home
PDF

Selection of Math fonts and usage status with tex4ht

Nasser M. Abbasi

July 22, 2016 compiled on — Friday July 22, 2016 at 05:30 PM [public]

Contents

1 mathpazo,eulervm
2 mathpazo,mathabx
3 kpfonts
4 newtxtext,newtxmath
5 libertine,newtxmath
6 stix
7 lmodern
8 mathpazo
9 txfonts
10 XCharter
11 charter with mathdesign
12 math,anttor
13 condensed,math,anttor
14 condensed,math,anttor
15 arev
16 lf,Baskervaldx
17 boisik

1 mathpazo,eulervm

Latex file

\documentclass{article}
\usepackage[T1]{fontenc}
\usepackage{ntheorem}
\newtheorem{theorem}{Theorem}
\usepackage{amsmath}
\DeclareMathOperator{\Res}{Res}

\usepackage[tracking]{microtype}
\usepackage[sc,osf]{mathpazo}%With old-style figures and real smallcaps.
\usepackage[euler-digits,small]{eulervm}

\usepackage[english]{babel}
\usepackage{blindtext}

\begin{document}
\blindtext
\pagestyle{empty}
\begin{theorem}[Residue Theorem]
Let $f$ be analytic in the region $G$ except for the isolated
singularities $a_1,a_2,\dots,a_m$. If $\gamma$ is a closed
rectifiable curve in $G$ which does not pass through any of the
points $a_k$ and if $\gamma\approx 0$ in $G$, then
\[
  \frac{1}{2\pi i}\int_\gamma\! f = \sum_{k=1}^m
  n(\gamma;a_k)\Res(f;a_k)\,.
\]
\end{theorem}
\end{document}

PDF Output

PDF

pict

HTML Output

HTML

status

  1. lualatex: ok
  2. pdflatex: ok
  3. tex4ht: ok, both .png and .svg math

reference

Math Code fragment thanks to Answer by mforbes at Tex.stackexchange

2 mathpazo,mathabx

Latex file

\documentclass{article}
\usepackage[T1]{fontenc}
\usepackage{ntheorem}
\newtheorem{theorem}{Theorem}
\usepackage{amsmath} %must be before next line
\usepackage{mathpazo,mathabx}
\DeclareMathOperator{\Res}{Res}
\usepackage[english]{babel}
\usepackage{blindtext}

\begin{document}
\blindtext
\pagestyle{empty}
\begin{theorem}[Residue Theorem]
Let $f$ be analytic in the region $G$ except for the isolated
singularities $a_1,a_2,\dots,a_m$. If $\gamma$ is a closed
rectifiable curve in $G$ which does not pass through any of the
points $a_k$ and if $\gamma\approx 0$ in $G$, then
\[
  \frac{1}{2\pi i}\int_\gamma\! f = \sum_{k=1}^m
  n(\gamma;a_k)\Res(f;a_k)\,.
\]
\end{theorem}
\end{document}

PDF Output

PDF

pict

HTML Output

HTML

status

  1. lualatex: ok
  2. pdflatex: ok
  3. tex4ht: ok, both .png and .svg math

reference

Math Code fragment thanks to Answer by Mico at Tex.stackexchange

3 kpfonts

Latex file

\documentclass{article}
\usepackage[T1]{fontenc}
\usepackage{ntheorem}
\newtheorem{theorem}{Theorem}
\usepackage{kpfonts}
\DeclareMathOperator{\Res}{Res}

\usepackage[english]{babel}
\usepackage{blindtext}
\begin{document}
\blindtext
\pagestyle{empty}
\begin{theorem}[Residue Theorem]
Let $f$ be analytic in the region $G$ except for the isolated
singularities $a_1,a_2,\dots,a_m$. If $\gamma$ is a closed
rectifiable curve in $G$ which does not pass through any of the
points $a_k$ and if $\gamma\approx 0$ in $G$, then
\[
  \frac{1}{2\pi i}\int_\gamma\! f = \sum_{k=1}^m
  n(\gamma;a_k)\Res(f;a_k)\,.
\]
\end{theorem}
\end{document}

