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| 1
CHAPTER

VIBRATION

1.1 Modal analysis for two degrees of freedom
system

Detailed steps to perform modal analysis are given below for a standard undamped
two degrees of freedom system. The main advantage of solving a multidegree system
using modal analysis is that it decouples the equations of motion (assuming they are
coupled) making solving them much simpler.

In addition it shows the fundamental shapes that the system can vibrate in, which
gives more insight into the system. Starting with standard 2 degrees of freedom system

’~———>Xl ’~———>X2

k1 k2
— NN m VNN m,
—> £, (1) — fo(1)

Figure 1.1: 2 degrees of freedom system

In the above the generalized coordinates are x; and z2. Hence the system requires two
equations of motion (EOM’s).
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1.1.1 Step one. Finding the equations of motion in normal
coordinates space

The two EOM’s are found using any method such as Newton’s method or Lagrangian
method. Using Newton’s method, free body diagram is made of each mass and then
F = ma is written for each mass resulting in the equations of motion. In the following
it is assumed that both masses are moving in the positive direction and that z is larger
than z; when these equations of equilibrium are written

——-»X

KiX1 K2(X2 —X1)
I m ——»kao(X2 —X1) - My
—> (1)
STF = mux] D F =mpx)
—kiXg +ko(Xo —X1) + (1) = ml)(lll —ka(X2 =x1) +f2(t) = mz)(/2/

Figure 1.2: general 2 degrees of freedom system

Hence, from the above the equations of motion are

mlxlll + kixy — k2($2 - xl) = fl(t)
mgxg + kg(l'z - -'L'l) = fZ(t)

or

mizy + z1(k1 + k2) — kazo = f1(t)
mQx'Z’ + koxy — kozy = fo(2)

In Matrix form
my 0 i ki +ky —ko| |21 fi(t)

0 mol| |24 —ks ko T2 fa(t)

The above two EOM are coupled in stiffness, but not mass coupled. Using short nota-
tions, the above is written as

(M|{«"} + [K|{z} = {f}
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Modal analysis now starts with the goal to decouple the EOM and obtain the funda-
mental shape functions that the system can vibrate in. To make these derivations more
general, the mass matrix and the stiffness matrix are written in general notations as
follows

mi1 Mig z'l' + kin k2 I fl(t)

mo1 maa| |24 ko1 kgl | 2 fa(t)

The mass matrix [M] and the stiffness matrix [K] must always come out to be symmetric.
If they are not symmetric, then a mistake was made in obtaining them. As a general
rule, the mass matrix [M] is PSD (positive definite matrix) and the [K] matrix is
positive semi-definite matrix. The reason the [M] is PSD is that 27 [M]{z} represents
the kinetic energy of the system, which is typically positive and not zero. But reading
some other references E] it is possible that [M] can be positive semi-definite. It depends
on the application being modeled.

1.1.2 Step 2. Solving the eigenvalue problem, finding the
natural frequencies

The first step in modal analysis is to solve the eigenvalue problem det ([K] — w?[M]) = 0
in order to determine the natural frequencies of the system. This equations leads to
a polynomial in w and the roots of this polynomial are the natural frequencies of the
system. Since there are two degrees of freedom, there will be two natural frequencies
w1,ws for the system.

det ([K] — w2[M]> =0
ki1 ko 9 mi1 M2
det —w =0

ko1 koo Ma1 Moo

2 2
kll — W'mii k12 — W MmMi2
det =0

2 2
ko1 — wmgr  kaa — w mog

(kll - w2m11) (k22 - w2m22) - (k12 - w2m12) (k21 - w2m21) =0

w4(m11m22 — MyaMay) + w2(—k11m22 + k1omoy + kaxmas — kaomiar) + ki1koe — kigkor =0

1|http ://en.wikipedia.org/wiki/Fundamental_equation_of_constrained_mot ion|



http://en.wikipedia.org/wiki/Fundamental_equation_of_constrained_motion

1.1. Modal analysis for two degrees of. .. Chapter 1. Vibration

The above is a polynomial in w*. Let w? = X it becomes

/\2(m11m22 — miama1) + A(—k11mag + k1amar + kaimag — kaamay) + kirkes — kiokar = 0

This quadratic polynomial in A which is now solved using the quadratic formula. Then
the positive square root of each A root to obtain w; and w, which are the roots of the
original eigenvalue problem. Assuming from now that these roots are w; and wy the next
step is to obtain the non-normalized shape vectors ¢4, ¢, also called the eigenvectors
associated with w; and wy

1.1.3 Step 3. Finding the non-normalized eigenvectors

For each natural frequency w; and ws the corresponding shape function is found by
solving the following two sets of equations for the vectors 1, ¢

r 7 r T 4 3\ 4 A

ki1 ko o |11 M| | en 0

— wl —

ka1 koo Mmo1 Maz| | Y21 0
L . L . \ J \ /

and B T B T ( A )

ki1 ko 9 mi1 M2 P12 0

— wz —
ko koo mo1 Ma2 ©22 0
L . L . \ J \ /
For wy, let ¢1; = 1 and solve for

n ( \ 4 3\

ki1 ko o [T M2 1 0

ka1 koo mo1 M| | Y21 0
. \ J \ J
7 4 3\ ()

2 2

kll — wimiyy k12 — wiMmia 1 0

ko — w? koo — w? 0
21 — W1Ma1 Koz — W1Ma2 \ P21 ) LY

Which gives one equation now to solve for ¢, (the first row equation is only used)

(kll - w%mll) + 21 <k12 — w%mlz) =0

Hence 9
—(ku - wlmll)

pa = (k12 - w%mlz)
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Therefore the first shape vector is

P11 1

1= - —(k11—w?maq1)
¥21 (k12—w?mi2)

Similarly the second shape function is obtained. For ws, let ;2 = 1 and solve for

7 4 ) ()
ki1 ko 9 mi1 M2 1 0
ko1 koo M1 Mg ©22 0
. \ J \ J
= ( 4
2 2
kll — Wy, k12 — WyM2 1 0
ko — w2 koo — w2 0
21 — W21 22 — W22 \9022) Y

Which gives one equation now to solve for ¢os (the first row equation is only used)
(kn - wSmn) + P22 (k12 - wgmu) =0

Hence 9
—(kn - wgmn)

(k12 - W%mu)

P2 =

Therefore the second shape vector is

©12 1

¥2 = N —(k11—w2mai1)
P22 (k12—w2Zmi12)

Now that the two non-normalized shape vectors are found, the next step is to perform
mass normalization

1.1.4 Step 4. Mass normalization of the shape vectors (or the
eigenvectors)

Let
p = @71 [M] @,

This results in a scalar value u;, which is later used to normalize ;. Similarly

w2 = @3 [M] ¢,
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For example, to find u,

©Y11 mi1 M2 ©Y11

Y21 mo1 Ma2 Y21

mi1 Mi2 P11
= Yp11 P2

o1 Ma2 Y21

©Y11
= {ﬂpumu + @o1ma1  P11Ma12 + <,021m22}
Y21

= p11(11m11 + P21m21) + Ya1(P11M12 + P21M22)

Similarly, po is found

T
©Y12 mi1 M2 ©Y12
M2 =
P22 Moy Mog ©22
my; Mi2 ©12
= (P12 P22

Mo1 Moz ©22

©Y12
= {<P12m11 + @ooma1  P12Mig + Q022m22}
©22

= @12(p12ma1 + P22mar) + az(Pramaz + Parmag)
Now that uq, us are obtained, the mass normalized shape vectors are found. They are

called ®,, P,
®11

P, — ¥ _ P21 _
1= = =
VA 1 VA1

10
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Similarly
P12

P12
Pa _ P22 iz

P, = = =
Viz 2 en

V2

1.1.5 Step 5, obtain the modal transformation matrix ®

The modal transformation matrix is the 2 X 2 matrix made of of ®;, ®, in each of its

columns
[®] = [®19D]
P11 P12
| vm Ve
P21 P22
Vil B2

Now the [®] is found, the transformation from the normal coordinates {z} to modal

coordinates, which is called {n} is found

{z} = [®]{n}

(1) _ v | | m@)
z2(t) % 7=l (@)

The transformation from modal coordinates back to normal coordinates is

{n} =2 {z}

m(t) _ 5_% 5_;% (1)
0 = & (%)

However, [®]" = [®]” [M] therefore
{n} =[2]" [M]{z}

m(t) B % 3_% mir maz| | z1(2)
m2(t) % :%—22 ma1 Mo | | T2(t)

11
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The next step is to apply this transformation to the original equations of motion in
order to decouple them

1.1.6 Step 6. Applying modal transformation to decouple the
original equations of motion

The EOM in normal coordinates is

mi1 Mig 1',1, n kll k12 I fl(t)

Mo1 Moo -’17,2, k21 k22 T2 fQ(t)

Applying the above modal transformation {z} = [®] {n} on the above results in

miy Mo ny ki1 kg M f1(?)
(@] + (@] =
Mo1 Moo 7 ko1 koo Up f2(t)
pre-multiplying by [®]” results in
mi1 Mg ,'7/1/ kll k12 m fl (t)
@] ] +[@]" [®] = [9]"
mMo1 Moo ’I]é/ k21 k22 2 f2 (t)
T |1 12 . 0 ..
The result of [®] [®] will always be . This is because mass normal-
ma1 M2 01

ized shape vectors are used. If the shape functions were not mass normalized, then the
diagonal values will not be 1 as shown.

2
ki1 ko w7

The result of [®]" [®] will be
k21 kgg 0 w%

\

f(t) ()

Let the result of [®]” be , Therefore, in modal coordinates the original

po | A0

EOM becomes

vol Ju| |t of Jm|_ 5w

0 1| |ny 0 wi| [m fa(t)

12
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The EOM are now decouples and each can be solved as follows

0y (t) + wim(t) = fi(t)
n5(t) + wana(t) = fa(t)

To solve these EOM’s, the initial conditions in normal coordinates must be transformed
to modal coordinates using the above transformation rules

{n(0)} = [@]" [M]{=(0)}
{n/(0)} = [@]" [M] {z'(0)}

Or in full form

_ - T - -
m(0) _ 5;1711 5_,% mi Mz | | 21(0)
n2(0) ﬁ—% % ma1 Moz | | z2(0)
and
_ - T _ -
mO) | |V vis| |mu maa| |21(0)
n5(0) 2L 221 Img ma| | 75(0)

Each of these EOM are solved using any of the standard methods. This will result is
solutions 7 (¢) and 72(t)

1.1.7 Step 7. Converting modal solution to normal
coordinates solution
The solutions found above are in modal coordinates 7;(t) ,72(¢). The solution needed

is x1(t) ,z2(t). Therefore, the transformation {z} = [®]{n} is now applied to convert
the solution to normal coordinates

(1) _ % 5_;% m(t)
(1) N R AR

(
(1) + £25(1)

| sm(®) + ()

13
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Hence o o
z1(t) = () + 2yt
1(t) meU VEWO
and
Za(t) = T2 () + ()

Notice that the solution in normal coordinates is a linear combination of the modal
solutions. The terms ‘p—z are just scaling factors that represent the contribution of each
modal solution to the final solution. This completes modal analysis

1.1.8 Numerical solution using modal analysis

This is a numerical example that implements the above steps using a numerical values for
[K] and [M] Let kl = 1,]{?2 = 2,m1 = 1,m2 =3 and let fl(t) =0 and fz(t) = sin (5t)
Let initial conditions be z1(0) = 0,27 (0) = 1,22(0) = 1.5, 2,(0) = 3, hence

and
z7(0) B 1.5
x5(0) 3

[ T ( 3 (

my 0| |2 . ki+ky —ka| |2 fi(?)
0 mo x’z’ —kz kg T ) fg (t)
B _ \
\ T ¢ A (
1 0| | 3 2| | = 0
+ =
" _ :
0 3 3 | 2 2 IRE) | sin (5¢)
In this example mi; = 1,m12 = O,m21 = 0, Moy = 3 and kll = 3, klz = —2,k21 =

—2,key =2 and fi1(t) =0 and f5(t) = sin (5¢)

14
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step 2 is now applied which solves the eigenvalue problem in order to find the two

natural frequencies

det ([K] — w?*[M]) =0

3 =2 10
det — w? =0
-2 2 0 3
3—w? -2
det =0
-2 2—-3w?

(3—w?) (2—38w*) = (=2)(-2) =0
3w —11w* +2=0
Let w? = X hence
3N —11A+2=0
The solution is A; = 3.475 and Ay = 0.192, therefore

w; = V3.475 = 1.864

And
wy = v/0.192 = 0.438

step 3 is now applied which finds the non-normalized eigenvectors. For each natural
frequency w; and wsy the corresponding shape function is found by solving the following
two sets of equations for the eigen vectors @1, 2

3 -2 9 10 ®11 0
— wl —
-2 2 0 3 P21 0
For w; = 1.864
( \ R
3 - @) 0
— 1.8642 T
-2 2 0 3 P21 0
\ J \ /
. 4 W ()
—0.475 -2 1 0
= ’
—2  —8.424 g021J 0
4 \ \

15
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This gives one equation to solve for s (the first row equation is only used)

—0.475 — 2(,021 =0

Hence

4
Y21 = w = —0.237
-2
The first eigen vector is
11 1
Y1 = =
©®a1 —0.237
Similarly for wy = 0.438
( 1 ()
3 =2 0 %) 0
—0.4382 4 L
\ 7
7 ( A (
2.808 -2 1 0
-2 1.425 P22 0
4 X\ J \

This gives one equation to solve for sy (the first row equation is only used)

2.808 — 2(,022 =0

Hence
—2.808
P22 = =1.404
-2
The second eigen vector is
P12 1
P = =
P22 1.404

Now step 4 is applied, which is mass normalization of the shape vectors (or the eigen-
vectors)

p = @] [M] @,

16
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Hence
T
1 10 1
u1 =
—0.237 0 3| | —-0.237
=1.169
Similarly, po is found
p2 = @3 [M] oy
Hence
T
1 10 1
M2 =

1.404 0 3| [1.404
=6.914

Now that p;, us are found, the mass normalized eigen vectors are found. They are called
(pl, ¢2

Similarly
{9012 1
@2: P _ ©22 _ 1.404
Viz 2 6.914
0.380
0.534

17
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Therefore, the modal transformation matrix is

[®] = [®1D,]
0.925 0.380
—0.219 0.534

This result can be verified using Matlab’s eig function as follows

K=[3 -2;-2 2]; M=[1 0;0 3];
[phi,lam]=eig(K,M)

phi =

-0.3803 -0.9249

-0.5340 0.2196
diag(sqrt(lam))

0.4380

1.8641

Matlab result agrees with the result obtained above. The sign difference is not important.
Now step 5 is applied. Matlab generates mass normalized eigenvectors by default.

Now that [®] is found, the transformation from the normal coordinates {z} to modal
coordinates, called {n}, is obtained

{z} = [@]{n}
1 (t) 0.925 0.380| | m(t)

(1) —0.219 0.534| | n2(t)

The transformation from modal coordinates back to normal coordinates is

{n} = (@] {«}
m () 0.925 0.380 z1(t)

7o () —0.219 0.534 z5(t)

18
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However, [®] " = [®]” [M] therefore

{n}
m(t)

n2(t)

[@]" [M] {z}

0.925 0.380

—0.219 0.534

0.925 —-0.657

0.38 1.6

10

0 3

1 (t)

l‘l(t)

) (t)

T2(t) )

The next step is to apply this transformation to the original equations of motion in

order to decouple them.

Applying step 6 results in

1

0

0

1

1

0

0

1

1

0

01

(

\

/i
T

1!
Ub!

1
Ui

1!
Ub)

1!
m

/A
Ub!

W% 0 m

0 wg 772)
N

1.8642 0 T
0 0.4382 172)
- 4 3

3.47 0 m
0 0.192 7]2}

. (

=[]

sin (5%)
- T
0.925 0.380 0
—0.219 0.534 sin (5%)

4

—0.219 sin (5t)

0.534 sin (5t)

The EOM are now decoupled and each EOM can be solved easily as follows

ni(t) + 3.47m (t) = —0.219 sin (5¢t)
7y (t) + 0.1927,(t) = 0.534 sin (5¢)

To solve these EOM’s, the initial conditions in normal coordinates must be transformed

19
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to modal coordinates using the above transformation rules

and

p

\
(

\

\

11(0)
12(0)
11(0)
12(0)

/
)

J

;

\

;

0.925 —0.657
038 16
0.925 —0.657
038 16
—0.657
1.6
0.925 —0.657
038 16
0.925 —0.657
038 16
—0.584
5.37

\

(

z1(0)

Each of these EOM are solved using any of the standard methods. This results in

solutions 7, (t) and n,(¢) . Hence the following EOM’s are solved

and also

0y (t) + 3.47n1(t) = —0.219 sin (5¢t)

m(0) = —0.657
7,(0) = —0.584

M5 (t) + 0.192n,(t) = 0.534 sin (5¢t)

15(0) = 5.37

20
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The solutions 7;(t) , 72(t) are found using basic methods shown in other parts of these
notes. The last step is to transform back to normal coordinates by applying step 7

1 (t) 0.925 0.380| |m ()
o (t) —0.219 0.534| | na(2)

(

0.9257; + 0.387;
=

05347, —0.219m,

Hence

and

The above shows that the solution z;(t) and z4(t) has contributions from both nodal
solutions.

21
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1.2 Fourier series representation of a periodic
function

Given a periodic function f(t) with period T then its Fourier series approximation f(t)
using N terms is

N
f@) = %Fo +Re (ZFnem?t>

n=1

1 1
in2Zt * _—in2Et
——2F0+—2 E F.e"T +Fn6 T

n=1
N
]. .27
— F ezn?t
3 2 Fn
n=—N

Where
T
F=2 / Ft)e " Fidt
noT
0
T
Fo=2 / £(t) dt
OT T
0

Another way to write the above is to use the classical representation using cos and sin.
The same coefficients (i.e. the same series) will result.

< N 2w N 2
f(t) =ao+ ;an cos nTt + ;bn sin n?t

T
a, = TL/Q/f(t) cos (nz%t) dt
0

T
b, = TL/Q/f(t) sin (n%rt) dt
0

Just watch out in the above, that we divide by the full period when finding ay and
divide by half the period for all the other coefficients. In the end, when we find f(t) we
can convert that to complex form. The complex form seems easier to use.

22
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1.3 Generating Transfer functions for different

vibration systems

C Ly k A

Figure 1.3: vibration model

1.3.1 Force transmissibility

Let steady state

ZTss = Re {%D(T, ¢) eim}

Then
.ft’l‘ (t) = fspring + fdampe'r
=kx +ct
F . F _
= Re {k%D(r, ¢) e“”t} + Re {cinD(r, ¢) e“”t}
. P .
=Re} [ F+ ciw— D(r,¢) e
Hence

Ol =[] 10111+ @55 = | B[ ID] /1 + (2677

So TR or force transmissibility is
-(t
-t 1(3—|‘“ax = 1D] /1 + (2¢r’
7|

If 7 > /2 then we want small ¢ to reduce force transmitted to base. For r < V2, it is

the other way round.

