my Quantum Mechanics cheat sheet

Nasser M. Abbasi

January 28, 2024

Compiled on January 28, 2024 at 4:48am

Table 1: QM cheat sheet

	Position Operator X	Momentum operator P	Hamilitonian operator H
Eigenvalue eigenvector relation	$X x\rangle=x x\rangle$ where x is the eigenvalue (size) of the $ x\rangle$ which is the position vector associated with x measured.	$P \phi_p angle=p \phi_p angle$ where p is the momentum of the particle.	$H \Psi_{E_i}\rangle=E_i \Psi_{E_i}\rangle$ where E_i is the energy level of the particle.
Normalization relation	$\int_{-\infty}^{\infty} x\rangle \langle x \ dx = 1$	$\int_{-\infty}^{\infty} \phi_p\rangle \langle \phi_p dp = 1$	$\int_{-\infty}^{\infty} \ket{\Psi_{E_i}} ra{\Psi_{E_i}} dE = 1$
orthogonality	$\langle x x'\rangle = \delta(x-x')$	$\langle \phi_p \phi_{p'} \rangle = \delta(p - p')$	$\langle \Psi_{E_i} \Psi_{E_j} \rangle = \delta(E_i - E_j)$
Matrix element of operator	$\left\langle x \big X \big x' \right angle = x'\delta(x-x').$ Operator X is diagonal matrix.	$\langle x P x' angle=-i\hbar\delta(x-x')rac{d}{dx'}$ where momentum operator P is expressed in position operator $ x\rangle$ basis. Note that operator P is not a diagonal matrix.	$\langle x \mid H \mid x' \rangle = ?$
			Continued on next page

Table1 – continued from previous page

	Position Operator X	Momentum operator Φ_p	Hamilitonian operator		
Function form of the state function $ \Psi angle$	N/A?	$P \phi_{p}\rangle = p \phi_{p}\rangle$ $\int P x'\rangle \langle x' \phi_{p}\rangle dx = p \int x'\rangle \langle x' \phi_{p}\rangle dx$ $\int \langle x P x'\rangle \langle x' \phi_{p}\rangle dx = p \int \langle x x'\rangle \langle x' \phi_{p}\rangle dx$ $\int -i\hbar\delta(x-x')\frac{d}{dx'}\phi_{p}(x') dx = p \int \delta(x-x')\phi_{p}(x') dx$ $= \frac{2}{L}\frac{L}{2}$ $= 1$	$\begin{split} \langle \Psi \Psi \rangle &= \int_{-\infty}^{\infty} \langle \Psi x \rangle \langle x \Psi \rangle dx \\ &= \int_{-\infty}^{\infty} \langle x \Psi \rangle \langle x \Psi \rangle dx \\ &= \int_{-\infty}^{\infty} \Psi^*(x) \Psi(x) dx \\ &= \int_{0}^{L} \left(\sqrt{\frac{2}{L}} \sin \frac{n \pi x}{L} \right)^2 dx \\ &= \frac{2}{L} \frac{L}{2} \\ &= 1 \end{split}$		
Vector form to function form	$\langle x \Psi angle = \Psi(x)$	$raket{\left\langle x\middle \phi_{p} ight angle = \phi_{p}(x)}$	$\langle x \Psi_E \rangle = \Psi_E(x)$		
Expansion of state vector $ \Psi\rangle$	$ \Psi angle = \int_{-\infty}^{\infty} x angle \left\langle x \Psi ight angle \; dx$	$ \Psi angle = \int_{-\infty}^{\infty} \phi_p angle \left\langle \phi_p \Psi ight angle \; dp$	$ \Psi angle = \int_{-\infty}^{\infty} E_i angle \langle E_i \Psi angle \ di$		
State function $ \Psi\rangle$ For infinite potential deep well of width $x < 0 < L$	todo	todo	todo		
Continued on next page					

Table1 – continued from previous page

	Position Operator X	Momentum operator Φ_p	Hamilitonian operator
Probability of measurement	1. Probability of measuring x given system is in state $ \Psi\rangle$ is $ \langle\Psi \Psi\rangle ^2$. For infinite potential deep well of width $x<0< L$ this becomes	$ \Psi angle = \int_{-\infty}^{\infty} \phi_p angle \left<\phi_p \Psi ight> dp$	$ \Psi angle = \int_{-\infty}^{\infty} E_i angle \left\langle E_i \Psi ight angle \; di$
	$\langle \Psi \Psi angle = \int_{-\infty}^{\infty} \langle \Psi x angle \left\langle x \Psi ight angle \; dx$		
	$= \int_{-\infty}^{\infty} \langle x \Psi \rangle \langle x \Psi \rangle \ dx$ $= \int_{-\infty}^{\infty} \Psi^*(x) \Psi(x) \ dx$		
	$= \int_0^L \left(\sqrt{\frac{2}{L}} \sin \frac{n \pi x}{L} \right)^2 dx$		
	$= \frac{2}{L} \frac{L}{2}$ $= 1$		
	2. Probability of measuring x given system is in state ϕ_p		