PDF Output

PDF

pict

HTML Output

HTML

status

  1. lualatex: ok
  2. pdflatex: ok
  3. tex4ht: ok but with .png, Not with .svg

reference

Math Code fragment thanks to Answer by Mico at Tex.stackexchange

4 newtxtext,newtxmath

Latex file

\documentclass{article}
\usepackage[T1]{fontenc}
\usepackage{ntheorem}
\newtheorem{theorem}{Theorem}
\usepackage{newtxtext,newtxmath}
\DeclareMathOperator{\Res}{Res}

\usepackage[english]{babel}
\usepackage{blindtext}
\begin{document}
\blindtext
\pagestyle{empty}
\begin{theorem}[Residue Theorem]
Let $f$ be analytic in the region $G$ except for the isolated
singularities $a_1,a_2,\dots,a_m$. If $\gamma$ is a closed
rectifiable curve in $G$ which does not pass through any of the
points $a_k$ and if $\gamma\approx 0$ in $G$, then
\[
  \frac{1}{2\pi i}\int_\gamma\! f = \sum_{k=1}^m
  n(\gamma;a_k)\Res(f;a_k)\,.
\]
\end{theorem}
\end{document}

PDF Output

PDF

pict

HTML Output

HTML

status

  1. lualatex: ok
  2. pdflatex: ok
  3. tex4ht: No. Drops the  fi  letters in text. But Math looks ok.

reference

Math Code fragment thanks to Answer by Mico at Tex.stackexchange

5 libertine,newtxmath

Latex file

\documentclass{article}
\usepackage[T1]{fontenc}
\usepackage{ntheorem}
\newtheorem{theorem}{Theorem}
\usepackage[libertine]{newtxmath}
\DeclareMathOperator{\Res}{Res}

\usepackage[english]{babel}
\usepackage{blindtext}
\begin{document}
\blindtext
\pagestyle{empty}
\begin{theorem}[Residue Theorem]
Let $f$ be analytic in the region $G$ except for the isolated
singularities $a_1,a_2,\dots,a_m$. If $\gamma$ is a closed
rectifiable curve in $G$ which does not pass through any of the
points $a_k$ and if $\gamma\approx 0$ in $G$, then
\[
  \frac{1}{2\pi i}\int_\gamma\! f = \sum_{k=1}^m
  n(\gamma;a_k)\Res(f;a_k)\,.
\]
\end{theorem}
\end{document}

PDF Output

PDF

pict

HTML Output

HTML

status

  1. lualatex: Ok
  2. pdflatex: Ok
  3. tex4ht: Ok

reference

Math Code fragment thanks to Answer by Mico at Tex.stackexchange

6 stix

Latex file

\documentclass{article}
\usepackage[T1]{fontenc}
\usepackage{ntheorem}
\newtheorem{theorem}{Theorem}
\usepackage{amsmath}
\usepackage{stix}
\DeclareMathOperator{\Res}{Res}

\usepackage[english]{babel}
\usepackage{blindtext}
\begin{document}
\blindtext
\pagestyle{empty}
\begin{theorem}[Residue Theorem]
Let $f$ be analytic in the region $G$ except for the isolated
singularities $a_1,a_2,\dots,a_m$. If $\gamma$ is a closed
rectifiable curve in $G$ which does not pass through any of the
points $a_k$ and if $\gamma\approx 0$ in $G$, then
\[
  \frac{1}{2\pi i}\int_\gamma\! f = \sum_{k=1}^m
  n(\gamma;a_k)\Res(f;a_k)\,.
\]
\end{theorem}
\end{document}

PDF Output

PDF

pict

HTML Output

HTML

status

  1. lualatex: Ok
  2. pdflatex: Ok
  3. tex4ht: No. Drops the  fi  letters in text. But Math looks ok.

reference

Math Code fragment thanks to Answer by Mico at Tex.stackexchange

7 lmodern

Latex file

\documentclass{article}
\usepackage[T1]{fontenc}
\usepackage{ntheorem}
\newtheorem{theorem}{Theorem}
\usepackage{amsmath}
\usepackage{lmodern}
\DeclareMathOperator{\Res}{Res}

\usepackage[english]{babel}
\usepackage{blindtext}
\begin{document}
\blindtext
\pagestyle{empty}
\begin{theorem}[Residue Theorem]
Let $f$ be analytic in the region $G$ except for the isolated
singularities $a_1,a_2,\dots,a_m$. If $\gamma$ is a closed
rectifiable curve in $G$ which does not pass through any of the
points $a_k$ and if $\gamma\approx 0$ in $G$, then
\[
  \frac{1}{2\pi i}\int_\gamma\! f = \sum_{k=1}^m
  n(\gamma;a_k)\Res(f;a_k)\,.
\]
\end{theorem}
\end{document}