23
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1.3.2 vibration isolation

We need transfer function between y and z. Equation of motion

my’' = —c(y —2') —k(y — 2)
my" +cy +ky=c2 +kz

Let 2 = Re{Ze™'}, 2’ = Re {iwZe™'} and let y = Re {Ye™'} |y = Re {iwYe“'},y" =
Re{—w?Ye™'}, hence the above becomes

mRe {—w?Ye™'} + cRe {iwYe™'} + kRe {Ye“'} = cRe {iwZe™'} + kRe {Ze™'}
ciw+k
C —w?m +ciw + k
B 12Cw,mw + k
T —wm + i2Cwymw + k
i2Cwnw + w?
—w? + i2¢wyw + w2
20T + 1
(1 —172) +142¢r

r 2
Hence |D(r,{)| = Toersaar H:—;:Q“())Q and arg (D) = tan™* (2¢r) — tan™! (%) where r =
1—r2)“+(2¢r
Hence for good vibration isolation we need Wllelax to be small. i.e. |D| /14 (2¢r) to

be small. This is the same TR as for force isolation above.

For small |D|, we need small ¢ and small k (the small k is to make r > 1/2) see plot

24



1.3. Generating Transfer functions for. .. Chapter 1. Vibration

In[1]:= parms = {z » 0.01};
Sqrt[l+ (2 zr)?] )
Sqrt[(1-r2)2+ (2 zr)2]’

tf =

Plot[tf /. parms, {r, 0.01, 3}, GridLines -» Automatic]

L l L L L L l L L L L l L L L L l L L L L l L L L L 1

05 1.0 15 20 25 30

Figure 1.4: force transibility

In Matlab, the above can be plotted using

close all;

zeta = linspace(0.1, 0.7, 10);

T = linspace(0, 3, 10);

DO = @(r,z) (sqrt(1+(2*z*r).~2)./sqrt((1-r."2).72+(2%z*r)."2));
figure;

hold on;

for i = 1:length(zeta)
plot(r,DO(r,zeta(i)));
end

grid on;

25
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1.3.3 Accelerometer

We need transfer function between u and z, where now z, is the amplitude of the
ground acceleration. This device is used to measure base acceleration by relating it
linearly to relative displacement of m to base.

Equation of motion. We use relative distance now.

mu" +2")+cu' +ku=0

mu” + cu' + ku = —mz2”

Let 2" = Re{Z,e™'}. Notice we here jumped right away to the 2” itself and wrote
it as Re{Z,e™'} and we did not go through the steps as above starting from base
motion. This is because we want the transfer function between relative motion u and
acceleration of base.

Now, u = Re{Ue™'},u’ = Re {iwUe**} u”" = Re{—w?Ue™'}, hence the above be-
comes

mRe {—w?Ue™'} + cRe {iwUe™'} + kRe {Ue™"*} = —mRe { Z,e""}
-m

Z,
—w?m +iwc+k*
-1
—w? + iw2w, + w2
-1
(w2 — w?) + w2lw,

Hence [D(r, O] = =k and arg (D) = —180° — tan” (2 )

When system is very stiff, which means w,, very large compared to w , then D(r,() ~
;—z}Za, hence by measuring u we estimate Z, the amplitude of the ground acceleration
since w? is known. For accuracy, need w, > 5w at least.

1.3.4 Seismometer

Now we need to measure the base motion (not base acceleration like above). But we
still use the relative displacement. Now the transfer function is between u and z where
now z is the base motion amplitude.

Equation of motion. We use relative distance now.

mu" +2")+cu +ku=0

mu” + cu' + ku = —mz2”
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1.3. Generating Transfer functions for. .. Chapter 1. Vibration

Let z = Re {Ze™'}, 2/ = Re {iwZe™'} 2" = Re{—w?Ze™'} ;and let u = Re {Ue™'} ,u/ =
Re {iwUe™'} ,u" = Re {—w?Ue™'}, hence the above becomes

Now, u = Re{Ue™'},uv’ = Re{iwUe**} ,u”" = Re{—w?Ue™'}, hence the above be-
comes

mRe {—w?Ue™'} + cRe {iwUe™*} + kRe {Ue™'} = —mRe {—w’Ze™*}

mw?

—w?m +wwe+k

UJ2

—w? + iw2(w, + w2

,,,.2

1-r2)+ i2C7’Z

Hence |D(r, ()| = and arg (D) = —tan™! (&%)

1—r2

,,.2
V(1—r2)+i2(r
Now if r is very large, which happens when w, < w, then m = —; since r?
is the dominant factor. Therefore U = WZG now becomes U ~ —Z, therefore
measuring the relative displacement U gives linear estimate of the ground motion.

However, this device requires that w, be much smaller than w, which means that m
has to be massive. So this device is heavy compared to accelerometer.

1.3.5 Summary of vibration transfer functions

For good isolation of mass from ground motion, rule of thumb: Make damping low, and
stiffness low (soft spring).

Isolate base from force. transmitted by machine

Equation used fi(t) = fipring + faamper

Transfer function % = |D| /1 + (2¢r)°

Isolate machine from motion of base

Equation used. Use absolute mass position

my" +cy +ky=cd +kz

Transfer function

] ;
s = D] \/1+ (1)
Z
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1.3. Generating Transfer functions for. .. Chapter 1. Vibration

Accelerometer: Measure base acc. using relative displacement

Equation used. Use relative mass position

mu” + cu’ + ku = —mz2”
Transfer function
U = Zo = 1D(r,Q)|
= a r,
(W2 — w?) + iw2Cws,
—1

V(@2 = 02)? + (2ww,)?

Seismometer: Measure base motion using relative displacement

Equation used. Use relative mass position

mu” + cu' + ku = —mz2”
Transfer function
r2
U= Z — |D
(1 _ ,,,.2) + 7/2{,',‘ | (T’ C)'
2
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1.4. Solution of Vibration equation of... Chapter 1. Vibration

1.4 Solution of Vibration equation of motion for
different loading

1.4.1 common definitions

These definitions are used throughout the derivations below.

5_ C . C . C
e WEm 2w.m

F
Ugp = n static deflection

Wp =14/ —
m

wp = wypy/1 — &?note: not defined for £ > 1 since becomes complex

w
r=—
Wn

2
Ty = il damped period of oscillation
Wd

-1 =1 ) .. .
T = )\—, E time constants where \; are roots of characteristic equation
1
1 . .
= magnification factor

VL= (2re)?
Bmax When r = /1 — 2£2

B = 1
max 2£ 1_e2 52
¢2m
UYn _ e% small gmping 6\/@ = e(27r
Yn+1
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1.4. Solution of Vibration equation of... Chapter 1. Vibration

1.4.2 Harmonic loading mu” + cu’ + ku = F sinwt

1.4.2.1 Undamped Harmonic loading

Wl m = Re(Felet)

O O

Figure 1.5: single degree no damping forced

mu” + ku = Fsin wt

Since there is no damping in the system, then there is no steady state solution. In other
words, the particular solution is not the same as the steady state solution in this case.

We need to find the particular solution using method on undetermined coefficients.

Let u = up + u,. By guessing that u, = c; sinwt then we find the solution to be

F 1
u = Acosw,t + Bsinw,t + ———— sinwt
k1l—nr2

Applying initial conditions is always done on the full solution. Applying initial conditions

gives
u(0)=A
v/ (t) = —Awsin wyt + Bw coswpt + w— ! cos wt
B " " kE1l—r2
F 1
'(0) = Bu, + =
u'(0) w. +wk .2
() F r
B= _
W, k1l—nr2
Where r = 2=
The complete solution is
'(0 F
u(t) = u(0) cos wyt + (uafn) 1 _Trz) sin wy,t + w12 sin wt

30
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1.4. Solution of Vibration equation of... Chapter 1. Vibration

Example: Given force f(t) = 3sin (5t) then w = 5rad/sec, and F' = 3. Let m = 1,k = 1,
then w, = 1 rad/sec. Hence r = 5, Let initial conditions be zero, then

5 ) 1 .
U= (—31_52) s1nt—|—31_52 sin 5t

= 0.625 sint — 0.125 sin 5.0¢

1.4.2.1.1 Resonance forced vibration When @w =~ w we obtain resonance since
r — 1 in the solution given in Eq (1) above and as written the solution can not be
used for analysis. To obtain a solution for resonance some calculus is needed. Eq (1) is
written as

2

F
) sin wt + Eﬁ sinwt  (1A)

w(0) F ww
w k w? — w?

u(t) = u(0) coswt + (
When w =~ w but less than w, letting
w—w=2A (2)
where A is very small positive quantity. And since w ~ w let
w+w 2w (3)
Multiplying Eq (2) and (3) gives
w? — w® = 4Aw 4)

Eq (1A) can now be written in terms of Egs (2,3) as

u(t) = u(0) coswt + (@_Eﬂ) t+£ w2

w k 4Aw k 4Aw sinwit

= u(0) coswt + w_Fw 8 t—i—E W’ sin wt
=u w T TIA inw 1D inw

Since w ~ w the above becomes

w k 4A
)

F w
sinwt + —-—— sinwt

u(t) = u(0) coswt + ( k 4A

/( sin wt + ——(sm t — sin wt)
w
w k 4A

Using sin @t — sinwt = 2sin (¥5t) cos (ZF2t) the above becomes

¥'(0)

s1nwt+Fw sin w—wt Cos w—}-wt
w k 2A 2 2
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1.4. Solution of Vibration equation of... Chapter 1. Vibration

From Egs (2,3) the above can be written as

uw'(0)

sin wt + Fw (sin (—At) cos (wt))

u(t) = u(0) coswt + TN

w = t the above becomes

u'(0) . Fwt
- sin wt — © g Cos (wt)

Since lima_,q

u(t) = u(0) coswt +

This is the solution to use for resonance.

1.4.2.2 Underdamped harmonic loading c < ¢,,£ < 1

K
AN :
r v —Fsinaot
|
O O

Figure 1.6: single degree damping forced

mu” + cu’ + ku = Fsinwt
F
u” + 26w’ 4+ w?u = — sin wt
m

The solution is

u(t) = up +u,
where
up(t) = e (A coswgt + Bsinwgt)
d
an . |
up(t) = sin (et — 0)
\/(k' —mw)? + (cw)’
where o
cw T

tanf =

k—mw? 1—12

Very important note here in the calculations of tan # above, one should be careful on
the sign of the denominator. When the forcing frequency @w > w the denominator will
become negative (the case of w = w is resonance and is handled separately). Therefore,
one should use arctan that takes care of which quadrant the angle is. For example, in
Mathematica use
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1.4. Solution of Vibration equation of... Chapter 1. Vibration

ArcTan[1l - r~2, 2 Zeta r]l]

and in Matlab use

atan2(2 Zeta r,1 - r°2)

Otherwise, wrong solution will result when @ > w The full solution is

u(t) = e™%*(A coswgyt + Bsinwgt) —|— — L sin (wt — 6) (1)

b= 4 (2er)?

Applying initial conditions gives
1

— sin 0
=) (2r)?
B= v (0) + u(0) &w + F ! (wsin O — wcos §)
Wd Wa k wd\/(l —12)% + (26r)?

Another form of these equations is given as follows

up = 2 !
TR (=) ()

((1 —r?) sinwt — 2{r cos wt)

Hence the full solution is

F 1
u(t) = e (A coswyt + B sin wgt)+—

((1 —r?) sinwt — 2{r cos wt)

(1.1)

Applying initial conditions now gives

2Fr¢ 1
O T ey
B u/'(0) N uw(0)éw, FQ1-r? w N 2Fr Wn,
W Wd kwg  (1—12)° 4+ (2¢r)  kwa (1—172)°+ (2¢r)

The above 2 sets of equations are equivalent. One uses the phase angle explicitly and
the second ones do not. Also, the above assume the force is F'sin wt and not F' cos wt.
If the force is F coswt then in Eq[1.1] above, the term reverse places as in

1

J— 2 _ .
A=y + (agry (17 con et = Arsincat)

F
u(t) = e *“r*( A coswyt + Bsin wﬁ)‘*‘z
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1.4. Solution of Vibration equation of... Chapter 1. Vibration

Applying initial conditions now gives

B F (1—17?%)
A= U(O) + k (1 _ T2)2 + (25’]")2
B u'(0) N u(0) Ewn, N 2Fr¢ w _F(Q-r?) Wn,
Cwa Wd kwa (1—12)% 4+ (2r)? kwa  (1—12)% + (2¢r)?

When a system is damped, the problem with the divide by zero when r = 1 does not
occur here as was the case with undamped system, since when when @w =~ w or r = 1,
the solution in Eq (1) becomes

_ F1 . w(0) w(0)éw F 1 , ,
— Ewt - - - _
u(t) =e ((u(O) + 2% s1n0) cos wgt + ( o + o + o R (wsin @ — wcos ) | sinwgt
F1 .
+ % 5 5in (wt — 0)

and the problem with the denominator going to zero does not show up here. The

amplitude when steady state response is maximum can be found as follows. The

amplitude of steady state motion is £ ———1——. This is maximum when the

ko J(a=r2)2 4+ (2¢r)?

magnification factor 8 = ﬁ is maximum or when \/ (1 —1r2)%+ (2¢r)? or
1—r2)°+(2¢r

2
\/ (1 — (2)2> + (2&%)2 is minimum. Taking derivative w.r.t. @ and equating the

w

result to zero and solving for w gives

w=wy1—282

We are looking for positive w, hence when @ = w+/1 — 2£? the under-damped response
is maximum.
1.4.2.3 critically damping harmonic loading { = > =1

The solution is
u(t) = up + up

Where u, = (A + Bt) e™" and u, = £ —————sin (wt — §) where tan 6 =
Va2 een?

ing sure to use correct arctan definition). Hence

13:2 (mak-

u(t) = (A+ Bt)et + L L sin (ot — 0)

B =) (r)?
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1.4. Solution of Vibration equation of... Chapter 1. Vibration

where A, B are found from initial conditions

A=u(0)+ = sin 0

B:u'(0)+u(0)w+5 (wsiné — wcos )

1.4.2.4 overdamped harmonic loading { = £ > 1

Cr

The solution is

u(t) = up + up
where
up(t) = AeP'* + BeP?!
and 7 )
up(t) = A - - sin (wt — 0)
V(1= 72)% + (2¢r)
hence
u = Ae™" + BeP** + % = sin (cot — 6)
V(=12 & (26r)?
where tan 8 = %7, and

1—r2

c c\? k
P =g+ (gn) — o = VT
c c\? k
=g\ (g) = e VE -

Hence the solution is

u(t) = Ae(-erVET)ut + Be(-e-vE)ur + %ﬁ sin (wt — 0)
w'(0) + u(0) wé + u(0) wy/E — 1+ £B((€ + /€2 — 1) wsinf — wcosb)

A= 20V/E — 1
B _u(0) + u(0) w§ — u(0) wv/E* — 1+ ZB((6 — V&€ —1) wsinf — wcosb)
2w\/E2 -1
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1.4. Solution of Vibration equation of...

Chapter 1. Vibration

1.4.2.5 Solution using frequency approach to harmonic loading
my” + cy' + ky = Re (ﬁem>

x = Re {Xeim}

X =

??‘l"-t])

D(r, Q)
D(’l", C) =

(1—1r2) 4 2iCr

z = Re {%lD(r, o] e“wt“’)}

2(r
6 = tan™*
an 1_ 7"2

Let load be harmonic and represented in general as Re <13’eim> where F' is the complex
amplitude of the force.

Hence system is represented by

my” + cy' + ky = Re (ﬁ’eim>

2y
y" +2Cwny' +wiy = Re (—em)
m

Let y = Re (Ye™) Hence ¢ = Re (iwf’eiw”) ,y" = Re (—wzf"eim), therefore the
differential equation becomes

Re (—w2?eim> + 2¢w, Re (iw?eim> + w? Re <}A’em) = Re ( A

F
- ezwt)
m

. E
Y

m

(—w? 4+ 2¢wpiw + w?)
Dividing numerator and denominator w? gives

(—@? + 2(wniw +w?) ¥

3=
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1.4. Solution of Vibration equation of... Chapter 1. Vibration

Where r = Z, hence the response is
n

Therefore, the phase of the response is
. 2
arg (y) = arg (F) —tan™" ((1_#:2)) + wt
Hence at t = 0 the phase of the response will be

arg (y) = arg (F) —tan”™ ((12f:2)>

So when F' is real, the phase of the response is simply — tan~! (%)

Undamped case

When ¢ = 0 the above becomes

For real force this becomes
F 1
Yy = E m COS (wt)
The magnitude ’Y‘ = %ﬁ and phase zero.

damped cases

(>0

F 1 1ot
y=Re (?(1 — )+ a2r" )

F
ko

1
V= + )’
arg (f") = ¢ = arg <ﬁ> — tan™* ( 27 ) + wt

1—17r2

v
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1.4. Solution of Vibration equation of... Chapter 1. Vibration

Hence for real force and at ¢t = 0 the phase of displacement is
2(r
~1
—tan < 1_ r2>
lag behind the load.

When r < 1 then ¢ goes from 0 to —90° Therefore phase of displacement is 0 to —90°
behind force. The minus sign at the front was added since the complex number is in
the denominator. Hence the response will always be lagging in phase relative for load.

Forr > 1
Now 1 — 72 is negative, hence the phase will be from —90° to —180°

When r =1

Now phase is —90°

Phase of response complex

Phase of response complex
amplitude for underdamped
and when r<1

Phase will be from 0 to -90

degrees
1-r2

amplitude for
underdamped and when
r>1

Phase will be from -90 to -
180 degrees

2r

—

1—r?

Phase of response complex
amplitude for
underdamped and when
r=1

Phase will -90 degrees

Figure 1.7: steady state

Examples. System has ( = 0.1 and m = 1,k = 1 subjected for force 3 cos (0.5¢) find the
steady state solution.
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1.4. Solution of Vibration equation of... Chapter 1. Vibration

Answer y(t) = Re <}A’e"m>, Wp, = \/g = 1 rad/sec, hence r = 0.5 under the response is

y(t) = Re (’}Af em>

Y| cos (wt)

F 1 . /2(0.1)05

=< \/(1 = ,,.2)2 " (2CT)2 cos (.515 — tan <—1 052 ))
1

=3
V(1 - 0.52) + (2(0.1) 0.5)°
— 3.9649 cos (.5t — 7.59°)

cos (.5t — 7.59°)

In4)= Plot[{3Cos[0.5t], 3.9649Cos[.5t - 7.59Degree]}, {t, 0, 20}, PlotStyle » {Dashed, Red},
PlotLegends - {"load", "response"}]

response

Figure 1.8: steady state plot

The equation of motion can also be written as u” + 2¢wv’ 4+ w?u = £ sin wt.

