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1 Introduction

This is a detailed review of low pass Butterworth analog filter design. The goal is to generate Butterworth
transfer function H(s) from frequency specifications. The following are the four specifications of the design

fp The passband corner frequency in Hz

fs The stopband corner frequency in Hz

Ap The attenuation in db at Ωp

As The attenuation in db at Ωs

This diagram below illustrates these specifications
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The specifications are given in db (the left diagram above) and not in magnitude (right diagram above).
The specifications are given with reference to the transfer function magnitude. The phase is not taken into

account in the specifications. Butterworth analog transfer function transfer function magnitude is given by

|H (jΩ)| = 1√
1 +

(
Ω
Ωc

)2N

Where Ωc is the cutoff frequency. This is the frequency at which |H (jΩ)| = 1√
2
= 0.707.

The goal of the design is to determine N and Ωc from the specifications. Once N and Ωc are found, H(s)
poles are found. Once the poles are found, then H (s) is now determined.

2 Algorithm diagram

The following diagram outlines the design algorithm
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3 Design steps

3.1 backward transformation

Let Ωp = 1 rad/sec, and let Ωs =
fs
fp

rad/sec.

3.2 Determine filter order N

Ap = −20 log |H (jΩp)| = −20 log
1√

1 +
(
Ωp

Ωc

)2N
= 10 log

[
1 +

(
1

Ωc

)2N
]

Solving for Ωc from the above gives

Ωc =
1(

10
Ap
10 − 1

) 1
2N

(1)

Using As gives

As = −20 log |H (jΩs)| = −20 log
1√

1 +
(
Ωs
Ωc

)2N
= 10 log

[
1 +

(
Ωs

Ωc

)2N
]

Solving for Ωs from the above results in

Ωs = Ωc

(
10

As
10 − 1

) 1
2N

(2)

Substituting Ωc found in (1) into the above Ωs gives

Ωs =


(
10

As
10 − 1

)
(
10

Ap
10 − 1

)


1
2N

(3)

Solving for N in the above by taking logs gives

N =

log

(
10

As
10 −1

)
(
10

Ap
10 −1

)


2 log Ωs
(4)

Since the order of filter is an integer, the above value is rounded upwards to the next integer if it is not an
integer. Let this new N be N ′ to make it clear that this is an updated N from the original N .

3.3 Finding stables poles assuming Ωc = 1

Since Butterworth magnitude square of the transfer function is

|H (s)|2 = 1

1 +
(

s
jΩ′

c

)2N ′
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Hence H(s) poles are found by setting the denominator of the above to zero. Setting Ωc = 1 gives

1 +

(
s

j

)2N ′

= 0(
s

j

)2N ′

= −1(
s

j

)2N ′

= ej(π+2πk)

s

j
= e

j
(

π+2πk
2N′

)
k = 0, 1, 2, · · · 2N ′ − 1

sk = j e
j
(

π+2πk
2N′

)

sk = ej
π
2 e

j
(

π+2πk
2N′

)

sk = e
j
(

π+2πk
2N′ +π

2

)
(5)

Only the LHS poles are needed, which are located at k = 0 · · ·N ′ − 1, because these are the stable poles.
Now thatthe poles are found, H(s) becomes

H(s) =
1

N ′−1∏
k=0

s− sk

=
1

(s− s0) (s− s1) · · · (s− sN ′−1)
(6)

3.4 Rescaling the poles

Either Ap or As have to be adjusted depending on if the excess tolerance is to be assigned to the passband or to
the stop band and Ωc is calculated based on this.

If the excess tolerance is to be assigned to the passband, then (3) is solved for Ap and this new found value
is called A′

p

A′
p = 10 log


(
10

As
10 − 1

)
Ω2N ′
s

+ 1

 (6.1)

Also Ωc needs to be determined from (1). Calling this Ω′
c to reflect that this goes with the updated A′

p and not
the original Ap

Ω′
c =

1(
10

A′
p

10 − 1

) 1
2N′

(6.2)

However, if the excess tolerance is to be assigned to the stopband, then (3) is solved for As and this new found
value is called A′

s

A′
s = 10 log

(
Ω2N ′
s

(
10

Ap
10 − 1

)
+ 1

)
(6.3)

Ωc is adjusted to Ω′
c.

From (2), and using the above new value of A′
s gives

Ω′
c =

Ωs(
10

A′
s

10 − 1

) 1
2N′

(6.4)
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H (s) found above in (6) is now adjusted since that was found for Ωc = 1 and now an updated Ω′
c is found.