PDF Output

PDF

pict

HTML Output

HTML

status

  1. lualatex: Ok
  2. pdflatex: Ok
  3. tex4ht: Ok

reference

Math Code fragment thanks to Answer by Mico at Tex.stackexchange

8 mathpazo

Latex file

\documentclass{article}
\usepackage[T1]{fontenc}
\usepackage{ntheorem}
\newtheorem{theorem}{Theorem}
\usepackage{amsmath}
\usepackage{mathpazo}
\DeclareMathOperator{\Res}{Res}

\usepackage[english]{babel}
\usepackage{blindtext}
\begin{document}
\blindtext
\pagestyle{empty}
\begin{theorem}[Residue Theorem]
Let $f$ be analytic in the region $G$ except for the isolated
singularities $a_1,a_2,\dots,a_m$. If $\gamma$ is a closed
rectifiable curve in $G$ which does not pass through any of the
points $a_k$ and if $\gamma\approx 0$ in $G$, then
\[
  \frac{1}{2\pi i}\int_\gamma\! f = \sum_{k=1}^m
  n(\gamma;a_k)\Res(f;a_k)\,.
\]
\end{theorem}
\end{document}

PDF Output

PDF

pict

HTML Output

HTML

status

  1. lualatex: Ok
  2. pdflatex: Ok
  3. tex4ht: Ok

reference

Math Code fragment thanks to Answer by Mico at Tex.stackexchange

9 txfonts

Latex file

\documentclass{article}
\usepackage[T1]{fontenc}
\usepackage{ntheorem}
\newtheorem{theorem}{Theorem}
\usepackage{amsmath}
\usepackage{txfonts}
\DeclareMathOperator{\Res}{Res}

\usepackage[english]{babel}
\usepackage{blindtext}
\begin{document}
\blindtext
\pagestyle{empty}
\begin{theorem}[Residue Theorem]
Let $f$ be analytic in the region $G$ except for the isolated
singularities $a_1,a_2,\dots,a_m$. If $\gamma$ is a closed
rectifiable curve in $G$ which does not pass through any of the
points $a_k$ and if $\gamma\approx 0$ in $G$, then
\[
  \frac{1}{2\pi i}\int_\gamma\! f = \sum_{k=1}^m
  n(\gamma;a_k)\Res(f;a_k)\,.
\]
\end{theorem}
\end{document}

PDF Output

PDF

pict

HTML Output

HTML

status

  1. lualatex: Ok
  2. pdflatex: Ok
  3. tex4ht: Ok

reference

Math Code fragment thanks to Answer by Mico at Tex.stackexchange

10 XCharter

Latex file

\documentclass{article}
\usepackage[T1]{fontenc}
\usepackage{ntheorem}
\newtheorem{theorem}{Theorem}
\usepackage{amsmath}
\usepackage{XCharter}
\DeclareMathOperator{\Res}{Res}

\usepackage[english]{babel}
\usepackage{blindtext}
\begin{document}
\blindtext
\pagestyle{empty}
\begin{theorem}[Residue Theorem]
Let $f$ be analytic in the region $G$ except for the isolated
singularities $a_1,a_2,\dots,a_m$. If $\gamma$ is a closed
rectifiable curve in $G$ which does not pass through any of the
points $a_k$ and if $\gamma\approx 0$ in $G$, then
\[
  \frac{1}{2\pi i}\int_\gamma\! f = \sum_{k=1}^m
  n(\gamma;a_k)\Res(f;a_k)\,.
\]
\end{theorem}
\end{document}

PDF Output

PDF

pict

HTML Output

HTML

status

  1. lualatex: Ok
  2. pdflatex: Ok
  3. tex4ht: No. Drops the  fi  letters in text. But Math looks ok.

reference

Math Code fragment thanks to Tex.Stackexchange

11 charter with mathdesign

Latex file

\documentclass{article}
\usepackage[T1]{fontenc}
\usepackage{ntheorem}
\newtheorem{theorem}{Theorem}
\usepackage{amsmath}
\usepackage[charter]{mathdesign}
\DeclareMathOperator{\Res}{Res}