The following table gives the solutions for initial conditions are (0) and «'(0) under
all damping conditions. The roots shown are the roots of the quadratic characteristic
equation A2 + 2¢w\ 4+ w?X = 0. Special handling is needed to obtain the solution of
the differential equation for the case of ( = 0 and w = w as described in the detailed
section below.
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1.4. Solution of Vibration equation of... Chapter 1. Vibration

1.4.2.6 Summary table

—iw
roots
+iw
¢=0
w = w — u(0) coswt + * (0) sinwt — £2 cos (wt)
u(t) ,
w # w — u(0) coswt + <uD(J0) - %1fr2> sinwt + £ 125 sinwt
—€w + w1 — &2
roots
—€w — iwpV/1 — &2
t) = e &t(A t+ Bsinwgt) + £—L —sin (wt — 0
(<1 ult) = e (A coswat + Bsinwat) + ¢ (1-72)?+(2¢r)> sin (@ )
A= VN —
Uo + % EET=s sin
B = Jl—kﬁﬁ—l— L wsinf — wcos b
K o/ (1=r2)? +(26r)? (€ )
—w
roots
—w
_ —wt F 1 : _
c=1 u(t) = (A+ Bt)e ™" + % oo sin (cot — 0)
A=u+E£—L—sind
\/(1 r2)24(2r)?
B = v+ upw + ——L% _(wsind — wcosh)
Va-rirn?
_wnf —I-an 52 -1
roots
—wp€ — wpVE2 —1
¢(>1| ut)= Ae<_§+v et + Be(_g_ Ve Junt + £ Bsin (wt — 6)
A— vo—i—uowé—}-uow\/ﬁ?—l—i—%B(<§+\/§2—1)wsin9—wcos9)
- 2w+/€2—1
B— _v0+uow§—uow\/§2—1+§ﬂ((5—\/52—1>wsin0—wcose)
- 2w+/€2-1
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1.4. Solution of Vibration equation of... Chapter 1. Vibration

1.4.3 constant loading mu” + cu’' + ku = F

1.4.3.1 Undamped Constant loading case ( =0

mu’ +ku=F
v +wPu=F
u(t) = up + up

£, the solution is

Where uj, = Acoswt + Bsinwt and u, =
, F
u(t) = Acoswt + Bsinwt + n

Applying initial conditions gives

A=u(0)- 7
_w(0)

And complete solution is

_F F @ (0) .
u(t) = =t (u(O) — E) coswt + Y sin wt

1.4.3.2 underdamped constant loading ¢ < 1

The general solution is

F
u(t) = e (A coswgt + Bsinwgt) + —

k
From initial conditions
F
A=u(0) — —
u(0) -
B u'(0) + u(0) fw — %fw
Wd

Hence the solution is

u(t) = e~ <(u(0) — %) cos wgt + (UI(O) +u0)éw - %&U) sinwdt> + %

Wd

41



1.4. Solution of Vibration equation of... Chapter 1. Vibration

1.4.3.3 Ciritical damping constant loading ( =1

The general solution is
F
u(t) = (A+ Bt)e " + =

Where from initial conditions

A=u0)- 7
B =4/(0) + u(0)w — %w

1.4.3.4 Over-damped constant loading ¢ > 0

The solution is

F
u(t) = AeP** + BeP' + =

Where now

%Pl — ugp1 + u'(0)

B=

(p2 —p1)
A=u(0)- 7 ~B

Hence the solution is

F
u(t) = Ae” + BeP?* + -

Where
= _w£+wn\/§2_1
S S =

=5 (50)
= 2m 2m

k
m
k
m

=5~V (5)
2= 2m 2m
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1.4. Solution of Vibration equation of...

Chapter 1. Vibration

1.4.3.5 Summary table for constant loading solutions

—w
roots
¢=0 +iw
u(t) = (Uo - F) coswt + 2 sin wt + %
—€w + iwpy/1 - &2
roots
¢<1 —€w — iwpy/1 — &2
_Feu\ L
u(t) = e‘ﬁwt((uo — B coswgt + (W) Slnwdt> G E
—w
roots
u(t) = ((uo — £) + (vo +upw — Lw)t) et + L
—wp€ +wp/E2 -1
roots
_wné- - an§2 —1
_ £ p1—uop1+vo
B= "
¢>1| A= g — % _B
c c \2
p1=—%+ (%) —%:-wn€+wn,/€2_1
c c \2
p2:_%_ (%) _%:_wng_wn\/é?—]_
u(t) = APt + Bep 4 I
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1.4. Solution of Vibration equation of... Chapter 1. Vibration

1.4.4 No loading (free vibration) mu” + cu’ + ku =0

1.4.4.1 Undamped free vibration

(@) O

Figure 1.9: single degree mass no damping

mu” +ku=0
v +wPu=0
The solution is

w'(0)

u(t) = u(0) coswt + ——= sinwt
w

1.4.4.2 under-damped free vibration c < ¢, <1

K
144428
r M
L @) @)

Figure 1.10: single degree mass damping

mu’ +cu +ku=0

v 4 26wu’ + wlu =0

The solution is
u = e (A coswgt + Bsinw,t)
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1.4. Solution of Vibration equation of... Chapter 1. Vibration

Applying initial conditions gives A = u(0) and B = v(O+u® Therefore the solution

Wd

w'(0) + u(0) Ew «in wdt)
Wy

becomes

u(t) = e~ <u(0) cos wyt +

1.4.4.3 critically damped free vibration { = = =1
The solution is
u(t) = (A+ Bt) e ()t
= (A+ Bt)e™*

where A, B are found from initial conditions A = u(0),B = v/(0) + u(0) w, hence

u(t) = (u(0) + (v'(0) + u(0) w) t) e™*

1.4.4.4 over-damped free vibration { = = > 1

The solution is
u(t) = AeMt 4+ Betet

where A, B are found from initial conditions.

_u/(0) — u(0) Ao

PN/
—’U/(O) + U(O) Al

2w\/E2 —1
where \; and )\, are the roots of the characteristic equation
M=) b ot w/E T
1™ Tom 2m m wrw
c c\2 k
N ) Lt — w2 —
A2 2m (2m) m fw-wve L

B =
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1.4. Solution of Vibration equation of...

Chapter 1.

Vibration

1.4.4.5 Summary table for free vibration solutions

—tw
roots
+iw
u(t) = u(0) coswt + = ( ) sin wt
= Acos (wt — ¢)
A=)+ (22
[w

¢ = tan~ 1( (()) )

—&w + iwy/1 — &2

roots
(<1 —fw —iwy/1 = €2
u(t) = e~&t (u(O) cos wat + u’@)t}% sin wdt>
—w
roots
¢=1 W
u(t) = (U(O)(l + wt) + u’(())t) e—wt
M= —wE+wy/E2 -1
roots
Ao = —wé —wy/E2 -1
(
C >1 u(t) = AeMwt + Belewt
— w(0)—u(0)Xrs
A= Vet
—u'(0)+u(0M
| B= e
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1.4. Solution of Vibration equation of... Chapter 1. Vibration

1.4.4.6 Roots of characteristic equation

The roots of the characteristic equation for u” + 2éwu’ + w?u = 0 are given in this table

roots

time constant 7

£ <1 | {—fw+junvT =&, —bw —iwn/T-8} | &

w

§=1 {_w’ _w}

€ |=

E>1 | {—wpf +wnvVE& — 1, —wn€ —w,/& — 1} 1 1 (which to use? the bigge

Wn€—wn\/E2—1" wpédwn/E2-1

1.4.5 impulse Fyi(t) loading

1.4.5.1 impulse input

1.4.5.1.1 Undamped system with impulse

mi + ku = Fyé(t)

with initial conditions u(0) = 0 and v'(0) = 0.Assuming the impulse acts for a very
short time period from 0 to ¢; seconds, where ¢; is small amount. Integrating the above

differential equation gives

t1 t1 t1
maidt + / kudt = / Fyo(t)
0 0

Since t; is very small, it can be assumed that u changes is negligible, hence the above

reduces to

/ midt = / Fyé(t)
/0 ( dt) dt = /0 " R(t)
/ﬂ (O(: di= 2 / "5

alty) — a(0 / 5(t
- /0 5(t)

since we assumed «'(0) = 0 and since fot ' 6(t) = 1 then the above reduces to

. F
u(ty) = EO
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Therefore, the effect of the impulse is the same as if the system was a free system
but with initial velocity given by % and zero initial position. Hence the system is now
solved as follows

mi+ ku=0

With %(0) = 0 and «/(0) = £2. The solution is

Fy
Uimpuise (t) = i sin wt

If the initial conditions were not zero, then the solution for these are added to the
above. From earlier, it was found that the solution is u(t) = u(0) coswt + = (0) sin wt,
therefore, the full solution is

due toiC only due to impulse

/(0 F, )

u(t) = u(0) coswt + v (0) sinwt + —~ sin wt
w mw

1.4.5.1.2 wunder-damped with impulse c < ¢, £ <1
mii + ct + ku = 6(t)
i+ 26wt + wu = §(t)
with initial conditions u(0) = 0 and «’(0) = 0.Integrating gives

t1 t1 t1 t1
maudt + / cudt + / kudt = / Fyé(t)
0 0 0

Since t; is very small, it can be assumed that u changes is negligible as well as the change
in velocity, hence the above reduces to the same result as in the case of undamped.
Therefore, the system is solved as free system, but with initial velocity u'(0) = Fy/m
and zero initial position.

Initial conditions are u(0) = 0 and v/(0) = 0 then the solution is

Uimpulse = e_gwt(A coswgt + B sinwgt)
(%)
wq

Fo
Uimpulse(t) = e—{wt —— sinwgt
) = (2 sina

, hence

applying initial conditions gives A =0 and B =

If the initial conditions were not zero, then the solution for these are added to the above.
From earlier, it was found that the solution is u(t) = e~ ( (0) cos wgqt + M sin wdt> ,

therefore, the full solution is

due toiC only due to impulse
/(0) + u(0 \ Fy
u(t) = e~ (u(O) cos wat + — (0) + u(0)ew sin wdt) + e_§“t< sin wdt>
Wq mwygy
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1.4.5.1.3 critically damped with impulse input ¢ = ==1 with initial condi-
tions u(0) = 0 and v'(0) = 0 then the solution is

u(t) = (A+ Bt) e ()t
= (A+ Bt)e™*

where A, B are found from initial conditions A = u(0) = 0 and B = v/(0) + u(0) w = £,
hence the solution is
Fot

Uimpulse (t) = He—wt

If the initial conditions were not zero, then the solution for these are added to the
above. From earlier, it was found that the solution is u(t) = (uo(1 + wt) + v/(0) t) e,
therefore, the full solution is

due to impulse

Fif

due to IC only

u(t) = (u(0) (1 + wt) + u'(0) t) e~ +

—wt

e

1.4.5.1.4 over-damped with impulse input { = > >1 With initial conditions
are u(0) = 0 and v/(0) = 0 the solution is

Arwt Aowt
Uimpuise(t) = Ae™“* + Be™?*

where A, B are found from initial conditions and

A= —wéE+wyE2—1
N

u'(0) — u(0) Az

A= 2V/EE —1

2w\/E2 —1

Hence the solution is

uimpulse(t) = Ae (_5—}_\/&27_1)“”: + Be(—g—\/@j)wt

where
Fy
A=__m
2w\/E2 —1
_F
B

- 2w\/§72n— 1
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Hence

Fy Fo

_ __ m (-e+vET)wt _ _ wm (—e—vE—1)wt
uzmpulse(t) - e

2wyvE2 —1 2wyvE2 —1
If the initial conditions were not zero, then the solution for these are added to the

above. From earlier, it was found that the solution is u(t) = AeP** + BeP?!, therefore,

the full solution is

e

Fy F
U(t) — Aeklwt +Be>\2wt + m e)\lwt _

2wyvE2 —1 20.)\/?2 -1

Aowt

v’ (0) — u(0) Ag

A= 2VE — 1
B— —’U/(O) + U(O) )\1

2w\/E%2 — 1

1.4.5.1.5 Summary table
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—iw
roots
¢= +iw
u” + w2u =0 trags\ient steady state
/(0 F, K
u(t) = u(0) coswt + w(0) sin wt + —~ sinwt
w mw
—&w + iwy/1 — &2
roots
c<1 —€w — iwy/1 — &2
transient steady state
. '(0) + u(0 . F
u(t) = e~ (u(O) coswgt + w(0) + u(0)ew sin wdt) + et (—O sin wdt>
Wy mwg
—w
roots
¢=1 —Ww
u(t) = (u(0) (1 + wt) + v/(0)t) e " + anﬁe_‘”t
A= —wé+wyE2—1
roots
Ao = —w€ —wyE2 —1
C >1 U(t) — Ae)\lwt + Be)\zwt + %Q e)qwt % e)\zwt
2w+\/€2-1 2w+/€2—-1
A _ u’(O)—u(O))\g
T 2wy/€2-1
B = —u/(0)+u(0) A1
\ T 2w /E2-1

The impulse response can be implemented in Mathematica as

parms = {m -> 10, ¢ -> 1.2, k -> 4.3, a —> 1};

tf = TransferFunctionModel[a/(m s”2 + ¢ s + k) /. parms, s]
sol = OutputResponse[tf, DiracDelta[t], t];

Plot[sol, {t, 0, 60}, PlotRange -> All, Frame -> True,
FrameLabel -> {{z[t], None}, {Row[{t, " (sec)"}], eql}},
GridLines -> Automatic]
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t(sec)

Figure 1.11: impulse Response Diagram

1.4.5.2 Impulse sin function

Now assume the input is as follows

t1 4

Figure 1.12: input function

given by F(t) = Fysin (wt) where w = 2277; =z

1.4.5.2.1 wundamped system with sin impulse

FO sin (wt) 0 S t S tl
mit + ku =

0 t>t
with 4(0) = ug and 4(0) = vg. For 0 <t < ¢; the solution is

u(t) = up coswt + L. sinwt + u ! sin [~
0 w 12 12 t
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where r = £ = /% — T where T is the natural period of the system. ug = %, hence
Fy

w 2t
the above becomes
F, (—Wm) 1 !
% _ —O% sinwt + ———————5sin (7r—> (1)
w kl_(m> k1_<m> t

w w

u(t) = up coswt +

When uy = 0 and vg = 0 then

u(t) = &% sin 7r1 _T/h sin wt
oy <m) t w

w
The above Eq (1) gives solution during the time 0 < ¢ < #;
Now after ¢t = t; the force will disappear, the differential equation becomes

mit+ku=0 t>1t

but with the initial conditions evaluate at ¢ = ¢;. From (1)

_ Vo T . 1 .
u(t1) = up coswt; + o uStl——r2 sinwt; + uStl——ﬂ sin wt;

B Vo r ro. 5
= yg coswty + Z—ustl_r2 uStl—r2 sin wt; (2)

since sin wt; = 0. taking derivative of Eq (1)

u(t) = —wug sinwt + w Uy coswt + w L cos wt
B 0 w 11— r2 1—r2
and at t = t; the above becomes
1(t1) sinwty + w | — r coswt; + ! cos wt
u(ty) = —wygpsinwty + w| — — ugg—— wt; + @ w
1 0 1 " ]2 1 1_,2 1
. Vg T 1
= —wugsinwt; +w (; — “stﬁ) coswty — wl — .2 (3)
since coswt; = —1. Now (2) and (3) are used as initial conditions to solve mii+ku = 0.
The solution for ¢ > t; is
i(t
u(t) = u(t1) coswt + ih) sin wt
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Resonance with undamped sin impulse When @w ~ w and ¢t < t; we obtain
resonance since 7 — 1 in the solution shown up and as written the solution can’t be
used for analysis in this case. To obtain a solution for resonance some calculus is needed.
Eq (1) is written as

Vo = . 1 )
u(t) = upcoswt + | — — Ust# sinwt + Ust—— 5 Sin wt
w 1-(2) 1-(Z
2
v w w
= Uug cos wt + (—0 — ustz—w2) sinwt + Ust— sin wt (1A)
w w*—w w2 —w

Now looking at case when @w ~ w but less than w, hence let
w—w=2A (2)
where A is very small positive quantity. and we also have

w+w 2w (3)

Multiplying Eq (2) and (3) with each others gives

w? — @’ = 4Aw 4)

Going back to Eq (1A) and rewriting it as

Vo ww \ . w?
u(t) = up coswt + (; - “Stm> sin wt + Ust g A — SiD wt
2

Vo w . w .
= ugcoswt + (; — UStE> sinwt + uStm sin wt

Since w &~ w the above becomes

u(t) = up coswt + (UO Ut )sinwt-l—u Y sinwt
— o w st4A st4A
coswt + 2 sinwt + Ugy— (sin ot — sin wt)
= U, —_ st O —
0 w 4N

now using sin wt — sinwt = 2sin (Tt) oS (WT"""t) the above becomes

u(t) = u coswt + 2 sinwt + ug — ( sin (| Z—2¢) cos w+wt
- w 27 2 2

From Eq(2) w —w = —2A and w + w =~ 2w hence the above becomes

u(t) = up coswt + %0 sinwt + usti(sin (—At) cos (wt))
w

2A
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or since w &~ w

u(t) = up coswt + % sin wt — ust%(sin (At) cos (wt))

Now lima_,q w =t hence the above becomes

vy . wt
u(t) = up coswt + o sin wt — Ust = €O (wt)

This can also be written as
v wt
u(t) = ug cos wt + — sin wt — Ust 5~ COS (wt) (1)
w
cos 7Tt +v0s' 7rt 7Tt cos 7Tt
=, — —sin | —t | —Ug| — —
0 tl w tl ¢ 2t1 tl

since w = w in this case. This is the solution to use for resonance and for ¢t < ¢;

Hence for t > t1, the above equations is used to determine initial conditions at ¢ = ¢;

t
u(t1) = up cos wty + % sin wt] — ust% cos (wty)
w

but cos wt; = cos %tl = —1 and sinwt; = 0 and WT“ = 7, hence the above becomes
T
U(tl) = —Ug + ust§

Taking derivative of Eq (1) gives

2

u(t) = —wug sin wt + vg cos wt + Ust—5~ S0 (wt) — Ust < €O (wt)
and at t = t;
. . w2t1 . o
U(t1) = —wug sin wty + v cos wity + us; sin (wty) — ust? cos (wty)
w
= —v + Ust o

Now the solution for ¢ > ¢; is

u(t:)

u(t) = u(t1) coswt + sin wt
!/ ™
T —vO+ Hetiy sin wt

2

= (—u(O) + Ugy ) cos wt +

%)
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1.4.5.2.2 wunder-damped with sin impulse c < ¢, £ <1

Fysin(w) 0<t<t
mi + ct + ku =

0 t>1

or

F()Sin(’W) 0 StStl
i 4 26wi + wu =
0 t>t

mi + ctt + ku = Fsinwt

F
il 4 26wt + w?u = — sin wt
m

For ¢ < t;Initial conditions are u(0) = uo and %(0) = vy and us = £ then the solution
from above is

Ust

V(1= 12)° & (26r)?

u(t) = e (A coswyt + Bsinwgt) + sin (wt — 0) (1)

Applying initial conditions gives
Ust

V(1= 12)% & (26r)?

