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Solve
ou 0%u
Ryl 0
ot Ox?
O<z<L
t>0
Initial conditions
uw(0,z) =

Boundary conditions

u (0,t) = sin (¢)
u(t,L) =
Let
u=v+ug (2)

where ug (z,t) is steady state solution that only needs to satisfy boundary conditions and v (z,t) satisfies
the PDE itself but with homogenous B.C. At steady state, the PDE becomes

d2uE
0=k In2
up (0) = sin (t)

The solution is ug (t) = (£%) sin (t). Hence (2) becomes
I —
u(x,t) =v(x,t)+ <Lx) sin (t)

Substituting the above in (1) gives

- 2
v + (L z) cos (t) = kﬂ

ot L Ox?
o O x—L (t)
ot " ox2 L )"
Ov 03v
a—k@‘k(g(%ﬂ (3)

With boundary conditions ug (0,¢) = 0,u (L,¢) = 0. This is now in standard form and separation of
variables can be used to solve it.

—L
Q (z,t) = ($> cos (t)
L
Now acts as a source term. The eigenfunctions are known to be ®,, (z) = sin (\/)\nx) where \,, = (”—;)2
Hence by eigenfunction expansion, the solution to (3) is

v(@,t) =Y Bn(t) Py () (34)
Substituting this into (3) gives
n=1 n—1

Expanding Q (x,t) using same basis (eigenfunctions) gives

Q(z,t) = Z qn (t) @y, ()
n=1
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Applying orthogonality

/th dac—/ an P, by, (z) dz

But > >, fOL ®,, () D, (z)dz = fOL ®2 (z)dx = £ since @, (z) = sin (%= z) and the above simplifies

2
to

L
/0 Q (r,1)®, (a) dr = S (1)

/ Q (z,t) sin —;U)d

But Q (z,t) = (£%) cos (), hence

Therefore Q (z,t) = >0 | qn () @ (¥) = >0 | =2 cos (t) sin (%Fx) and (4) becomes

n=1 n

Z dB;t( =k Z B, (t)®! (x Z % cos (t) sin (%x)

n=1 n=1
dBn nmw n2m2 nmw 2 nmw
(T:v> = kB, (— 2 sm( T J;)) — —cos (t) sin (Tx)
dB, (t) n?n? 2
B, ——
7 + B, (t)k 2 — cos (t)

This is an ODE in B,, (t) whose solution is

B, (t)=C () 2L? (kn?m? cost + L?sint)
' ! nm (L* + k2ntn?)

From (3A) v (x,t) now becomes

= i Che F
n=1

To find C,,, from initial conditions, at ¢ = 0 the above becomes

S ) 2L2 k 2.2 )
0= 3 Cusin () - T i ()

2x2 )t . /nm 2L% (kn*m? cost + L?sint) . /nr
sin ( ) - sin ( :z:)

" nm (L4 + k2nind) L

Hence

217 (kn?n?)
nm (LA + k2nind)

Therefore (5) becomes

Z

n (L4 + k2ndnt) © T an (LA + K2nAnd) L

And since u = v + ug then the solution is

> 2L% (knm?) k(2282 2L% (kn?m? cost + L?sint) \ . /nx
u(@,t) = <7; (TLTF (L* + k2nim?) ¢ : a nm (L* 4+ k2ntr?) - (fx) +(

To simulate

— T

( 2L72 (kn27r2) ,k(niig?% 2L2 (kn27r2 cost + L?sin t)) . (nﬂ'
sin

) sin (t)



ClearAll[t, x, n]

k = 1; LO = 5; max = 400;

ulx_, t_] =

Sum [ (((2*LO0~2* (k*n"2*xPi~2))/(n*Pi*(L0"4 + k~2*n~4*Pi~4)))x*
Exp[(-k)*((n"2%xPi~2)/L0"2)*t] -

(2*xL0~2* (k*n"2*%Pi~2*Cos[t] + LO"2*Sin[t]))/(n*

Pi*(L0"4 + k~2%Pi~4#n74)))*Sin[((n*Pi)/L0)*x],

{n, 1, max}] + ((LO - x)/L0O)*Sin[t];
Manipulate [Grid [{{"Analytical solution"},

{Plot [Evaluate[ulx,t]],{x,0,5},PlotRange->{{0,5},{-1.1,1.1}},
ImageSize->400]3}}],

{{t,0,"t"},0,100, .01}

]

Here is the animation from the above

Here is the numerical solution to compare with

ClearAll["Global “*"];

pdeset = {Derivative[l, O] [U]J[t, x] == Derivative[O, 2][U][t, x]}
ics = {U[0, x] == 0};
bcs = {U[t, 0] == Sin[t], U[t, 5] == 0};

ibcAll = {ics, bcs};

numericalSol = NDSolve[{pdeset, ibcAll}, U, {t, 0, 100}, {x, 0, 53}];
Manipulate [Grid [{{"Numerical solution"},

{Plot [Evaluate[U[t, x] /. numericalSol], {x, 0, 5%},

PlotRange -> {{0, 5}, {-1, 1}}, ImageSize -> 400]}}],

{{t, 0, "t"}, 0, 100, .01}

]

Here is the animation from the above

Reference: [stokes second problem question and answer
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