 !************************************
430 !*
431 !*
432 !************************************
433 REAL FUNCTION speed(MODE,time)
434 IMPLICIT NONE
435

436 INTEGER, INTENT(IN) :: MODE
437 REAL, INTENT(IN) :: time
438

439 IF(MODE == 1) THEN
440 speed=2.0
441 ELSE
442 speed=time/20.0
443 END IF
444

445 END FUNCTION speed
446 !************************************
447 !*
448 !*
449 !************************************
450 SUBROUTINE take_one_snap_shot(mode,method,TIME,N,C,DX)
451 IMPLICIT NONE
452

46

453 INTEGER, INTENT(IN) ::TIME,mode,method,N
454 REAL, INTENT(IN) ::C(N),DX
455

456 IF(TIME==15) THEN
457 SELECT CASE(method)
458 CASE(1)
459 IF(mode==1) THEN
460 CALL print_to_file(C,'exp15.txt',N,DX)
461 ELSE
462 CALL print_to_file(C,'exp_extra15.txt',N,DX)
463 END IF
464 CASE(2)
465 IF(mode==1) THEN
466 CALL print_to_file(C,'lax15.txt',N,DX)
467 ELSE
468 CALL print_to_file(C,'lax_extra15.txt',N,DX)
469 ENDIF
470 CASE(3)
471 IF(mode==1) THEN
472 CALL print_to_file(C,'imp15.txt',N,DX)
473 ELSE
474 CALL print_to_file(C,'imp_extra15.txt',N,DX)
475 END IF
476 CASE(4)
477 IF(mode==1) THEN
478 CALL print_to_file(C,'cr15.txt',N,DX)
479 ELSE
480 CALL print_to_file(C,'cr_extra15.txt',N,DX)
481 END IF
482 END SELECT
483 ELSE
484 SELECT CASE(method)
485 CASE(1)
486 IF(mode==1) THEN
487 CALL print_to_file(C,'exp30.txt',N,DX)
488 ELSE
489 CALL print_to_file(C,'exp_extra30.txt',N,DX)
490 END IF
491 CASE(2)
492 IF(mode==1) THEN
493 CALL print_to_file(C,'lax30.txt',N,DX)
494 ELSE
495 CALL print_to_file(C,'lax_extra30.txt',N,DX)
496 ENDIF
497 CASE(3)
498 IF(mode==1) THEN
499 CALL print_to_file(C,'imp30.txt',N,DX)
500 ELSE
501 CALL print_to_file(C,'imp_extra30.txt',N,DX)
502 END IF
503 CASE(4)
504 IF(mode==1) THEN
505 CALL print_to_file(C,'cr30.txt',N,DX)
506 ELSE
507 CALL print_to_file(C,'cr_extra30.txt',N,DX)
508 END IF
509 END SELECT
510 END IF
511 END SUBROUTINE take_one_snap_shot
512 !************************************
513 !*
514 !*
515 !************************************
516 REAL FUNCTION RMS(CEXACT,C,N)
517 IMPLICIT NONE
518

519 REAL, INTENT(IN) :: CEXACT(N),C(N)
520 INTEGER, INTENT(IN) :: N
521

522 INTEGER :: I
523

524 RMS=0.
525 DO I=1,N
526 RMS = RMS+(CEXACT(I)-C(I))**2
527 END DO
528

47

529 RMS = RMS/N
530 RMS = SQRT(RMS)
531 END FUNCTION RMS
532 !************************************
533 !*
534 !*
535 !************************************
536 SUBROUTINE get_current_exact_solution(CEXACT,N,current_first_limit,DX)
537 IMPLICIT NONE
538 REAL, INTENT(IN) :: current_first_limit,DX
539 REAL, INTENT(OUT) :: CEXACT(0:N-1)
540 INTEGER, INTENT(IN) :: N
541

542 INTEGER :: I
543 REAL :: first_limit
544 REAL :: second_limit
545 REAL :: av,R,shift,x,PI
546

547 PARAMETER(PI = ACOS(-1.))
548

549 first_limit = 25.0
550 second_limit = 35.0
551

552 shift = current_first_limit - FIRST_LIMIT
553 first_limit = current_first_limit
554 second_limit = second_limit + shift
555

556 av = (second_limit+first_limit)/2.0
557 R = av - first_limit
558

559 CEXACT = 0.
560 x = 0.
561 DO I = 0,N-1
562

563 IF(x ≥ first_limit .AND. x ≤ second_limit) THEN
564 CEXACT(I) = 1 + COS(PI * (x -av)/R)
565 END IF
566

567 x = x + DX
568 END DO
569 END SUBROUTINE get_current_exact_solution

7 References

1. Numerical Methods for physics. Second edition. Alejandro Garcia

2. Applied Numerical Methods for Engineers. Terrence Akal.

3. Computational Techniques for fluid dynamics. Second edition. C.A.J.Fletcher

48

	Introduction
	Backward difference (Upwind)
	Forward difference (downwind)
	Center difference

	Numerical schemes
	Explicit Methods
	FTCS
	Downwind
	Upwind
	LAX
	Lax-Wendroff
	Leap-frog

	Implicit Methods
	Implicit FTCS
	Wendrof
	Crank-Nicolson

	Stability analysis
	Stability analysis for FTCS
	Stability analysis of the downwind method
	Stability analysis of the upwind method
	Stability analysis of Lax
	Stability of Lax-Wendroff
	Stability analysis of the Implicit FTCS

	Solution Results and Output
	Case 1
	Case 2
	Case 3
	Case 4
	case 5
	case 6
	case 7
	case 8
	CPU comparison tables
	Accuracy comparison tables

	Conclusion
	Appendix
	Plots
	case 1
	case 2
	case 3
	case 4
	case 5
	case 6
	case 7
	case 8

	Source code

	References