B="4 Uobw + Ust (éwsin @ — wcosh)

Wi (- ) 4 (26r)?

A=wuy+ sin 6

For ¢ > ¢;. From (1)

Ust

V(L= (26r)?

u(ty) = e " (A coswgt; + Bsinwgt;) + sin (wt; —0)  (2)

Taking derivative of (1) gives

u(t) = —Ewe (A coswat + Bsinwgt) + e (— Awg sin wgt + wy B cos wqt)

+w Ust cos (wt — 0)

V- + er)?
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att =1

u(ty) = —Ewe " (Acoswat; + Bsinwgty) + e 5" (— Awy sin wat; + wyB cos wat1 )

+w Ust cos (wt; —0) (3)

V@ =2+ (26’

Now for ¢ > t; the equation becomes
mi+cu+ ku =0
which has the solution
u = e *“*(A coswgt + Bsinw,t)
where A = u(t;) and B = %

1.4.5.2.3 critically damped with sin impulse { = > =1 For ¢ < {;Initial
conditions are u(0) = ug and %(0) = vo then the solution is from above

Ust

u(t) = (A+ Bt)e ' +
V=) +ry

sin (wt — 6) (1)

Where tan = ;-2 = 12_6:2. A, B are found from initial conditions
A=uy+ sin 6

V- + ey

Ust

V(=12 1 (2r)’

B = vy + upw +

(wsin @ — w cos §)

For t > t; the solution is
u(t) = (u(tr) + (a(tr) +u(t) w) t) e™* (2)

To find u(t;), from Eq(1)

Ust

u(ty) = (A+ Bt)e™" +
\/(1 —72)% 4+ (2r)?

sin (cwt; — 0)

taking derivative of (1) gives

Ust

u(t) = —w(A+ Bt)e ™ + Be ™'+ w
\/(1 —72)% 4 (2r)?

sin (wt — 6) (3)
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att =1t
Ust

\/(1 —r2)® 4 (2r)°

u(t;) = —w(A+ Bt)) e ™" + Be™" + w sin (wt; —0)  (4)

Hence Eq (2) can now be evaluated using Eq(3,4)

1.4.5.2.4 over-damped with sin impulse £ = =>1 Fort< t;Initial conditions
are u(0) = up and u(0) = vy then the solution is

Ust

V@ —r2) + (2ery

u = AeP'’ + BeP?' +

sin (cot — 6)

where tan § = 12_5:2 (make sure you use correct quadrant, see not above on arctan) and
o n ( c )2 k
pr= 2m 2m m
= —wf+wyE -1
and

_ c (0)2 k
P2 = 2m 2m m

- w/E -

leading to the solution where tan 6 = IE_I—Q and

=t (o) - F =t tw /BT
c c\2 k 5
p=—5-—1/(5) — o = —wE—wn/E 1

u(t) = Ae<_§+\/527_1)wt + Be(_é_\/gzj)m + %ﬁ sin (wt — 0)
_ w(0) +u(0) wé + u(0) wy/E? — 1+ EB((€++/E€ —1)wsind — wcosh)

is

A 2w\/E2 —1

B _u’(O) + u(0) wé — u(0) wy/E — 1+ £B((6 — V& —1) wsinf — wcosb)
2w\/E2 — 1

B 1

V=2 + 26r)?
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For t > ¢;. From Eq(1) and at t = ¢;

u(ty) = AeEVET)et | po(-e-VE)et | pin (op, — g)

Taking derivative of Eq (1)

u(t) = wAe(_ng T + wBe<_§_ Vet Jur + wD cos (wt — 0)

Att=1t,

u(t)) = wAe G +wBe (-e-ver=T)en + @D cos (wt; — 6)

Equation of motion now is
i + 26wt + w?u = 0

which has solution for over-damped given by

U(t) — Ae<—§+\/§2—1)wnt+Be(-ﬁ—@)wnt

where
Ao Ut) Fult)wn(§ — VE-T)
B 2w /&2 — 1
g M)+ u(ty) éwn (€ +VE — 1)
B 2w,/E — 1
Input is given by F(t) = Fysin (wt) where w = 2 = [

(2)

3)

t1 = 2;
'Plot[(UnitStep[t] - UnitStep[t - 2]) Sin[Pi/t1 tl, {t, 0, 10},
PlotRange -> All, Ticks -> {{0, {2, "t1"}, 4}, Automatic}]

N\

1.4.5.2.5 Summary table
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—iw
roots
+iw
( r
u(0) coswt + “Osinwt — L cos(wt)  0<t<t
w=w —
¢=0 b —/(0)+72 7
\ (—u(0) + 22 Z) coswt + sinwt t>t
U(t) ( /t
’ Fo/k)( T4
u(0) coswt + (“;O) _w 1& ”2)) sin wt + % sin (%f) 0<t<t
s () ()
u(ty) coswt + = (tl) sin wt t>1t
—€w + iwpy/1 — &2
roots time constant 7 = CwLn
—€w — iwpy/1 — &2
e—Ewt(A coswgt + Bsinwgt) + Ffﬁ sin <7r% — 0> 0<t<ty
1—72)“4(2¢r
t) =
c<1| W ,
e—Ewt (u(tl) cos wgt + % sin wdt> t>t
A=u(0)+ 22—~ —sing
u( ) + k (1—’!"2)2"1‘(257‘)2 Sin
_ v(0) (0)¢ F 1 .
B =" 4w Towd\/(1—r2)2+(2gr)2 (wsin O — wcos §)
—w
roots
—w
(A+Bt)et+B__ 1L g (wi —0) 0<t<t
c=1| wt)= - een? n
u(t) = (u(ty) + (W' (t1) +u(ty) w)t) e t>t

A=u(0)+ 2 L

A —ﬁ—ﬂ)%(zrf sin

B =14/(0) + u(0) w + &é(wsinG— %cos&)

" -y
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—wpé +wpVE2 —1
—wpé —wpVE2 —1

aelevVE)er | g (e vee | rg (rt-0) 0<t<n

u(t) = Ale(—€+\/§2—1)wnt_{_Ble(—{—\/&?—l)wnt

roots

u(t) =
t>1

. u'(0)+u(0)w§+u(0)w\/52—14-%6(<§+\/§2—1)wsin 0—% cos 0)

¢>1| A 2wy/E2—1
B— _u’(O)—l—u(O)wE—u(O)w\/{z—1+%,8((E—\/§2—1)wsin9—% cost9>
2w+/E2-1
_ 1
\ (1-r2)?+(2¢r)?
4 a(ty)+u(ts)wn (5—\/g2—1)
L= Qn\/E2—1
B, HtFu(t)wn (e VET)
1= Qwn/E2—1

1.4.6 Tree view look at the different cases

This tree illustrates the different cases that needs to be considered for the solution of
single degree of freedom system with harmonic loading.

There are 12 cases to consider. Resonance needs to be handled as special case when
damping is absent due to the singularity in the standard solution when the forcing
frequency is the same as the natural frequency. When damping is present, there is no
resonance, however, there is what is called practical response which occur when the
forcing frequency is almost the same as the natural frequency.
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Solution to single degree of freedom system, second order, linear, time invariant

By Nasser M. Abbasi
December 11, 2012 |
Single_degree_system_tree.vsd

| r =

undamped daniped 5 _ C:Lcr
free ‘forced
free mi+cu+ku=0 _
mi+ku =0 | | | mU + cu + ku = Fsinwot
t<l &=1 ¢>1 H;
forced r:1 ril
mi + ku = Fsinwot |
| |
| &<l ‘ E>1 ¢<1 E> 1
r=1 r=1 E=1 ¢=1

r = 1 resonance X,
& < 1 underdamped, roots a + ib with a real and negative?)_
& = 1 critical damping roots {-a,—a} e
¢ > 1 overdamped roots both real and negative {-a,-b} +~7

Figure 1.13: single degree system tree

The following is another diagram made sometime ago which contains more useful
information and is kept here for reference.
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One degree freedom
linear system unforced
response

Y'(t) + Syt + Kyt) =0
y" (1) + 2{ony' (1) + 0fy(t) =0

Solution roots
Some

defintions
S12 = —Cwn £ wn sz -1
wn = % (rad/sec) 3 cases

¢ damping ratio

é’:L:L_ c
Cr 2 Jkm 2wpm

v c=1 E>1
Defi\ned only Underdamped Critical cllampted Over damped,
for under 2 roots, goneblrea root, 2 real roots,
damped complex ou .e. . distinct

njugate multiplicity)

case(else zero)

v
y(t) = (A+Bt)e5ent
A =Y(0), B=y'(0) + Adon

y(t) = e*nt(Acoswgt + Bsinwgt)
A= y(o) B = y' (0)+Alwn

Od
T, = 2& , -
d = o Damped period of oscillation
T = 51 Time constant
@n - JE2-1 )ont —+)E2-1 Yoot
y(t) = Ae(EIE)ont g (6rEJon
Nasser M. Abbasi / 2
ay 25, 0 0 —JEc=1
A L OyOun( 1)

200 ‘152—1
Y ©+y©@wn(¢+/E1)
200 JE2-1

Figure 1.14: one DOF system
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1.4.7 Cycles for the peak to decay by half its original value

This table shows many cycles it takes for the peak to decay by half its original value
as a function of the damping (. For example, we see that when { = 2.7% then it takes
4 cycles for the peak (i.e. displacement) to reduce to half its value.

‘data = Table[{i, (1/i Logl[2]/(2#Pi)*100)}, {i, 1, 20}];
 TableForm[Nedata,

‘TableHeadings -> {None, {Column[{"number of cycles",
"needed for peak", "to decay by half"}], "\[Zetal (%)"}}]

number of cycles
needed for peak
to decay by half

iy
o

=]

L0318
. 531589
L8TTZ26
o e B o o7
20636
. 83863
STt b )
. 37897
22573
10318
00285
818315
.848598
. 787984
o ot i e
. 688486
. 648928
LB1287TT
. 28062
. 251588

WO CD =] KN s Lo R
S S O ST

e
T e . M T R Wy Sy
o =

ft et e e
(s T N Bl Bl R

o
s N e

Ry s

Figure 1.15: peak table
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1.4.8 references
1. Vibration analysis by Robert K. Vierck
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Leigh

3. Dynamic of structures, Ray W. Clough and Joseph Penzien
4. Theory of vibration,volume 1, by A.A.Shabana

5. Notes on Difty Qs, Differential equations for engineers, by Jiri Lebl, online PDF
book, chapter 2.6, oct 1,2012 http://www.jirka.org/diffyqs/
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oHaPTER 2
CHAPTER

DYNAMICS EQUATIONS, KINEMATICS, VELOCITY
AND ACCELERATION DIAGRAMS

2.1 Derivation of rotation formula

This formula is very important. Will show its derivation now in details. It is how to
express vectors in rotating frames.

Consider this diagram

67



2.1. Derivation of rotation formula Chapter 2. Dynamics equations, ...

Moving frame of
reference, attached
to body of interest

Absolute (or inertial frame of reference)

Figure 2.1: rotating frames

In the above, the small axis z, y is a frame attached to some body which rotate around
this axis with angular velocity w (measured by the inertial frame of course). All laws
derived below are based on the following one rule

4,
dt

d

=" twxr (1)

relative

absolute

Lets us see how to apply this rule. Let us express the position vector of the particle 7.
We can see by normal vector additions that the position vector of particle is

Tp=To+T (2)

Notice that nothing special is needed here, since we have not yet looked at rate of
change with time. The complexity (i.e. using rule (1)) appears only when we want to
look at velocities and accelerations. This is when we need to use the above rule (1). Let
us now find the velocity of the particle. From above

Tp = o+
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Every time we take derivatives, we stop and look. For any vector that originates from
the moving frame, we must apply rule (1) to it. That is all. In the above, only r needs
rule (1) applied to it, since that is the only vector measure from the moving frame.
Replacing 7, by V, and 7, by V,, meaning the velocity of P and o, Hence the above
becomes

Vo=Vo+7

and now we apply rule (1) to expand 7

Vy = Vot (Vi +w x7) (3)

.. d
where ‘/rel 1S JUSt dtr‘relati've

The above is the final expression for the velocity of the particle V, using its velocity as
measured by the moving frame in order to complete the expression.

So the above says that the absolute velocity of the particle is equal to the absolute
velocity of the base of the moving frame + something else and this something else was
(Ve +w X 7)

Now we will find the absolute acceleration of P. Taking time derivatives of (3) gives
VPZVO-F(VTel—I—wxr—i-wxi") (4)

As we said above, each time we take time derivatives, we stop and look for vectors
which are based on the moving frame, and apply rule (1) to them. In the above, V,,
and 7 qualify. Apply rule (1) to V, gives

Viel = Gret +w X Vg (5)

where a,¢; just means the acceleration relative to moving frame. And applying rule (1)
to 7 gives
F=Vig+wxr (6)
Replacing (5) and (6) into (4) gives
ap =00+ (@res + WX Vg +wxr+wx (Vig+wxr))

=ao+a'rel+(wx Wel)+(wxr)+(w X ‘[rel)‘l‘(wx (wxlr))

=Go+ At +2(w X Vi) + (W X 7) + (w X (w X 1)) (7)
Eq (7) says that the absolute acceleration a, of P is the sum of the acceleration of the

base a, of the moving frame plus the relative acceleration a,.; of the particle to the
moving frame plus 2(w X Vi) + (W X 1) 4+ (w X (w X 7))

Hence, using Eq(3) and Eq(7) gives us the expressions we wanted for velocity and
acceleration.
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2.2 Miscellaneous hints

1. When finding the generalized force for the user with the Lagrangian method (the
hardest step), using the virtual work method, if the force (or virtual work by
the force) ADDS energy to the system, then make the sign of the force positive
otherwise the sign is negative.

2. For damping force, the sign is always negative.

3. External forces such as linear forces applied, torque applied, in general, are
positive.

4. Friction force is negative (in general) as friction takes energy from the system
like damping,.
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2.3 Formulas

Sin?x = 1—C—252X

COS2X = 1+cc2>52x

sin2Xx = 2sinXCcosX

COS2X = COS?X — Sin?x
=1 —2sin%x

IF rigid body is rotating AND translation at the same time THEN
Take moments around its cg only
ELSE
can also take moments about any other points on it (but
change 1)
END IF

Vp = Vo +o XTI+ Vrel v relative to o

Ap =a0+OXI+ox(@xr)+20x Vi + arel

BODY FIXED
COORDINATES
This gives the relation
R between the rate of
4 change with respect to
” time of a vector expressed
/ in a frame of reference
R which is body fixed (y,x)

X here, to the rate of change
with respect to time of the
same vector expressed

' using an inertial frame
coordinates XY.
The omega here is the
Y angular velocity of the
R rigid body rotation, or the
X body fixed coordinates,
with respect to the inertial
frame.

d _d
ERX,Y = ERX'V + o X RX,Y

For the sign of generalized force:
If work done by force takes away
energy from system, then the
sign is negative, else positive. So
Friction will always have negative
sign, so will damping force.

S cos(x(t))

= —sin(x(t))x'(t)
+(w) - (5 Gr))Eo
< cos(x(t)) = (& (cosx(1)) ) Ex(t)

Velocity of p

The small disk rotates

at angular speed of ©

The condition of no slip can
be seen to be

(R-1r)b =ro

Figure 2.2: Formulas 1
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F=ma t=10

linear momentum p = mv angular momentum H = I
_d _d

F= 4P T = (H)

particle kinetic energy T = 1mv?2 | rigid body T = 2 MvZ; + 21467

my” +2lwny’ + iy = f(y,t)
y'+cy' + £y = f(y,t)

/ 2
Wn = %1C: Cnc]on

For small
epsilon
1 _1_
1+¢ 1 &
L =1+¢

1-¢

conservation of angular momentum %(H) =constant

X" +wix =0
If on > 0 then sinusodial solution, ok
if @, < 0 then solution blows up, exponential

Figure 2.3: Formulas 2
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2.4 Velocity and acceleration diagrams

2.4.1 Spring pendulum

Length of pendulum fixed Length of pendulum changes with time

acceleration

Velocity diagram diagram
acceleration

Velocity diagram diagram

Length of pendulum changes with time and base of pendulum moves

y

acceleration
Velocity diagram |_ diagram i

Nasser M. Abbasi
Oct 10, 2013 (drawing2.vsd)

Figure 2.4: Spring pendulum
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2.4.2 pendulum with blob moving in slot

System. Pendulum with Velocity diagram
blob which moves in slot
perpendicular to axis

acceleration diagram

Figure 2.5: pendulum with blob
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2.4.3 spring pendulum with block moving in slot

y

System. Pendulum with blob which r
moves in slot perpendicular to axis. In
addition, length of the axis of pendulum Velocity diagram
itself changes in time. yand r are
measured from static equilibrium of
springs

2y0

ro

N -

\

acceleration diagram

y0?

\ 210

Figure 2.6: spring pendulum with block moving in slot
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2.4.4 double pendulum

},___ Double i . Velocity diagram
|
pendulum w

acceleration diagram

Figure 2.7: double pendulum
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2.5 Velocity and acceleration of rigid body 2D

Notice the
sign

Y Rigid body, . difference
] rotating at Linear
Linear angular @ acceleration
Velocity speed diagram
X diagram
_ dy U-wV
Nasser M. Abbasi — —
Drawing_rigid_body_rotati a - —_— .
on_1.vsd
May 23, 2011 ay V + a)U

Figure 2.8: Velocity and acceleration of rigid body 2D

Finding linear acceleration of center of mass of a rigid body under pure rotation using
fixed body coordinates.

In the above U is the speed of the center of mass in the direction of the x axis, where
this axis is fixed on the body itself. Similarly, V' is the speed of the center of mass in
the direction of the y axis, where the y axis is attached to the body itself.