\usepackage[english]{babel}
\usepackage{blindtext}
\begin{document}
\blindtext
\pagestyle{empty}
\begin{theorem}[Residue Theorem]
Let $f$ be analytic in the region $G$ except for the isolated
singularities $a_1,a_2,\dots,a_m$. If $\gamma$ is a closed
rectifiable curve in $G$ which does not pass through any of the
points $a_k$ and if $\gamma\approx 0$ in $G$, then
\[
  \frac{1}{2\pi i}\int_\gamma\! f = \sum_{k=1}^m
  n(\gamma;a_k)\Res(f;a_k)\,.
\]
\end{theorem}
\end{document}

PDF Output

PDF

pict

HTML Output

HTML

status

  1. lualatex: Ok
  2. pdflatex: Ok
  3. tex4ht: No. All text is mangled. Math looks ok.

reference

Math Code fragment thanks to Tex.Stackexchange

12 math,anttor

Latex file

\documentclass{article}
\usepackage[math]{anttor}
\usepackage[T1]{fontenc}
\usepackage{ntheorem}
\newtheorem{theorem}{Theorem}
\usepackage{amsmath}
\DeclareMathOperator{\Res}{Res}

\usepackage[english]{babel}
\usepackage{blindtext}
\begin{document}
\blindtext
\pagestyle{empty}
\begin{theorem}[Residue Theorem]
Let $f$ be analytic in the region $G$ except for the isolated
singularities $a_1,a_2,\dots,a_m$. If $\gamma$ is a closed
rectifiable curve in $G$ which does not pass through any of the
points $a_k$ and if $\gamma\approx 0$ in $G$, then
\[
  \frac{1}{2\pi i}\int_\gamma\! f = \sum_{k=1}^m
  n(\gamma;a_k)\Res(f;a_k)\,.
\]
\end{theorem}
\end{document}

PDF Output

PDF

pict

HTML Output

HTML

status

  1. lualatex: Ok
  2. pdflatex: Ok
  3. tex4ht: No. All text is mangled. Math looks ok.

reference

http://www.tug.dk/FontCatalogue/anttor/

13 condensed,math,anttor

Latex file

\documentclass{article}
\usepackage[condensed,math]{anttor}
\usepackage[T1]{fontenc}
\usepackage{ntheorem}
\newtheorem{theorem}{Theorem}
\usepackage{amsmath}
\DeclareMathOperator{\Res}{Res}

\usepackage[english]{babel}
\usepackage{blindtext}
\begin{document}
\blindtext
\pagestyle{empty}
\begin{theorem}[Residue Theorem]
Let $f$ be analytic in the region $G$ except for the isolated
singularities $a_1,a_2,\dots,a_m$. If $\gamma$ is a closed
rectifiable curve in $G$ which does not pass through any of the
points $a_k$ and if $\gamma\approx 0$ in $G$, then
\[
  \frac{1}{2\pi i}\int_\gamma\! f = \sum_{k=1}^m
  n(\gamma;a_k)\Res(f;a_k)\,.
\]
\end{theorem}
\end{document}

PDF Output

PDF

pict

HTML Output

HTML

status

  1. lualatex: Ok
  2. pdflatex: Ok
  3. tex4ht: Ok

reference

http://www.tug.dk/FontCatalogue/anttor/

14 condensed,math,anttor

Latex file

\documentclass{article}
\usepackage[light,math]{anttor}
\usepackage[T1]{fontenc}
\usepackage{ntheorem}
\newtheorem{theorem}{Theorem}
\usepackage{amsmath}
\DeclareMathOperator{\Res}{Res}

\usepackage[english]{babel}
\usepackage{blindtext}
\begin{document}
\blindtext
\pagestyle{empty}
\begin{theorem}[Residue Theorem]
Let $f$ be analytic in the region $G$ except for the isolated
singularities $a_1,a_2,\dots,a_m$. If $\gamma$ is a closed
rectifiable curve in $G$ which does not pass through any of the
points $a_k$ and if $\gamma\approx 0$ in $G$, then
\[
  \frac{1}{2\pi i}\int_\gamma\! f = \sum_{k=1}^m
  n(\gamma;a_k)\Res(f;a_k)\,.
\]
\end{theorem}
\end{document}