To do that s is replaced by s
Ω′

c
, hence H(s) becomes

H(s) =
1(

s
Ω′

c
− s0

)(
s
Ω′

c
− s1

)
· · ·

(
s
Ω′

c
− sN ′−1

)
=

[Ω′
c]
(N ′−1)

(s− Ω′
cs0) (s− Ω′

cs1) · · · (s− Ω′
csN ′−1)

(7)

The first part of the design is now complete. N ′,Ω′
c is found and adjusted Ap or As depending on the

requirements for excess tolerance. All the parts needed are found to design H (s) by finding its poles. Adjusted
values must be used from now on.

3.5 Converting normalized low pass using frequency transformation

The above H(s) found in (7) was designed for frequency Ωp = 1 and Ωs =
2πfs
2πfp

. The above H (s) is called the
normalized transfer function. It is a low pass analog filter, which needs to be mapped to a low pass analog
filter, but un-normalized based on the actual frequencies specified (Since the above was designed based on using
Ωp = 1).

Adjustment is now now made to obtain H(s) for Ωp = 2πfp and Ωs = 2πfs.
To do this, s above is replaced by s

2πfp
. Equation (7) becomes

H (s) =
[Ω′

c]
(N ′−1)(

s
2πfp

− Ω′
cs0

)(
s

2πfp
− Ω′

cs1

)
· · ·

(
s

2πfp
− Ω′

csN ′−1

)

=
[Ω′

c × 2πfp]
(N ′−1)

(s− 2πfpΩ′
cs0) (s− 2πfpΩ′

cs1) · · · (s− 2πfpΩ′
csN ′−1)

(8)

The zeros of H(s) are located at ∞ and there are N ′ of them.
When simplifying the denominator above, the complex conjugate terms are multiplied with each others to

obtain real coefficients.

4 Example designs

4.1 Example 1

Given
fp = 1000 hz, fs = 2000 hz, Ap = 1 db, As = 20 db, and Excess tolerance at stopband, determine H(s)

4.1.1 backward transformation

Ωp = 1 rad/sec

Ωs =
fs
fp

= 2 rad/sec
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4.1.2 Determining filter order N

From (4)

N =

log

(
10

As
10 −1

)
(
10

Ap
10 −1

)


2 log Ωs

=

log10

[(
10

20
10−1

)
(
10

1
10−1

)
]

2 log10 2
= 4. 289 4

Hence
N ′ = 5

4.2 Finding stables poles assuming Ωc = 1

From (5), and since N ′ = 5

sk = e
i
(

π+2πk
2N′ +π

2

)

= e
i
(

π+2πk
2(5)

+π
2

)

Find the poles

k sk

0 ei
(

π
10

+π
2

)
= −0.309 + 0.951i

1 ei
(
π+2π
10

+π
2

)
= −0.809 + 0.587i

2 ei
(
π+4π
10

+π
2

)
= −1.0

3 ei
(
π+6π
10

+π
2

)
= −0.809− 0.587i

4 ei
(
π+8π
10

+π
2

)
= −0.309− 0.951i

Hence from (6)

H(s) =
1

(s− s0) (s− s1) (s− s2) (s− s3) (s− s4)

=
1

(s− (−0.309 02 + 0.951 06i)) (s− (−0.809 + 0.587i)) (s− (−1))
×

1

(s− (−0.809− 0.587i)) (s− (−0.309− 0.951i))

4.2.1 Rescale the poles

Excess tolerance is in the stopband, hence from (6.3)

A′
s = 10 log

(
Ω2N ′
s

(
10

Ap
10 − 1

)
+ 1

)
= 10 log10

(
22(5)

(
10

1
10 − 1

)
+ 1

)
= 24.251 db
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Hence new Ω′
c is found from (6.4)

Ω′
c =

Ωs(
10

A′
s

10 − 1

) 1
2N′

=
2(

10
24.251

10 − 1
) 1

2(5)

= 1.144

Hence the above H (s) becomes (using equation 7 as reference)

H(s) =
1.14475

(s− 1.144 (−0.309 + 0.951 i)) (s− 1144 (−0.809 + 0.587 i)) (s− 1.144 (−1))
×

1

(s− 1.144 (−0.809− 0.587i)) (s− 1.1447 (−0.309− 0.951 i))

4.2.2 Convert normalized low pass using frequency transformation

replace s by s
2πfp

, hence H (s) becomes (using equation 8 as reference), and noting that 2πfp = 2π (1000) =
6283. 2

H(s) =
(1.144× 6283.2)5

(s− 1.144× 6283.2 (−0.309 + 0.951i))
×

1

(s− 1.144× 6283.2 (−0.809 + 0.587i)) (s− 1.144× 6283.2 (−1))
×

1

(s− 1.144× 6283.2 (−0.809− 0.587i)) (s− 1.144× 6283.2 (−0.309− 0.951i))

Now multiplying the complex conjugate terms with each others (to remove the complex terms) gives

H (s) =
7192.45

(s+ 7192.2) (s2 + 4445.2s+ 5.173× 107) (s2 + 11638.s+ 5.173× 107)
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