Just remember that all these speeds (i.e. U,V) and accelerations (a, a,) are still being
measured by an observer in the inertial frame. It is only that the directions of the
velocity components of the center of mass is along an axis fixed on the body. Only the
direction. But actual speed measurements are still done by a stationary observer. Since
clearly if the observer was sitting on the body itself, then they will measure the speeds
to be zero in that case.
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2.6 Velocity and acceleration of rigid body 3D
2.6.1 Using Vehicle dynamics notations

Linear force

F.

torque

Nasser M. Abbasi A /

3d_1.vsd Linear velocity
May 26, 2011 N N\

W angular velocity
A

for a general 3D rigid body

—

N\ /\ /\_/

I |xy Iz

U +qW— rv
F = Lp — l(mv):m— V+rU-— pW
W+ pV — quU

F
L U "
Fy
. F.
Forces, Torques, linear
velocities and angular velocities
Fx
I ( (

linear momentum

Derivation\of this is much more complicated than with
__d _d . . _ . .
'[;_d— H ir ( |0)) the case of linear motion (F=ma), since m is scalar
t t there, but for rotation, | is matrix. See next page for the
derivation

Angular momentum

Figure 2.9: Vehicle dynamics notations
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2.6.2 3D Not Using vehicle dynamics notations

inear force

FZ torque
Nasser M. Abbasi / . VX
3d_1.vsd Linear velocity
Tz /

May 26, 2011

angular velocity

()
/ ‘ W = a)y
Ly,
o U™y vz
Oy V y

T
y Fx
Tx
F - Fy
Forces, Torques, linear Fz
velocities and angular
F velocities for a general 3D
X

rigid body Ty
I XX I Xy I XZ T= Ty
F=l Iy ly ly Tz

sz Iyz |zz a

dyx + (Dsz — 0)2Vy

_ d _d _m_d _
F = P = E(mv)—mﬁv =m Ay + W7Vx — xVz
T a; + a)xVy — a)sz

linear momentum

The derivation of the above is given next, but it uses the standard formula given by

<%A> - <%A> resolved +0x A

This is in the \/ \ \

inertial f f . . Cross product
Inértial frame o This is the same A, but its components
reference are with respect to the body fixed
coordinates system,

Figure 2.10: 3D Not Using vehicle dynamics notations
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2.6.2.1 Derivation for F' = ma in 3D

ag i j k

=m Qy -I-det Wy Wy W,

a, Ur Uy Uy

ay Wy, — W,y
=m||a, |+ | —(wev, —w,vs)

a, Wyly — WyUy

Ay + Wyl — W,y

=M ay — We, + WU,

Oy + WrUy — Wyly

2.6.2.2 Derivation for 7 = Iw in 3D

(i)

(iA) +wX A
dt resolved

Let A = Iw then using the rule

T
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Then 7 = Iw can be found for the general case

[ 4 ] 4
Loy Iy o\ [we Wy Ly Ly Ipp | [we
T= % Iye Iy I Wy Tlwy | X | Le Ly I Wy
Lo Iy, I..) \w: np Lo Iy, I..) \w:
Lig Loy Ip. )| 0w Wy Lppwy + Inywy + 1w,
= | Lys Ly Iy ay [ Tl wy | X | Lyaws + Lyywy + Iyow,
Lo Iy, I.) \o W Lows + Lypwy + Low,
Lw Iy I, Oy t J k
= | Iy Ly I. ay, | +det Wy Wy W,
L, I, I.] \a, (Tpgwy + Lpywy + Ipw,)  (Iygwy + Lywy + Lpw,)  (Laws + Iywy +
L., I, I, 0l Wy (Lgwy + Iypwy + Law,) — w,(Iypws + Iyywy + Iw,)
=\ I, I, I, ay | T | we(leaws + Typwy + Low,) — w,(Lpawy + Lyywy + Ipaw,)

L., I, I, a, Wy (Lyawy + Lyywy + Iyw,) — wy(Ipgws + Iywy + Lpw,)

2.6.2.3 Derivation for 7 = Iw in 3D using principle axes

The above derivation simplifies now since we will be using principle axes. In this case,
all cross products of moments of inertia vanish.

L. 0 0
I=10 1, 0

0 0 I,
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Hence
[ 4 ] 4
I.. 0 O Wy Wy I.., 0 O Wy
T:% 0 I, O wy || T lw, | X1 0 L, O Wy
0 0 I, W, W, 0 0 I, W,
L, 0 0 Q Wy Lpzwy
=10 Iy 0 ay | T wy | X ] Lyywy
0 0 L. \a W L.w,
I.a, i J k
= | Iyo, | tdet| w, w, w,
L., Ippwy  Iyywy ILw,
J e wy(1o2w;) — w(Tywy)

- IyyO[y + _wm(-[zzwz) + w, (Imww)
Izzaz wx(Iyywy) — wy(Izwwm)
Ipp0 wywz(Izz — Iyy)

= | Iyoy | T | wew: (I — I2)

Izzaz way(lyy - IME)

So, we can see how much simpler it became when using principle axes. Compare the
above to

L, I, I oy Wy (Lgwy + Iyywy + Iaw,) — w,(Iygws + Iyywy + I,w,)
Iym Iyy Iyz Qy + wx(szww + Iyzwy + Izzwz) — W, (szwx + Iwywy + Ixzwz)
L. I, I, o, Wy (Lyawy + Lyywy + Iyw,) — wy(Ipgws + Lyywy + Lpw,)

So, always use principle axes for the body fixed coordinates system!
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2.6.3 Acceleration terms due to rotation and acceleration

local body
frame.
Rotating and
translating i velocity of particle,
relative ;co " 7, of mass m, relative
inertial frame .

. p / to local body frame

angular
velocity of local
frame around
inertial frame

inertial frame _
O -
>y

X

Figure 2.11: Acceleration terms due to rotation 1.

due to angular acceleration of local frame

@ XT
due to linear acceleration of local frame

oy

R

centripetal force

G x (@ x (R+7) Uy velocity of particle
P p in local frame
A A
angular A 7 // 20 X Uy

velocity of local
frame around
inertial frame

coriolis acceleration
due to particle having
velocity in local frame

Oy
showing The four acceleration terms

Figure 2.12: Acceleration terms due to rotation 2.
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2.7 Wheel spinning precession

H Angular momentum Angular momentum
change due to the
torque applied
After torque applied for At

Torque vector
representation

,v‘[
y
- Hy = |yy(0y This is what wheel will
x= look like after del T
time due to
/ precesses, notice that
SPIN angular
T= Mgl— Mg Important: This g momentum changes
analysis is valid in the direction of the
Wheel spinning around y-axis, only for LARGE torque
hanging from ceiling Oy

Weight create a torque which
changes the angular
momentum

y

Angular momentum
Time it takes H after At
for the wheel
to precesses
one full cycle

A A A e |
To = o <
lyyoy /
X
AH _ = - = T
But 5 = (lyywy)wp, hence © =(lyywy)wp hence wp = - = 7=
Aot Therefore, precession velocity o is :\yﬂy?uLy
Precesses.vsd

6/1/2011

Figure 2.13: Wheel spinning precession

2.8 References

1. Structural Dynamics 5th edition. Mario Paz, William Leigh
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2.9 Misc. items

The Jacobian matrix for a system of differential equations, such as

ml(t) = f(x,y, Z)
y'(t) = g(z,9,2)
2 (t) = h(z,y,2)

is given by
af df df
dr dy dz
=|d dg dg
J dr dy dz
dh dn  dh
de dy dz

For example, for the given the following 3 set of coupled differential equations in n3

'(t) = —y(t) — 2(t)
y'(t) = z(t) + ay(t)
2Z'(t) = b+ 2(t) (z(t) — ¢

then the Jacobian matrix is

z2(t) 0 =z(t)—c

Now to find stability of this system, we evaluate this matrix at t = to where z(ty) , y(to) , 2(t0)
is a point in this space (may be stable point or initial conditions, etc...) and then J
become all numerical now. Then we can evaluate the eigenvalues of the resulting matrix
and look to see if all eigenvalues are negative. If so, this tells us that the point is a
stable point. I.e. the system is stable.

If X is N(0,1) distributed then mu + sigma * X is N(mu, sigma?) distributed.
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oHaPTER 3
CHAPTER

ASTRODYNAMICS

3.1 Ellipse main parameters

O

perigee

apogee

012714 ellipse_diagram.vsdx

Figure 3.1: Ellipse
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3.2 Table of common equations

The following table contains the common relations to use for elliptic motion. Equation
of ellipse is 2—3 + bL; =1

term to find relation
0 [1+e E
tan (5) =\V1 . tan (5)
conversion between E and 6 cos B = £ + cos b
1+ ecosf
cos — £ 08 E
~ ecosE—1

position of satellite at time | E —esin E = n(t — 1)
t Solve for F, then find 6. 7
here is time at perigee and
n is mean satellite speed.

eccentricity e e=%¢=""2L=,/1+

Major axes a __H

= Vb2 + 2

T 1-e

Minor axes b b=av1—e2

_a(l-¢€?)
Tp - 1+e
=a(l —e)
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_ 2
= a(l —e?)
1—e
Tq =a(l+e) == I
R 1
Cpl—e
. p=all—e) = £ —r,(l+e)=r,(l—0)
. h=ryv, =1, =7 X U= +/pu
specific angular momentum ) )
L h = \/ur (circular orbit)
Total Energy & E= % —b=_F
2 1 ( . . )
v= - —= vis-viva
F\r " a
2p .
Vescape = \/ —  (escape velocity for parabola)
velocity v r
Uradial = \/E esind
p
Unormal = \/E (1 + ecos 9)
p

ﬁ@
|
SHRS
VR
— =
|+
(LS
~__

Uperigee (closest)

[
SHRS
-
+
N

I
=
A~
< o
|
IS
N———

<
)
I

Il
&\ o=
—

|

&

N
(S
+ | |
(SRS
~_

Vapogee (furthest)

Il
=
VR
&
|
ISEN
~




3.2. Table of common equations Chapter 3. Astrodynamics

. a(l—¢€?) _ n? 1
14+ecosf p1l+4+ecosh
rcosf = a(cos E — e)
r=a(l —ecosE) (eq 4.2-14 Bate book)

magnitude of 7

period T' T = %Wab =27 %

mean satellite speed n n= 2?“ = \/aEB

eccentric anomaly E tang = %Z tan %

area sweep rate % = %

equation of motion F+ Er=0

spherical coordinates rela-| cos(i) =  sin(A,)cos(¢) where 4 is the inclina-
tion tion and A, is the azimuth and ¢ is latitude [

56 SPACECRAFT MISSION DESIGN

WTR
ETR
Allowzble
Azimuth Range:

-
All bl
s Range: | Y
170° 10 300°

35° w0 120°

Fig.43 Acceptable launch azimuth range for the United States.

Notice in the above, that the period T of satellite depends only on a (for same p)

In the above, u = GM where M is the mass of the body at the focus of the ellipse and
G is the gravitational constant. h is the specific mass angular momentum (moment of
linear momentum) of the satellite. Hence the units of %2 is length.

To draw the locus of the satellite (the small body moving around the ellipse, all what
we need is the eccentricity e and a, the major axes length. Then by changing the angle
6 the path of the satellite is drawn. I have a demo on this

See http://nssdc.gsfc.nasa.gov/planetary/factsheet/earthfact.html for
earth facts

This table below is from my class EMA 550 handouts (astrodynamics, spring 2014)
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Earth
Mass = 5.974 x 10** kg
Equatorial radius = 6378 km
Heartn = GMigan = 3.986 x 10° km?/s”
Mean distance from the Sun = 1 AU = 1.495978 x 10® km

Sun
Mass = 1.989 x 10*° kg
Mean radius = 695,990 km
gun = GMigyy = 1.327 x 10" km?/s?

Mean Orbit Orbit inclination Mass Equatorial | Sphere of
distance eccentricity | to the ecliptic (units of | radius (km) | influence
from the plane (deg) Mearn) radius (km)
Sun (AU)

Mercury 0.3871 0.2056 7.005 0.0553 2440 1.13x10°
Venus 0.7233 0.006777 3.395 0.8149 6052 6.17 x 10°
Earth 1.000 0.01671 0.000 1.000 6378 9.24 x 10°
Mars 1.524 0.09339 1.850 0.1074 3396 5.74 x 10°
Jupiter 5.203 0.04839 1.304 317.9 71,492 4.83 x 107
Saturn 9.537 0.05386 2.486 95.18 60,268 3.47 x 10’
Uranus 19.19 0.04726 0.7726 14.53 25,559 5.19x 10°
Neptune 30.07 0.008590 1.770 17.14 24,764 8.67 x 107
Pluto 39.48 0.2488 17.14 0.0022 1195 3.17x 10°
Moon

Mass = 7.3483 x 10°* kg
Mean planetary radius = 1738 km
Hoon = GMoon = 4902.8 km?/s?
Mean distance from the Earth = 384,400 km
Orbit eccentricity = 0.05490
Orbit inclination to ecliptic = 5.15°
Orbit inclination to the Earth’s equatorial plane ranges from 18° to 297
Sphere of influence radius: 6.61 x 10* km

Universal Constant of Gravitation

G =6.674x 10" m*/(kg s%)

Figure 3.2: Astrodynamics constants
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3.3 Flight path angle for ellipse vy

2 2 .
a?(1-e?) esing
cosy Ay = 1855
= -2 iz = -2 Mean
V=[] = V2 +Nal?  Fishtpathangie posive | & Vr = Vi€ = (ﬁesm@)er e
to the inside as shown) I wn= |~
N IS \ Pt ud as
ight veloci Tis \ PPt
V: (g - l) \sleghotr, Ian te\:v ov o \m - =
lu r a thetelliptseit . | } nAt = E - eSInE
current position /
Km/sec ‘ g T |
| The time to fly this path is
p : given by the above
= : 9 expression.
E [
M \\ perigee
\
1
rr=a(l-e)
P Semi-major axes ‘
s \
— 2 \
b=ayl-e | \ g o fatfp
o — fah | ! 2
_ Tatlp a= yb?+c?
-
Equation of ellipse // N — a<1_ez>
(xX0)? (Y-Y0)? d N o 1+ecos 0
2 e =1 7 Y r=a(l-ecosE)
a / // \ v
/ N
3 -
T = 27[ ‘, aT - _
Period of ellipse. Time to
travel around one time
;pggge 7777777 ;rigieei
Mean probe
speed (rad/sec)
oz _ [E
n= T as ‘\\‘\‘x

Nasser M. Abbasi
022314
ellipse_diagram_2.vsdx

/  Convert from true anomaly

— H N / to eccentric anomaly
Ve = e ¥ ---x s
~ tan 0 _ [lte tan E
Speed on circle of radius rcin km/sec™ — 2 - 1-e 2
(use for LEO and GEO when e—cosE
approximated to circular orbit) — _SuUob
Ccos 9 ecosE-1

Figure 3.3: Flight path angle
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To find v, if r is given then use
B ap _ [a? (1—e?)
cosT = \/r(2a—7‘)_ r(2a—r)

esinf
1+ ecosf

If 6 is given, then use

tany =
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3.4 Parabolic trajectory

This diagram shows the parabolic trajectory

The time to fly this distance is er
given by solving for (t — 7) from h
[H 0 1 0 \\3
2 F(t_r) :tan(7)+3(tan(7)) V — ZT#
path ¥ = %
satellite angle
. 2u ~
Vo = ¥ T ST—v r “eq
\ r _ p _ er
© 1+cosf®  1+cosh
h2
_ H
t_ 1+cos
p p
it |
2/5/14 p — 2rp ‘

Figure 3.4: parabolic trajectory
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3.5 Hyperbolic trajectory

This diagram shows the hyperbolic trajectory

Vgo = V% - Vgsc Use this to

determine Vp

V2 — ﬂ needed to
0 a escapetoa
h bolic orbit.
V2 _ 2‘Ll yperbolicor! The time to fly this path is
esc — I’p found by solving for t in
3 .
Flight path angle At = ’ aT (e S|nh F - F)
a?(e?-1)
Cos 7/& o r(2a+r)

V= JuF )

/

_ a(n)

" l+ecosé
r = a(ecoshF—-1)
h2

r=-——

_ 0
coshF = £57
an(4) = /<L tanh(%)
e=<
if we know ry,r; on the ri=ale-1)

orbit, and know the travel B -
time between these 2 points % a(ecoshF —1)

then a, e, F can be found by a8 L B
numerically solving these At = | A (esinh(F) — F)

Figure 3.5: hyperbolic trajectory

This diagram below from Orbital mechanics for Engineering students, second edition,
by Howard D. Curtis, page 109
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2.9 Hyperbolic trajectories (e > 1) 109

FIGURE 2.27

Orbits of various eccentricities, having a common focus F and periapsis P.

Figure 3.6: diagram below from Orbital mechanics textbook
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3.6 showing that energy is constant

Showing that energy £ = % — £ is constant.

Most of such relations starts from the same place. The equation of motion of satellite
under the assumption that its mass is much smaller than the mass of the large body
(say earth) it is rotating around. Hence we can use v = GM and the equation of motion
reduces to

P+ =0
r

In the above equation, the vector 7 is the relative vector from the center of the earth
to the center of the satellite. The reason the center of earth is used as the origin of
the inertial frame of reference is due to the assumption that M > m where M is the
mass of earth (or the body at the focal of the ellipse) and m is the mass of the satellite.
Hence the median center of mass between the earth and the satellite is taken to be the
center of earth. This is an approximation, but a very good approximation.

The first step is to dot product the above equation with 7 giving

A 12
rer+r-or=0 (1)

<

And there is the main trick. We look ahead and see that 7. 7 = ## but 7# = % (§>

and we also see that 7"+ 47 = pZ but p% = £ (=) Hence equation 1 above can be
written as
d ('02 7")
S _TY_p
dat\ 2 p
Hence
P v o
-3

Where £ is a constant, which is the total energy of the satellite.
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3.7 Earth satellite Transfer orbits

3.7.1 Hohmann transfer

This diagram shows the Hohmann transfer

a = 1t 72L 2
Vi= |+
V2 = /H<L B l) \*';“\»;,,_1‘» Time to tranlslfer
1 a from one orbit to
/ X " theoth
AVy = V3 —V; \ AN

€
2 1 o
Vs = x/“(r_z - a> v
Vi AV12 ’
Vy = r% .....

Hohmann Transfer

AV, = V4 —-V3 o
AV = |AV1| + |AV;]

022014

Total Velocity
change needed

Figure 3.7: Hohmann transfer
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3.7.2 Bi-Elliptic transfer orbit

a:r1+rb

! 2 a, = 2
ro+r

a = 22b

Vo= [u(F-45)

AV1 =V, -V,
- b E
" &
AVy = V4 - V3 -
Vo= (% - %)

ad as
Ve:\/g Tonfd 42 /2

Time to transfer

— |

from one orbit to

AVS - V6 o VS the other
AV = |AV1| + |AV| + |AV3|

Total Velocity
change needed

Figure 3.8: Bi-Elliptic transfer orbit
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3.7.3 semi-tangential elliptical transfer
a= ?‘1'J2ri‘b
a it 1o ///]r\\\*‘\\/ rh—T1
2 : . = T
Vi= |+
_ 2 1 |
Va = / u(F - %) x
AV; =V, -V,
Time to
V = / L — l \\r_l . ransfer from
3 ,U< r2 a > & E)ne orbit to
Vo= |+
rb _ rl Semi-tangential transfer
€ My +11
a2(1—e?) r, =a(l-ecosk)
COSy =
Y r2(2a — I’z) n = LS
a
_ 2 2
AV2 = V5 +V3 - 2V,4V3cosy At = L(E-esinE)

AV = |AV1|+ |AV,|

Total Velocity
change needed

Figure 3.9: semi-tangential

st
Nasser
022314

elliptical transfer

3.8 Rocket engines, Hohmann transfer, plane

change at equator

two cases: Hohmann transfer, 2 burns, or semi-tangential. All burns at equator.
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[} 2 2 _
Va g > AVrocketz Vg + Vi —2VeVacos(az)
S
TS «V, solve for +a;
< Vc Using rocket engine equation
ch with Hohmann transfer to find
what initial inclination is
ry needed. Case for all burns at
a r{+r, L"Ohma“” equator only =
ransfer =
2 2
[8]
7 e
Ve, = 17 o >
r vV N i,? <
u S
Ve, = T _ﬁl TS a= +2arcsm< )
Vp Vcl \\q Special case, when all burn
V — (% % > \ goes to plane change
V p 4
2 —\/2 2
rL %) AVioeken = Va1 + Vp —2V¢1Vp cos(aa)
. . Solve for +¢11
Y | (mi1 ) Ifinal = linitial T @1 a2
ket; = N me
rocket; = Glsp Mt/ | If all burns at equator, then only the Speed o el
m. . . . . . .
AV rocket, = 9lsp |n( mlz ) |_ncI|nat|on angl_e i YVIll chang(_e. Given /t° rocket
f2 ifinat, SOIve to find ijnial required.