PDF Output

PDF

pict

HTML Output

HTML

status

  1. lualatex: Ok
  2. pdflatex: Ok
  3. tex4ht: Ok

reference

http://www.tug.dk/FontCatalogue/anttor/

15 arev

Latex file

\documentclass{article}
\usepackage[utf8]{inputenc}
\usepackage{arev}
\usepackage[T1]{fontenc}
\usepackage{ntheorem}
\newtheorem{theorem}{Theorem}
\usepackage{amsmath}
\DeclareMathOperator{\Res}{Res}

\usepackage[english]{babel}
\usepackage{blindtext}
\begin{document}
\blindtext
\pagestyle{empty}
\begin{theorem}[Residue Theorem]
Let $f$ be analytic in the region $G$ except for the isolated
singularities $a_1,a_2,\dots,a_m$. If $\gamma$ is a closed
rectifiable curve in $G$ which does not pass through any of the
points $a_k$ and if $\gamma\approx 0$ in $G$, then
\[
  \frac{1}{2\pi i}\int_\gamma\! f = \sum_{k=1}^m
  n(\gamma;a_k)\Res(f;a_k)\,.
\]
\end{theorem}
\end{document}

PDF Output

PDF

pict

HTML Output

N/A did not compile.

status

  1. lualatex: Ok
  2. pdflatex: Ok
  3. tex4ht: No. Missing fonts, will not compile.

reference

http://www.tug.dk/FontCatalogue/anttor/

16 lf,Baskervaldx

Latex file

\documentclass{article}
\usepackage[utf8]{inputenc}
\usepackage{amsmath}
\usepackage[lf]{Baskervaldx} % lining figures
\usepackage[bigdelims,vvarbb]{newtxmath} % math italic letters from Nimbus Roman
\usepackage[cal=boondoxo]{mathalfa} % mathcal from STIX, unslanted a bit
\renewcommand*\oldstylenums[1]{\textosf{#1}}

\usepackage{ntheorem}
\newtheorem{theorem}{Theorem}
\usepackage{amsmath}
\DeclareMathOperator{\Res}{Res}

\usepackage[english]{babel}
\usepackage{blindtext}
\begin{document}
\blindtext
\pagestyle{empty}
\begin{theorem}[Residue Theorem]
Let $f$ be analytic in the region $G$ except for the isolated
singularities $a_1,a_2,\dots,a_m$. If $\gamma$ is a closed
rectifiable curve in $G$ which does not pass through any of the
points $a_k$ and if $\gamma\approx 0$ in $G$, then
\[
  \frac{1}{2\pi i}\int_\gamma\! f = \sum_{k=1}^m
  n(\gamma;a_k)\Res(f;a_k)\,.
\]
\end{theorem}
\end{document}

PDF Output

PDF

pict

HTML Output

HTML

status

  1. lualatex: Ok
  2. pdflatex: Ok
  3. tex4ht: compiles, but text drops fi, but math looks ok.

reference

http://www.tug.dk/FontCatalogue/anttor/

17 boisik

Latex file

\documentclass{article}
\usepackage{amsmath}
\usepackage{boisik}
\usepackage[OT1]{fontenc}

\usepackage{ntheorem}
\newtheorem{theorem}{Theorem}
\usepackage{amsmath}
\DeclareMathOperator{\Res}{Res}

\usepackage[english]{babel}
\usepackage{blindtext}
\begin{document}
\blindtext
\pagestyle{empty}
\begin{theorem}[Residue Theorem]
Let $f$ be analytic in the region $G$ except for the isolated
singularities $a_1,a_2,\dots,a_m$. If $\gamma$ is a closed
rectifiable curve in $G$ which does not pass through any of the
points $a_k$ and if $\gamma\approx 0$ in $G$, then
\[
  \frac{1}{2\pi i}\int_\gamma\! f = \sum_{k=1}^m
  n(\gamma;a_k)\Res(f;a_k)\,.
\]
\end{theorem}
\end{document}

PDF Output

PDF

pict

HTML Output

HTML

status

  1. lualatex: Ok
  2. pdflatex: Ok
  3. tex4ht: compiles, but text drops fi, but math looks ok.

reference

http://www.tug.dk/FontCatalogue/anttor/