2 1 AVrocket = Ve In( )
V = — — —
2 IJ( ry a ) AV B *I I _I
V\\ AVkael rocket = g sp n mf
~ 2
S~ a2(1_62> Thrust
Ve, = - V2 coSy = .
2 2 = o ry(2a-r;) provided T=ma= Vem
L V by rocket . MasSel
time_to_burn
M= —1
» 9lsp

s

Rate at which fuel

solve for +ay | \ .
\ burns. Watch out, g* is

in km/sec”2, while g in
m/sech2

lfinal = linitial 02|

AV?

roc

Assume all rocket fuel is used in
first burn to increase Vp and none
to change plane and burn done at
equator. Hence 01 =

. ( ~ ) .
et, = (V2siny)? + (Vocosy — Ve, cosaz)? + (Ve, sinaz)?

Nasser M. Abbasi
Rocket_1.vsdx
May 4,2014

AVZ e, = V2, +V2 -

______ _---> otherwise

2VC1Vp slna]_

rocket,

Figure 3.10: Hohmann transfer cases
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3.8.0.1 Rocket equation with plane change not at equator

Plane change with Rocket equations
Burn is not at equator. AV gcket all
Burn at equator. AV okt all e
R goes to changing inclination and also
goes to changing inclination ]
- changing Q2

Y Example: Given iy, i, @ at
\ burn, find V,

latitude

\
\
, ®
\\ latitude
\
\

Q Right
ascension

_ | &
Vi= 7. B

_ 2 1
V, = H(ﬁ - ﬁ) equator y
AV? = V3 + V3 — 2V V,cos(a)

Ifinal = linitial £ @ Vi = /ri
Cc

sinu; _ sin®

o | Sin90% — siniy solve for uy
Plane_change.Lvsdx sm(%ln; ) _ o (fé%lgl_ 0 solve for 6
solve for V; using AV = gl In( )

V, = ot <o TTTTAVZ = V24 VE-2ViVocos(9)

2a

Figure 3.11: Rocket equation with plane change not at equator

104



3.9. Spherical coordinates Chapter 3. Astrodynamics

3.9 Spherical coordinates

From my class handouts, EMA 550, Univ. Wisconsin, Madison

Spherical Triangle: a triangle on the surface of a sphere. A spherical triangle is composed of
arcs of geat circles (reat circles have their centers at the center of the sphere)

AV
.
latitude
Upper-case A, B, and C are the angles at the vertices; we measue the angles A, B, and C in
depress. Lower-case a, b, and ¢ are the sides opposite A, B and C, respectively. We also measure
the “lengths” a, b, and ¢ in degrees. The “length” of side a is the angle it subtends at the center of
the sphere.
Sine formmula:
sind_smB _smC
s . sing smb sic
ine of longitude

Cosine formula 1 — three sides and a vertex:

. . .. .. cosa=cosboosc+smbsimccos 4
cos @ = cosi, cosi, +sini, sini, cos(Q2, —Q))

cosb = cosacosc+smasinecos B

05 € = o5 @cosb+smasinboos &
COs 7, = cosi, cos @—sini sinfcosu Cosine formula 2 — thres vertices and 2 side:

bb €05 4 = —cos Boos O+ sin BsinCoosa

N M. Al i

a:/ls:\r/ 5 2014a5| €05 B = —cos dcos O+ sin dsinCoos b
Spheric,aLvsdx 05 C' = —cos dcos B +sin 4sin Boose

Figure 3.12: Spherical coordinates
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3.10 interplanetary transfer orbits

3.10.0.1 interplanetary hohmann transfer orbit, case one

Switch to planet
point of view

Sun point of view

Vo = Vo — Vapogee

Vapogee -—

Planet point of view (planet fixed
and spacecraft is moving towards it
showing the asymptotic lines and
the turning angle theta)

\ zoom
\

interplanetary Hohmann
transfer orbit leading to an

/ orbit around target planet
/
/
/
/
/
/
/
7
s
_ - stage_1_inter_planet.vsdx
- Nasser M. Abbasi
- March 10, 2014
> Voo = Vperlgee - Vl

—»Vperigee

Figure 3.13: interplanetary hohmann transfer orbit, case one
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The following are the steps to accomplish the above. The first stage is getting into
the Hohmann orbit from planet 1, then reaching the sphere of influence of the second
planet. Then we either do a fly-by or do a parking orbit around the second planet.
These steps below show how to reach the second planet and do a parking orbit around

it.

The input is the following,.

1.

10.
11.

p1 planet one standard gravitational parameter

. o planet two standard gravitational parameter
. Msun standard gravitational parameter for the sun 1.327 x 108 km

2
3
4.
5
6

r1 planet one radius

. ro planet two radius

. alt, original satellite altitude above planet one. For example, for LEO use 300

km

alty satellite altitude above second planet. (since goal is to send satellite for
circular orbit around second planet)

R; mean distance of center of first planet from the sun. For earth use AU =
1.495978 x 108 km

R, mean distance of center of second planet from the sun. For Mars use 1.524

AU
SOI, sphere of influence for first planet. For earth use 9.24 x 108 km

SOI, sphere of influence for second planet.

Given the above input, there are the steps to achieve the above maneuver

1.
2.

3.

Find the burn out distance of the satellite rp, = r1 + alt;

Find satellite speed around planet earth (relative to planet) Vo = /£

Tbo

Find Hohmann ellipse a = @

Find speed of satellite at perigee relative to sun Vperigee = \/ Wsun (R% — %)

Find speed of earth (first planet) relative to sun V; = , /&=

Find escape velocity from first planet Vi out = Vperigee — V2

Find burn out speed at first planet by solving the energy equation ‘%2" - le =
V2

oo,out El
2 SOI, for Vi,
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8. Find AV; needed at planet one AV; = Vi — Vias

2 /2 2
VOO ‘/bo'rbo

9. Find e the eccentricity of the escape hyperbola e = /1 + e
1

10. Find the angle with the path of planet one velocity vector n = arccos (— 1)

11. Find the dusk-line angle § = 180° — p

The above completes the first stage, now the satellite is in the Hohmann transfer orbit.
Assuming it reached the orbit of the second planet ahead of it as shown in the diagram
above. Now we start the second stage to land the satellite on a parking orbit around
the second planet at altitude alt, above the surface of the second planet. These are the
steps needed.

1. Find the apogee speed of the satellite V,pogree = \/ sun (R% - %)

2. Find speed of second planet V, = %

3. Find V entering the second planet sphere of influence Vi i, = Vo — Vapogree

4. Find burn in radius where the satellite will be closest to the second planet.
Tho = T1 + altg

2
5. Find burn out speed at second planet by solving the energy equation % — 1’:‘72 =
V2

co,in M2
2 56510 Vbo

6. Find impact parameter b on entry to second planet SOI b = ?,”"A

7. Find the required satellite speed around the second planet V., = , /#Ti

8. Find AV, needed at planet two AV, = Vg — Vi

9. Find e the eccentricity of the approaching hyperbola on second planet e =

V2V2 2
1 © "bo” bo
T

10. Find the angle with the path of planet two velocity vector n = arccos (—1)

11. Find the dusk-line angle for second planet § = 2n — 180°
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3.10.1 rendezvous orbits

3.10.1.1 Two satellite, walking rendezvous using Hohmann transfer

Hohmann This is the time (in sec)

Rendezvous transfer for (a) to travel on the
location trajectory Hohmann orbit once it
P starts
la+ry

a =

"2 TOF=(N- )T

T=2n‘/§

The period (time to
travel one full circle) on
the circular orbit in

Circular
orbit of first

satellite ‘L;/-

seconds
_ H
Circular W = r3 rad/sec
orbit of first
satellite a b Angular speed of

satellite on a circular

Snap shot at t=0. Always orbit

start from this point
Nasser M. Abbasi This is the phase at zero

R time. The current angle that
(b) is front of (a)

Figure 3.14: Two satellite, walking rendezvous using Hohmann transfer
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Algorithm 1 Hohmann Walking Rendezvous Orbit, case 1

1: function HOHMANN__WALKING__RENDEZVOUS(fy, r, altitude, u)
2 6o := Oo1gg > convert from degrees to radian
3 rq := 1 + altitude

4 T := 2%@ > period of circular orbit

5: N:=1

6 done:=false

7 while not(done) do

8 TOF := (N—2)T

9 a := solve (TOF = 27r\/Z:> fora
10: Tp =20 —T,
11: if rp < r then
12: N=N+1
13: else
14: done:=true
15: end if

16: end while

17: ‘/befor = \/%

18 Vaprer = /1 (3 = 3)

19: AV = 2(‘/:1fter - Vbefore)
20:  return (TOF,AV)

21: end function

An example implementation is below

hohmannRendezvousSameOrbit [\ [Theta]00_, r_, alt_, mu_] :=
Module[{\[Theta]l]O0 = \[Theta]00*Pi/180, n = 1, delT, v1, v2, period, a,
rp, ra, done = False, vBefore, vAfter},

ra =r + alt;

period = 2 Pi Sqrt[ra”~3/mu]l;

While[Not [done],

delT = (n - \[ThetalO /(2 Pi)) period ;

a = First@Select[a /. NSolve[delT == 2 Pi Sqrt[a~3/mul, al,

Element [#, Reals] &];

rp = 2 a - ra;

If[rp < r, (*we hit the earth, try again¥)

n=n-+1,

done = True

]
1;
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‘vBefore Sqrt [mu/h] ;

‘VAfter Sqrt[mu (2/h - 1/a)];

‘{delT, 2 (vAfter - vBefore)} (*return valuex*)
1

And calling the above

mu = 324859;
alt = 1475.776;
r = 6052;

\[Thetal0 = 3.80562; (*degree*)
hohmannRendezvousSameOrbit [\ [Theta]l0, r, alt, mu]

gives

-

L{7123.89, -0.0467913}

e—
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3.10.1.2 Two satellite, separate orbits, rendezvous using Hohmann
transfer, coplaner

This is the time (in sec)

Rendezvous Hohmann for (a) to travel on the

location transfer Hohmann orbit once it
© trajectory starts

a=-"3" TOF =g [2

1
®a = [
a 2

Circular

Angular speed of (a) in rad/sec

Im
p = "y
_ My
Circular
orbit of first b Angular speed of (b) slower
satellite than (a)
Snap shot at t=0. Always 3
start from this point latfp \\ 2
g On=rn(1- (5=
2l’b
This is the phase at zero
9 time. The current angle that Desired phase. This is the
(b) is front of (a) angle that (b) has to be
ahead of (a) before (a) starts
rendev_separate_hohmann.vsdx its Hohmann transfer

Nasser M. Abbasi
3/12/14

Figure 3.15: Two satellite, separate orbits, rendezvous using Hohmann transfer, coplaner
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Algorithm 2 Hohmann rendezvous algorithm, case 1

1: function HOHMANN__RENDEZVOUS__1(0y, 74, Ts, 1)

2:
3:

4

8:
9:
10:
11:

12:

13:

e T
6o := Oo1go
a = Ta+Th

T 2

TOF := 77\/‘773

Oy = 7r(1 — <’"“2—i;”’>3/2)

We := /&
a 3

R

U.}b = 3

b
if 6y < 0y then
00 = 90 + 2
end if
wait_ time := %

wait_ time := wait_ time + TOF

return wait_time

14: end function

> convert from degrees to radian
> Hohmann orbit semi-major axes

> time of flight on Hohmann orbit

> required phase angle before starting
Hohmann transfer
> angular speed of lower rad/sec

> angular speed of higher satellite rad/sec

> adjust initial angle if needed

> how long to wait before starting Hohmann

transfer
> now ready to go, add Hohmann transfer

time

An example implementation is below (in Maple)

hohmann_rendezvous_1:= proc({

theta:

:numeric:=0,

rl::numeric:=0,

r2::numeric:=0,
mu: :numeric:=3.986%1075})
local thetaO,thetaH,TOF,a,omegal,omega2,wait_time;

thetal
a

TOF
omegal
omega?
thetaH

evalf (thetaxPi/180) ;
:= (r1+r2)/2;

:= Pix(sqrt(a~3/mu));
:= sqrt(mu/r173);

:= sqrt(mu/r273);

if theta0 <= thetaH then

thetal
fi;

wait_time

:= thetalO+2%Pi;

eval (wait_time);

end proc:

evalf (Pix(1-((r1+r2)/(2*r2))~(3/2)));

:= TOF+(thetaO-thetaH)/(omegal-omega2) ;
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And calling the above for two different cases gives (times in hrs)

| TOF:=hohmann_rendezvous_1(r1=6678,r2=6878, theta=0) :

 evalf (TOF/ (60+60)) ;
\35.23480353

And

e

 evalf (TOF/ (60%60)) ;
\27.49212919

TOF :=hohmann_rendezvous_1(r1=6678,r2=6878,theta=280) :

3.10.1.3 Two satellite, separate orbits, r
transfer, coplaner

Hohmann
transfer
trajectory

Circular
orbit of

Rendezvous
location

Snap shot at t=0. Always
start from this point

Hohmann
transfer
trajectory

ro+rt
2

az =

Rendev_same_orbit_bielliptic.vsdx
Nasser M. Abbasi

3/12/14

tr =

0o

endezvous using bi-elliptic

This is the time (in sec)
for (a) to travel on the

ﬂ Hohmann orbit once it
2 starts
3 aS
TOF = n( J3& + /3%
w1 = %
r

Angular speed of (a) in rad/sec

m

3
2
Angular speed of (b) slower
than (a)

W =

Time for satellite (2)
to reach the
Rendezvous point)

(2n-0p)+2nN
Q)]

This is the phase at zero
time. The current angle that
(b) is front of (a)

solve for t; fromt, = TOF

Figure 3.16: Two satellite, separate orbits, rendezvous using bi-elliptic transfer, coplaner

In this transfer, the lower (fast satellite) does not have to wait for phase lock as in
the case with Hohmann transfer. The transfer can starts immediately. There is a free
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parameter N that one select depending on fuel cost requiments or any limitiation on
the first transfer orbit semi-major axes distance required. One can start with N = 0
and adjust as needed.

Algorithm 3 Hohmann rendezvous algorithm, case 2

1: function HOHMANN__ RENDEZVOUS_ 2(6y, 71,72, N, 1)

2: 0o := Oo1gg > convert from degrees to radian
3/2
3: O = 7r(1 — <%> ) > Find Hohmann ideal phase angle before
. transfer ) )
4: if g =0gand N = 0 then > adjust for special case
5: q = r2tn
: : 5

6: TT)F:==7r<,/%;>

T: else

8: wy =, /5 > angular speed of slower satellite in rad/sec

2

9: ty := W > find time of light of the slower satellite
10: ap = 1En
11: Ao = Letr2
12: TOF == (\ / % + % > time of flight for the fast satellite
13: ri :=solve (t = TOF) forr, > Solve numerically for r;
14: end if

15: return TOF
16: end function

An example implementation is below in Maple

hohmann_rendezvous_2:= proc({
theta: :numeric:=0,
rl::numeric:=0,
r2::numeric:=0,
N::nonnegint:=0,

mu: :numeric:=3.986%10"5})
local thetaO,thetaH,TOF;

theta0 := theta*Pi/180;

thetaH := Pi*(1-((r1+r2)/(2*r2))~(3/2));
if theta0 = thetaH and N = O then

proc()

local a:=(ri+r2)/2;
TOF:= Pi*(sqrt(a~3/mu));
end proc()
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else
proc()
local t2,al,a2,rt,omega?2;

omega2 := sqrt(mu/r2°3);

t2 = ((2+Pi-thetal)+2*Pi*N)/omega?2;

al = (rt+r1)/2;

a2 = (rt+r2)/2;

TOF = Pi*(sqrt(al~3/mu)+sqrt(a2~3/mu));

rt := op(select(is, [solve(t2=TOF,rt)], real));
end proc()

fi;

eval (TOF) ;

end proc:

And calling the above for two different cases gives

TOF :=hohmann_rendezvous_2(theta=0,r1=6678,r2=6878,N=0) :
evalf (TOF/(60%60)); #in hrs

1.576892101

TOF : =hohmann_rendezvous_2(theta=160,r1=6678,r2=6878,N=1) :
evalf (TOF/(60%60)); #in hrs

2.452943266
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3.10.2 Semi-tangential transfers, elliptical, parabolic and
hyperbolic

Finding lead angle, semi-tangential

rendezvous, ELLIPTICAL orbit ro =a(l-ecoskp )Fr:’is'se;zl;:i:y soing

[Z - i

Time to travel this distance is
found by solving for t in the above

_ a=e?)
", l+ecosf

_--7 Finding lead angle, semi-tangential

-

- rendezvous, Parabolic orbit
ra,rp are given |
~o_ R A\s.\,:x\\%\e |
"\(\e’&’a“&@ :
_Tptra e - 21,
2 & : - P solveforf
| r, = m Solve 1or
r, =a(l-e) solve fore : ”
|
r, =a(l-ecosEy) solve for E, ! N
| Truelanomaly f is found by S 4
L At = Eb — esinEb Solve for At : solving the above equation /'z“«
ad | y:
|
a(l —e? ! Q°
r, = ad-¢) solve for f |
1 +ecosf |
|
_ | H ' o
Ob F At : \“F‘i\me to travel this distance is
2 : found by solving for tin
0o = f— 0y this is lead angle | At — f 1 F3)3
o 2 at=tn(s) + 3 (n(3)
______________________________ N
Nasser M. Abbasi =2
5/8/14 P fr p
Semi_tangential_rend.vsdx r, = ——— solve for f

1+ cosf

3
2 % At = tan(%) + %(tan(%)) solve for At
- K
Op = r—g At

0o =f—0p

Figure 3.17: Semi-tangential transfers, elliptical, parabolic and hyperbolic
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Finding lead angle, semi-tangential
rendezvous, HYPERBOLIC orbit I, = a(e COSh F- 1)

F is found by solving this
equation

H H
— At = esinhF-F
a
Time to travel this distance is
found by solving for tin the above

tan( 1) = J%tanh(g)

i -
True anpmaly f is found by @) g
solving the above equation ’ -7 vy At
r

Vp = /#(%Jr%) solve for a

rp = a(e — 1) solve for e
r, = a(ecoshF — 1) solve for F

]% At = esinhF — F solve for At

tan(%) = | gf% tanh(%) solve for f

0p = | £ At
r2 Nasser M. Abbasi
5/8/14
90 = f - Ob Semi_tangential_rend_2.vsdx

Figure 3.18: Semi-tangential transfers, elliptical, parabolic and hyperbolic (2)
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3.10.3 Lagrange points

La
Lagrange points .
/// \\\ eguilateral Time constant in
; Jriangle seconds. The larger,
,/ A the more stable
M // ’T =
I A IR
oo 3 Msmall F // ! \ V‘// :
A 3 / \\ 7 |
AN Angular velocity \/ |
\\L3 of system L]_///\ |
& - - o—; @— --@® L2
Cfenter ya
of mass /
M . S/ Msmal
large
\\\ — Msmall
_ G(total Mass ) AN 7 total Mass
0= ,—— N
r \./
Watch out for units. ris normally in L5 1
KM. Convert G to KM based if using |_1 “X=rl1- (l) 8
handout 3
1
Cy a s
L1, Ly, L3 are not stable. Ly, Ls Lz ix= r(1+ ( 3 ) )
are stable if @ < 0.0385 Ly x = —r(l + ?g >>

Dsyn—earth = 1 991 X 10_7radlseC
Mearth—-moon = 2.666 X 10_6 fad/SGC

L3z is more stable than Ly, L,

Nasser M. Abbasi
May 9, 2014
Lagrange_points.vsdx

Figure 3.19: Lagrange points
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3.10.4 Orbit changing by low contiuous thrust

continuous thrust effects

To change a satellite’s position in orbit by AO

radians in n revolutions, the cost is
Changes per period AV 2 AG
. >
Vo 37m n \
\\
\
\
\
\
| \
|
Amount of change Amount of change Amount of change A|:“°“”F°ft |
- . - . .. T change in true |
in semi-major
j in eccentricity in inclination anomaly 3
h
AV AV . AV, AV
Aa = rodet 9o Ae = rocket _ 1 Al = rocket 2 Af = \;ockm St N
Vo VO 0.649 VO T 0 2
Assume circular | \\\ N is number of
orbit in each | . periods
revolution * S
* Apply a thrust in the orbit plane that satisfies \\
the relationship, AN
Nasser M. Abbasi Y - AN
May 9, 2014 V4 1 R
Cont_thrust.vsdx N 7 tana =_tand \
- \
\
m, On a circular orbit, this looks like !
I,

o=f

\
6=90°,0:=90° Y
— T \
6=135°,0=153° // W& 0=45°,0=27° !
v
X
m; \T

6=180°,0=180° I 6=0,0=0
Above small figure from class handouts, EMA 550

* Since the optimal aiming direction is

essentially just perpendicular to the 6 = 0 line,

0=225°,0=207° \ a’/% 6=315",0=333"
the thrust direction can be kept constant in

6=270°,0=270°
that direction without losing much efficiency

//
y
‘_T (_T * Direct the thrust perpendicular to the orbit
/,, N )/ - \NT plane, but in one direction for half of the orbit
Y \ y \ and the opposite direction for the other half
[ =] T N
AN Vs )% WY (A 7,
te L, SN Y
RN e s

0
/

Figure 3.20: Orbit changing by low contiuous thrust

3.10.5 References
1. Orbital mechanics for Engineering students, second edition, by Howard D. Curtis

2. Orbital Mechanics, Vladimir Chobotov, second edition, ATAA

3. Fundamentals of Astrodynamics, Bates, Muller and White. Dover1971
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Figure 4.1: Dynamic of flights

121



4.1. Wing geometry

Chapter 4. Dynamic of flights

4.1 Wing geometry

length of mean

aerodynamic chord

projected on the
root chord

local chord

—

wing tip chord

wingl.vsdx
Nasser M. Abbasi
020914 |

Leading edge
sweep angle

’
’
4 .
/ centroid of area of
4 one half of wing
7 /
\ v located on mean
\root chor Aﬂ aerod e chord
ynamic chor
2N
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\ e
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\ h - 7
\ e C .
\ 7
'
7
\
c
______ im
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\
\

half wing span

N

Figure 4.2: Wing geometry

C, below is the core chord of the wing.
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| A.C
| _ ’t _
i
i =
l< L C .l
‘ 1 control-fixed
| o | static margin
| r o~ o
- | ;
(e — &) .
apex of - : : - positive for
wing wing. AC___mac_ C8 p- static
stability

wing_4_generic.vsdx
Nasser M. Abbasi
020914

»le >
PnyC | (h— hn,)E

hinc

Figure 4.3: core chord of the wing

This is a diagram to use to generate equations of longitudinal equilibrium.

This distance is called the stick-fixed static margin k,, = (h, — h) ¢ Must be positive

for static stability
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| |
L1V ; i
Ly LV i I !
/ | ! tail mean
D: 1V i A gﬁ[r’cr)gynamlc
D1V |
’ |
|
|

The whole Airplane
neutral point (aft c.g.
for static stability)

aerodynamic chord
Pl h < hy, for

Z
Mac,, 1] longitudinal
! This distance is called . [
o* 4 i i‘k"‘! the stick-fixed static margin static Stablhty

ko = Ch = B)E
Must be positive for static stability

forces.vsd
updated 2/3/
14

Nasser M.
Abbasi

Figure 4.4: equations of longitudinal equilibrium
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4.2 Summary of main equations

This table contain some definitions and equations that can be useful.

# | equation meaning/use
CL = 68%01

1 = Cp.a O, is lift coeflicient. o is an-

gle of attack. a is slope %
= aa which is the same as Cf,,

2 | (C,=Cp, wing lift coefficient

3 | Cp=0Cp,, +kC? drag coefficient

4 | Cn, =Cn,., +(Cr, +Cp,aw) (h—hy,) + (Cra, — Cp,) Z | pitching moment coefficient
due to wing only about
the C.G. of the airplane as-
suming small «,,. This is
simplified more by assum-
ing Cp,ay, <K C(Cp, and
(Cra, —Cp,) < 1

5 | Cny, =Cmny., +Cr,(h—hy,) simplified wing Pitching mo-
ment

meb = Cmacwb + Cwa(h - hnw)
6 = C + achba s(h — hp,) simplified pitching moment
Macy,y, Borgy W Ny
coefficient due to wing and
= COmee,, T Gubuwb(h — ha,) body about the C.G. of the

airplane. a,; is the angle of
attack

7 | CL, = ﬁ C1, is the lift coefficient gen-

’ erated by tail. S; is the tail

area. V is airplane air speed
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L=1Lu+ L

total lift of airplane. L., is
lift due to body and wing
and L, is lift due to tail

Cr = Cy,, + ¥C,

coefficient of total lift of air-
plane. Cp, is coeflicient of
lift due to wing and body.
C1, is lift coefficient due to
tail. S is the total wing area.
S; is tail area

10

Mt = —ltLt = —ltCLt%psz}

pitching moment due to tail
about C.G. of airplane

11

_ M, _ _ kS —
Cmt - 3 - __E_tCLt - _VHCLt

%pV2St5 cS

pitching moment coefficient
due to tail. Vg = %% is
called tail volume

12

Vo =

w|n

(231 Sl Y]
wn|n

introducing Vi bar tail vol-
ume which is Vi but uses I
instead of ;. Important note.
Vyu depends on location of
C.G., but Vg does not. I, =
li+(h—hy,)cC

13

Crmy = =VuCr, + Cr, % (h — hy,,)

pitching moment coefficient
due to tail expressed using
Vy. This is the one to use.

14

P

pitching moment coefficient
due to propulsion about air-
plane C.G.

15

Cm = meb + Cmt + Cmp

total airplane pitching mo-
ment coefficient about air-
plane C.G.
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Cm = meb + Cmt + CmP
= [Cha,, + CLuy(h = bn,)| + [=VuCo, + Cr, % (h = bn,)] + Ci,
16 - L -~ simplified total Pitching mo-
- C C C St h—h V.. C C ment coefficient about air-
- Mac,, + Ly + Lt§ ( - nw) - VH Ly + mp
plane C.G.
= Cmac - + CL(h h ) VHCLt -+ Cmp
860—am _ 607;:;“)17 + BCO'LL (h —h ) VH (')CLt + BCmp
17 o0 B aC oc derivative of total pitching
Cn, = m“’”” + Cr,(h = hn,) = Va7t + 522 moment coefficient C,, w.r.t
airplane angle of attack a
18 | hy =hy, — ﬁ (607;:;6 —Vy Bgit 6g:p> location of airplane neutral
Ba . .
point of airplane found by
setting C,,, = 0 in the above
equation
Cm aﬂ(h — hy)
19 D O rewrite of C,,,, in terms of h,,.
Cn, = Cr,(h—hy) Derived using the above two
equations.
20 | k,=h,—h static margin. Must be Posi-
tive for static stability

4.2.0.1 Writing the equations in linear form

The following equations are derived from the above set of equation using what is called
the linear form. The main point is to bring into the equations the expression for Cf,
written in term of a.,;. This is done by expressing the tail angle of attack a; in terms of
oy Via the downwash angle and the i; angle. a;; Lw";” in the above equations are replaced

by a., and aaca Ltt is replaced by a;. This replacement says that it is a linear relation
between C', and the corresponding angle of attack. The main of this rewrite is to obtain
an expression for C,, in terms of a,; where «; is expressed in terms of ., hence oy
do not show explicitly. The linear form of the equations is what from now on.
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# | equation meaning/use
oCy,
C — wb aw
= QupQ
1 wbwb @y i constant, repre-
CL, = a0y sents % and Cp,
Crnp = Crngp + % @ is propulsion pitching
m, mo
da moment coeff. at zero
angle of attack «
O = Quyp — bt — €
2 e main relation that as-
€=¢€+ a_aa“ﬂ’ sociates ay, with ay.
Qup is the wing-body
angle of attack, € is
downwash angle at
tail, and 4; is tail
angle with horizon-
tal reference (see di-
agram)
CLt = G0
3 Oe ‘ Lift due to tail ex-
= | o | 1= 9o ) T pressed using a.,, and
€ (notice that «; do
not show explicitly)
4 | a=ay [1 + a“—l;%(l — g—;)} a defined for use with
overall lift coeflicient
Qb Xwb
AR
C, = C,, +%CL,
— St _ %) _; _
5 = Gupup + gt |aus(l = 5;) — it — &) overall airplane lift

= ax

= (CL)4,,—0 T 0Qub

using linear relations
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Cr

— & St (i 4 €o0)

Cr

overall angle of attack
a as function of the
wing and body angle
of attack o, and tail
angles

C'mO + %a = C1'm,0 + C’maa’

aC, ~
CmO + a_(;nawb = CmO + C1mo¢ Qb

overall airplane pitch
Two ver-
sions one uses Oy
and one uses «

moment.

Me

My

= a(h— hg,,) — a: Ve (1 - g—;) +

auwb(h = hn,,) —a:Vi (1 — 25) +

Two versions of %
one for o, and one
one uses a

= C
= C

+ Cmop + atVH(EO + 'Lt) [

Mac,p

+ C'mo,, + atVH(Go + ’it)

Mac,,,

L-31-5)]

Chm, is total pitching
moment coef. at zero
lift (does not depend
on C.G. location) but
Cm, is total pitch-
ing moment coef. at
ay, = 0 (not at zero
lift). This depends on

location of C.G.

10

mop

= Omo,, + (@ — Qup)

OCmp
da
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0Cm
b = Py, + V(1= 5) — 15502
11 _ Used to determine h,,
_ h at V ( _ &) _ 1 OCmp
e o 1) K o 1O )

4.2.1 definitions

1. Remember that for symmetric airfoil, when the chord is parallel to velocity vector,

then the angle of attack is zero, and also the left coefficient is zero. But this is only
for symmetric airfoil. For the common campbell airfoil shape, when the chord is
parallel to the velocity vector, which means the angle of attack is zero, there will
still be lift (small lift, but it is there). What this means, is that the chord line
has to tilt down more to get zero lift. This extra tilting down makes the angle of
attack negative. If we now draw a line from the right edge of the airfoil parallel to
the velocity vector, this line is called the zero lift line (ZLL) see diagram below.
Just remember, that angle of attack (which is always the angle between the chord
and the velocity vector, the book below calls it the geometrical angle of attack)
is negative for zero lift. This is when the airfoil is not symmetric. For symmetric
airfoil, ZLL and the chord line are the same. This angle is small, —3° or so.
Depending on shape. See Foundations of Aerodynamics, 5th ed, by Chow and
Kuethe, here is the diagram.
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57 Properties of the Cambered Airfell 147

ZL.L

Fig. 5.11. Onentation of airfoil at zero hift.

camber, ¢, = constant and is negative, as is predicted by Eq. (5.31). (5) The angle of
zero lift o, is zero for the symmetrical section and negalive for positive camber, as is
indicated by Eq. (5.34).

In Fig. 5.11, an airfoil is shown set at a geomertric angle of attack equal 1o the angle of
zero lift. A linc on the airfoil paraflel to the flight path V., and passing through the trail-
ing edge when the airfoil is set at the orientation of zero lift is called the zero-lift fine
(Z.L.L.) of the airfoil. For symmetrical airfoils, the zero-lift line coincides with the chord
lime.

The absolee angle of arack is defined as the angle included between the flight path
and the zero-lift line and is given the symbol o,. From Fig. 5.12,

o, = &= o, (5.35)

Figure 4.5: diagram from 5th ed, by Chow and Kuethe

2. stall from http://en.wikipedia.org/wiki/Stall (flight)]

In fluid dynamics, a stall is a reduction in the 1lift coefficient
generated by a foil as angle of attack increases.[1] This occurs when
the critical angle of attack of the foil is exceeded. The critical
angle of attack is typically about 15 degrees, but it

may vary significantly depending on the fluid, foil, and Reynolds number|

3. |Aerodynamics in road vehicle wiki pagel

4. some demos relating to airplane control http://demonstrations.wolfram.com|
VControllingAirplaneklight/|

lhttp://demonstrations.wolfram.com/ThePhysics0fFlight/|

5. http://www.americanflyers.net/aviationlibrary/pilots_handbook/cha]
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6. Lectures Helicopter Aerodynamics and Dynamics by Prof. C. Venkatesan, De-
partment of Aerospace Engineering, II'T Kanpur http://www.youtube.com/wal

ch7v= 12WZ ist=

7. lhttp://avstop.com/ac/apgeneral/terminology.html] has easy to understand
definitions airplane geometry. "The MAC is the mean average chord of the wing"

8. http://www.tdmsoftware.com/afd/afd.html]|airfoil design software
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4.3 images and plots collected

These are diagrams and images collected from different places. References is given next
to each image.

LI__ﬁ Perpendicular to c.g. velocity vector V

Zero left line
ZLL forairpiane

Body x-axes
(chord of
airplane

Current
velocity
vector of

airplane c.g.

D(drag)
Parallel to V
vector originate
from A.C. and not
CG.

w
Weight of
airplane.
Vertically down

By Nasser M. Abbasi
my_drawing.vsd

QT Angle of attack of thrust
1/24/14

@1, Absolute angle of attack

Figure 4.6: Main forces on airplane
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View from nose (negative X direction)

Fin Lift

Y-axis

Lateral Stability - Main Sources of
Stabilising Forces and Moments

http://en.wikipedia.org/wiki/Flight_dynamics_%28aircraft%29

Figure 4.7: Local stability

Dihedral angle

Dihedral angle is the upward angle from honzontal of the wings or tailplane of a fixed-wing aircraft. “Anhedral
angle” is the name given to negative dihedral angle, that is, when there is a downward angle from horizontal of the
wings or tailplane of a fixed-wing aircraft

Dihedral angle (or anhedral angle) has a strong influence on dihedral effect, which is named after it. Dihedral
effect is the amount of roll moment produced per degree (or radian) of sideslip. Dihedral effect is a critical factor in
the stability of an aircraft about the roll axis (the spiral mode). It is also pertinent to the nature of an aircraft's Dutch
roll oscillation and to maneuverability about the roll axis

The upward 1R of the wings and talplane of &)
an arcraft, as seen on this Boeing 737, is called
dihedral angle

Port

e Y
Measuring the dinedral angle. & Starboard ' Port

.................

Reference: http://en.wikipedia.org/wiki/Dihedral_%28aircraft%29 |

Figure 4.8: diherdal angle
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definitions

From Performance, Stability, Dynamics, and Control of Airplanes
By Baudu N. Pamadi

‘The Reynolds number is the ratio of inertial forces to viscous forces.

Inertia force
Re= Viscous force (LD
 —— g€ in momentumti (1.2)

Shear stress x Area

= M:’ (1.3)

A

The Mach number is defined as the ratio of velocity of the body Vi, to the speed
of sound a.

o

(1.9)

In fluid dynamics, the drag coefficient (commonly denoted as € C,0rc)isa

dimensionless quantity that is used to quantify the drag or resistance of an object in a
fluid environment such as air or water. It is used in the drag equation, where a lower drag
coefficient indicates the object will have less aerodynamic or hydrodynamic drag. The

drag coefficient is always associated with a particular surface area ') Shape Drag

Coefficient

The drag coefficient Cd is defined as 0.47

_ 2Fy
24

Sphere ——=

G | do not see viscosity here? Half-sphere —»

where

[Fy is the arag force, which is by
f is the mass density of the fuia,”

U is the speed of the object relative to 1
‘-l is the reference area

Cube —
fluid and

Angled
Cube

Cone —m q 0.50
nition the force component in the direction of the flow velocity,'®!

Long
ovinder — ] °®2

Short
Cylinder D 115

The drag equation
By = %p!'z cg A

is essentially a statement that the drag for/e on any object is proportional to the density of the

fluid and proportional 1o the square of Ih¥ relalive speed between the object and the fluid St"B';:::"'d—p C> o
C,4 Is not a constant byt-varies a5 fiyction of speed, flow direction, object position, object

size, fluid density ap/d fluid viscosity. §peed, kinematic viscosity and a characteristic length 5"“'“"""’_. 0.09
scale of the object arencarporated’into a dimensioniess quantity called the Reynolds number Half-body L=

of Re. Cg is thus a function of Re. In compressible flow, the speed of sound is relevant and

C4 is also a function of Mach number Afq Measured Drag Coefficients

http://en.wikipedia.org/wiki/Drag_coefficient

Figure 4.9: Definitions

This below from http://www.grc.nasa.gov/Www/k-12/UEET/StudentSite/dynamic|
offlight.htm
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Picture of plane in roll Picture of plane Yaw Picture of Plane Pitch

| ! AL ~ ! ALLITTY
L '

http://www.grc.nasa.gov/WWW)/k-12/UEET/StudentSite/dynamicsofflight.html

Figure 4.10: Drag coefficient

lhttp://www.grc.nasa.gov/WWW/k-12/airplane/alr.html|
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http://www.grc.nasa.gov/WWW/k-12/airplane/alr.html

Air Rotation s
e o

Center of

+ Pitch

Roll Axis

Yaw Axis
+ Roll

http://www.grc.nasa.gov/WWW/k-12/airplane/alr.html

Figure 4.11: Roll, Yaw and Pitch

From http://en.wikipedia.org/wiki/Lift coefficient|and http://en.wikiped]
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pa.org/wiki/File:Aeroforces.svg

@ Vertical Stabilizer - Rudder e Lit coefficient

From Wikipedia. the free encyclopedia

Vertical Stabilizer The ift coefficlent (C, . C, or C,) Is a dimensioniess coefficient that relates the ift generated by a iing body 1o
Side Force () the density of the fluid around the body, its velocity and an associated reference area. A ifting body is a foil or a
complete foil-bearing body such as a fixed-wing aircrat. €, is a function of the angie of the body 1o the flow, its
Reynold number and its Mach number. The ift coefficient ¢, is refers to the dynamic Iift charactenstics of a
two-dimensional foll section, with the reference area replaced by the foil chord R

Contents [hide]
1 Definition of the it coeficient C,
2 Saction kit coaficient
3 See also
4 Notes
5 References

Definition of the lift coefficient CL [edi]

The it coefficient C, is defined by
C L 2L L
L= T35 = 7025 — 25
S pv’S ¢S
where [, is the ifft force, /2 1s fluid density, ¥ Is true airspeed, § is planform area and ¢ is the fluid dynamic
o pressure
Airm‘ane Parts and Function @ The Iift coefficient can be approximated using the ifting-line theory. 4 numerically caiculated or measured in a wind
tunnel test of a complete aircraft configuration.

Horizontal Stabllizer  Vertical Stabilizer Rudder
Control Pitch Control Yaw
Change Yaw

http://en.wikipedia.org/wiki/Lift_coefficient

Winglet
Decrease Drag Elevator

Change Pitch Lift

Wing
Generate Lift
Flaps
Turbine Engine Increase Lift and Drag
Generate Thrust

iler <«

Cockplt Spol

Command and Control Slats. Change Lift. Drag and Roll

Increase Lift
Fuselage

Hold Things Together — Carry Payload

A
Alleron
Change Roll
o Thrust p . Drag
Y

Y

Weight

McGraw-Hill Dictionary of Aviation: elevator angle http://en.wikipedia.org/wiki/File:Aeroforces.svg

Home > Library > Cars & Vehicles > Aviation Dictionary

Angle of attack [edif]
The angle between the chord of an elevator and the chord of the tailplane. 9 [ea)

The angle of attack is the angle between an airfoil and the oncoming
air. A symmetrical airfoil will generate zero lift at zero angle of
attack. But as the angle of attack increases, the air is deflected
through a larger angle and the vertical component of the

airstream velocity increases, resulting in more lift. For small

angles a symmetrical airfoil will generate a lift force roughly

Elevator angle _

Tail plane

proportional to the angle of attack. P15
Elevator As the angle of attack grows larger, the lift reaches a maximum
at some angle; increasing the angle of attack beyond this critical
angle of attack causes the air to become turbulent and separate
from the wing; there is less deflection downward so the airfoil

generates less lift. The airfoil is said to be stalled. ™"

http://en.wikipedia.org/wiki/Lift_%28force%29

Figure 4.12: Forces diagram

from http://adg.stanford.edu/aa241/drag/sweepncdc.html]
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x
project
Xp
e — kd \_H‘
L]
-\\L\ N—}h
mg cos(#) 7 ¥ mg
Zy

Figure 2: Definition of the pitch attitude angle, 8.

Sweptback Wings

Almost all high speed subsonic and supersonic aircraft have sweptback wings. The amount
of sweep is measured by the angle between a lateral axis perpendicular to the airplane
centerline and a constant percentage chord line along the semi-span of the wing. The latter
is usually taken as the quarter chord line both because subsonic lift due to angle of attack
acts at the quarter chord and because the crest is usually close to the quarter chord.

wevma S,

AL, Sween angle

ST chord 1ine

fe————————— b

Figure 8. Velocity Components Affecting a Sweptback Wing

http://adg.stanford.edu/aa241/drag/sweepncdc.html

Angles Nomenclature

a = angle of attack, between the velocity projection in ., z-plane and

the body-fixed r-axis

7 = sideslip angle. between the velocity vector and the body-fixed

r-axis

# = pitch attitude angle. between plane-fixed z-axis and earth-fixed

T p-axis

=# —a = climb (or path) angle

S,

= roll angle

¢* = heading (or yaw) angle

Figure 4.13: From sweepncdc website

Images from |http://adamone.rchomepage.com/cg calc.htm and Flight dynamics

principles by Cook, 1997.

139


http://adamone.rchomepage.com/cg_calc.htm

4.3. images and plots collected

Chapter 4. Dynamic of flights

aft Center of Gravity Calculator

stabiliser Root chord (AA): | I
stabiliser Tip chord (88): |
stabiliser sweep Distance (s5): | [N
staviliser Haif span (vY): | [

Mean Aerodynamic Chord MAC = =
Sweep Distance at MAC (C) = [Tl

From Root Chord to MAC (d) = [l
From Wing Root LE to AC =

|
From Wing Root LE to NP = [l
=

From Wing Root LE to CG =
—
—
Wing Aspect Ratio = |——
Tail Volume Ratio, Vbar= |—

Wing Area

Stabiliser Area

Enter the variables at left using the same units for all entries
For an aircraft to be stabie in pitch, its CG must be forward of the

Neutral Point NP by a safety factor called the Static Margin, which

is a percentage of the MAC (Mean Aerodynamic Chord)
Static Margin shouid be between 5% and 15% for a good stability

L Y

ey

Low Static Margin gives less stabic stability but greater elevator
authority, whereas a higher Static Margin results in greater static
stability but reduces elevator authority.

Too much Static Margin makes the aircraft nose-heavy, which
may result in elevator stall at take-off and/or landing

|<—m—>l<—mf-

Whereas a low Static Margin makes the aircraft tail-heavy and
susceotibic to stall at low soeed. €. 0. during the landing aporoach.

http://adamone.rchomepage.com/cg_calc.htm

L

FlROM:
LECIGHT DYNAMICS
RRCIPLES" f
By M.V cooK '
Arnow , |3 ) i
1 Centre of gravity posiion [—!'—D g
2 Controls fixed neutral point X
3 Controls free neutral point A
K, Controls fixed static margin
K., Conirols free static margin ¢ _}>|

Fig. 3.14 Longitudinal stability margins

Figure 4.14: From Flight dynamics principles by Cook

From |http://chrusion.com/BJ7/SuperCalc7 .html|
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use the same units of measure for all entries!

MAC And Neutral Point

RootChord (A A%) - [o6 |
Tip Chord (B, BB) -~ [a L ' £ Serdment

compute or refresh MAC and Neutral Point |

ng a change In this section, be sure

Figure 4.15: From chrusion site

From http://www.willingtons.com/aircraft center of gravity calcu.html|
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uze the zame unitz of measure (inches or feet) for all entries!

Placing CG 5% - 15% of MAC in front of NP creates a longitudinal (pitch)
stabilty called Static Margin. A lower margin produces less stabilty and
greater elevator authority, while a higher margin creates more stabilty and less
elevator authority. Too much static margin results in elevator stall at take off
and landing.

Figure 4.16: center of gravity
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From http://www.solar-city.net/2010/06/airplane-control-surfaces.html|
nice diagram that shows clearly how the elevator causes the pitching motion (nose
up/down). From same page, it says "The purpose of the flaps is to generate more lift
at slower airspeed, which enables the airplane to fly at a greatly reduced speed with a
lower risk of stalling."

1- Elevator:
Air hitting under the a Air hitting the top of
elevator forces the | 1 the elevator forces the T ;
nose downward nose upward |

\‘__,,r'_"’

Figure 4.17: airplane control surfaces

Images from flight dynamics principles, by Cook, 1997.
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154 Lateral-directional dynamics
L

Restoring rolling moment \

K
Port wing Starboard wing
Reduction in incidence Increase in incidence

Fig. 7.3 The roll subsidence mode

Page 184, flight dynamics principles, by Cook

Figure 3.8 Simple pitching moment model.

Page 41, flight dynamics principles, by Cook

Figure 4.18: from flight dynamics principles, by Cook

Images from Performance, stability, dynamics and control of Airplanes. By Pamadi,
ATAA press. Page 169. and http://www.americanflyers.net/aviationlibrary/p|
Llots handbook/chapter 3.htm
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STATIC STABILITY AND CONTROL 169

bxa
-

Aerodynamic Center
Fig. 3.4 Forces and moments acting on an airplane in level flight.

From: Performance, stability, dynamics and control of
Airplanes. By Pamadi, AIAA press. Page 169

The following defines these forces in relation to straight-and-level, unaccelerated flight.

Thrust is the forward force produced by the power-plant/propeller. It opposes or overcomes the
force of drag. As a general rule, it is said to act parallel to the longitudinal axis. However, this is
not always the case as will be explained later.

Drag is a rearward, retarding force, and is caused by disruption of airflow by the wing, fuselage,
and other protruding objects. Drag opposes thrust, and acts rear-ward parallel to the relative
wind.

Weight is the combined load of the airplane itself, the crew, the fuel, and the cargo or baggage.
Weight pulls the airplane downward because of the force of gravity. It opposes lift, and acts
vertically downward through the airplane’s center of gravity.

Lift opposes the downward force of weight, is pro-duced by the dynamic effect of the air acting
on the wing, and acts perpendicular to the flightpath through the wing’s center of lift.

In steady flight, the sum of these opposing forces is equal to zero. There can be no unbalanced
forces in steady, straight flight (Newton’s Third Law). This is true whether flying level or when
climbing or descending. This is not the same thing as saying that the four forces are all equal. It
simply means that the opposing forces are equal to, and thereby cancel the effects of, each other.

each other; not to Iimwei_ght. To be correct about it_, it must be said that in steady ﬂigilt:

« The sum of all upward forces (not just lift) equals the sum of all downward forces (not just
weight).

« The sum of all forward forces (not just thrust) equals the sum of all backward forces (not
just drag).

http://www.americanflyers.net/aviationlibrary/pilots_handbook/chapter_3.htm

Figure 4.19: from Performance, stability, dynamics and control

Image from [http://www.americanflyers.net/aviationlibrary/pilots_handbook|
Ychapter 3.htm
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In level Night the aerodynamic properties of the wing produce a required lift, but this can be
obtained only at the expense of a certain penalty. The name given fo this penalty is induced
drag. Induced drag Is inherent whenever a wing is producing lift and, in fact, this type of drag
is inseparable from the production of lift. Consequently, it is always present if lift is produced.

Figure 3-2. Force vectors during a stabilized climb.

THRUS1

Before the airplane begins to move, thrust must be exerted. It continues to move and gain speed until thrust and |
drag are equal. In order to maintain a con-stant airspeed, thrust and drag must remain equal, just as lift and
weight must be equal to maintain a constant altitude. If in level flight, the engine power is reduced, the thrust is
lessened, and the airplane slows down. As long as the thrust is less than the drag, the airplane continues to
decelerate until its airspeed is insufficient to support it in the air.

Likewise, if the engine power is increased, thrust becomes greater than drag and the airspeed increases. As long as
the thrust continues to be greater than the drag, the airplane continues to accel-erate. When drag equals thrust, the
airplane flies at a constant airspeed.

Straight-and-level flight may be sustained at speeds from very slow to very fast. The pilot must coordi-nate angle of
attack and thrust in all speed regimes if the airplane is to be held in level flight. Roughly, these regimes can be
grouped in three categories: low-speed flight, cruising flight, and high-speed flight.

When the airspeed is low, the angle of attack must be relatively high to increase lift if the balance between lift and
weight is to be maintained. [Figure 3-3] If thrust decreases and airspeed decreases, lift becomes

- et )

Level (High Speed) Level (Cruise Speed) Level (Low Speed)

Figure 3-3. Angle of attack at various speeds.

less than weight and the airplane will start to descend. To maintain level flight, the pilot can increase the angle of
attack an amount which will generate a lift force again equal to the weight of the airplane and while the airplane
will be flying more slowly, it will still maintain level flight if the pilot has properly coordinated thrust and angle of
attack.

http://www.americanflyers.net/aviationlibrary/pilots_handbook/chapter_3.htm

Good discussion on angle of attack

Figure 4.20: from pilots handbook

Image from [http://www.americanflyers.net/aviationlibrary/pilots handbook|
Y chapter 3.htm
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The profile drag of a streamlined object held

in a fixed position relative to the airflow increases
approximately as the square of the velocity;

thus, doubling the airspeed increases the drag four times,
and tripling the airspeed increases the drag nine times.

Drag - Pounds

The amount of induced drag varies inversely
as the square of the airspeed.

From the foregoing discussion, it can be noted that parasite drag increases  Figure &5.0rag versus speed.
as the square of the airspeed, and induced drag varies inversely as
the square of the airspeed.

The location of the center of gravity (CG) is determined by the general design of each particular airplane. The
designers determine how far the center of pressure (CP) will travel. They then fix the center of gravity
forward of the center of pressure for the corresponding flight speed in order to provide an adequate restoring -
moment to retain flight equilibrium.

—~

B 8 103 K 16 D
Angle of Attack. Degrees

Figure 3-6. Lift coefficients at various angles of attack.

The pilot can control the lift. Any time the control wheel is more fore or aft, the angle of attack is changed. As
angle of attack increases, lift increases (all other factors being equal). When the airplane reaches the
maximum angle of attack, lift begins to diminish rapidly. This is the stalling angle of attack, or burble point.

Before proceeding further with lift and how it can be controlled, velocity must be interjected. The shape of the
wing cannot be effective unless it continually keeps “attacking™ new air. If an airplane is to Keep flying, it must
keep moving. Lift is proportional to the square of the airplane’s velocity. For example, an airplane traveling at
200 knots has four times the lift as the same airplane traveling at 100 knots, if the angle of attack and other
factors remain constant.

a wing with a planform area of 200 square feet lifts twice as
much at the same angle of attack as a wing with an area of 100
square feet.

lift varies directly with the wing area

http://www.americanflyers.net/aviationlibrary/pilots_handbook/chapter_3.htm

Figure 4.21: from pilots handbook (2)

Image from FAA pilot handbook and http://www.youtube.com/watch?v=8uT55aei]

N
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Empennage

The empennage includes the entire tail group and consists of
fixed surfaces such as the vertical stabilizer and the horizontal
stabilizer. The movable surfaces include the rudder, the
clevator, and one or more trim tabs. [Figure 2-10]

| Vertios! stabitrer |
Horizontal stabilizer Ty

Figure 2-10. Empennage components

From FAA pilot’s handbook

http://www.youtube.com/watch?v=8uT55aeilNI

ANGLE OF ATTACK

The downward backward flow from the top surface of an
airfoil creates a downwash. This downwash meets the flow
from the bottom of the airfoil at the trailing edge. Applying
Newton's third law, the reaction of this downward backward
flow results in an upward forward force on the airfoil.

From FAA pilot’s handbook

I do not understand the above

ANGLE OF ATTACK

RELATIVE WIND

ANGLE OF ATTACK

ATIVE WIND

Figure 4.22: from FAA pilot handbook

Image http://www.youtube.com/watch?v=8uT55aeilNI|and http://www.youtubel

com/user/DAMSUAZ7?feature=watch
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http://www.youtube.com/watch?v=8uT55aeilNI|

http://www.youtube.com/user/DAMSQAZ ?feature=watch

LIFT AND DRAG
LIFT AND DRAG PROPORTIONAL TO
PROPORTIONAL TO
RELATIVE WIND
YELOCITY SQUAREID

DENSITY OF AIR

_—
RELATIVE WIND DRAG

Ll FT = (oErriCIENT OF
L‘FTIANGH OF ATTALK
AIRFOIL SECTION

ANGLE OF ATTACK
OF AIRFOIL

LIFT = C;D-AV

DRAG = C;DAV’

A=area of wing
D=density of air
V=wind speed relative to

ANGLE OF ATTACK
OF AIRFOIL

LONGITUDINAL AXIS

ANGLE OF INCIDENCE

ANGLE OF ATTACK
OF AIRPLANE

ANGLE OF ATTACK
OF AIRPLANE

Figure 4.23: from youtube
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zero-lift angle
The angle of attack at which an airfoil does not produce any lift. Its value is generally less than zero unless

the airfoil is symmetrical.
This from Foundations of aerodynamics, 5% ed. By Chow and Kuethe

In Fig. 5.11, an airfoil is shown set at a geometric angle of attack equal to the angle of
zero lift. A line on the airfoil parallel to the flight path V.. and passing through the trail-
ing edge when the airfoil is set at the orientation of zero lift is called the zero-lift line
(Z.L.L.) of the airfoil. For symmetrical airfoils, the zero-lift line coincides with the chord
line.

The absolute angle of attack is defined as the angle included between the flight path

a and the zero-lift line and is given the symbol a,. From Fig. 5.12,

CL

CL max

Stafl!ng angle of\attack

Zero-lift angle"-
lo=0 a,=a-ay (5.35)

http://www.answers.com/topic/zero-lift-angle

These are from text :foundation of aerodynamics by Kuethe and Chow

1. the center of pressure is at % chord for all values of lift coeff.

2. center of pressure (c.p.) of a force is defined as the point about which the moment vanishes.

3. The geometric angle of attack is defined as the angle between the flight path and the chord line of the airfoil .
When the geometric angle of attack is zero, the lift coeff. Is zero.

4. The point about which the moment coeff. Is independent of the angle of attack is called the aerodynamic
center of the section. (a.c.)

5. a.c. is at the % chord line point.

6. The value of the angle of attack that makes the lift coeff. Zero is called the angle of zero lift (Z.L.L.)

z

le——x, Thickness envelope
t ———I 2, e P
Mean camber line

TE —>=x

Chord line Trailing edge
X, angle

Chord ¢

There are from Foundations
of aerodynamics, 5% ed. By
Chow and Kuethe

Fig. 5.1. Airfoil geometrical variables.

5.7 Properties of the Cambered Airfoil 147

/‘Z.L.L

Fig. 5.11. Orientation of airfoil at zero lift.

Figure 4.24: from youtube (2)
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4.4 Some strange shaped airplanes

Image http://edition.cnn.com/2014/01/16/travel/inside-airbus-beluga/in|
dex.html7hpt=1bu c4
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Figure 4.25: airbus beluga 1

Figure 4.26: Concorde
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Image from http://edition.cnn.com/2014/01/16/travel/inside-airbus-belug]
p/1index.html7hpt=1bu c/

Figure 4.27: airbus beluga (2)

Image from http://www.nasa.gov/centers/dryden/Features/super guppy.html]

http://www.nasa.gov/centers/dryden/Features/super_guppy.html

Figure 4.28: NASA SGT super guppy

Image from [http://www.aerospaceweb.org/question/aerodynamics/q0130.shtml]
"Boeing Pelican ground effect vehicle"

Figure 4.29: pelican 01
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4.5 links

1. https://3dwarehouse.sketchup.com/search.html?redirect=1&tags=airpl|
en=
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