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This diagram below is from the book "Concepts and applications of finite element methods" 4th edition. The
goal is to find the stiffness matrix for this beam. It has 2 degrees of freedom per node. I will start by assuming
the deflection wHxL to be a approximated by a cubic polynomial as a function of x, and then use minimum
potential energy approach to find the stiffness matrix.

Assume that the deflection is approximated by w = a1 + a2 x + a3 x2 + a4 x3and from this we need to obtain the

shape function N so that we can write w = N

v1

Θ1

v2

Θ2

 hence we see that N  must be a 1 by 4 row vector. We call

a1, a2, a3, a4 the generalized coordinates, and v1, v2, Θ1, Θ2 as the nodal degrees of freedom. 

In[1]:= w = a1 + a2 x + a3 x
2 + a4 x

3;

Now find an expression for each of the above 4 nodal unknowns in terms of the deflection. Notice that the

angle Θ =
dw
dx

 as it is being approximated for small deflection (as in the angle of an arc (in radian) is the arc

length over radius)

In[6]:= eq1 = v1 � w �. x ® 0;

eq2 = v2 � w �. x ® L;

eq3 = Θ1 == D@w, xD �. x ® 0;

eq4 = Θ2 == D@w, xD �. x ® L;

Now to solve for the generalized d.o.f a1, a2, a3, a4

In[42]:= generalDegreOfFreedomVars = 8a1, a2, a3, a4<;
First�Solve@8eq1, eq2, eq3, eq4<, generalDegreOfFreedomVars D;
wNew = w �. %;

Print@"wHxL=" <> ToString@wNew, FormatType ® TraditionalFormDD

wHxL=-

x3 H-L Θ1 - L Θ2 - 2 v1 + 2 v2L
L3

-

x2 H2 L Θ1 + L Θ2 + 3 v1 - 3 v2L
L2

+ v1 + x Θ1

To write the above in the form w = N d we do
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To write the above in the form w = N d we do

In[46]:= nodalsDegreOfFreedomVars = 8v1, Θ1, v2, Θ2<;
8b, shapeFunctions< = Normal@CoefficientArrays@wNew, nodalsDegreOfFreedomVars DD;
wNew = shapeFunctions.nodalsDegreOfFreedomVars ;

Print@"wHxL=", wNewD

wHxL= 1 -

3 x2

L2
+

2 x3

L3
v1 +

3 x2

L2
-

2 x3

L3
v2 + x -

2 x2

L
+

x3

L2
Θ1 + -

x2

L
+

x3

L2
Θ2

Now that we have found the shape functions, we can find the B matrix. Notice that for beam, the strain matrix

B is given by d2 w

dx2

In[50]:= B = D@shapeFunctions, 8x, 2<D

Out[50]= :-
6

L2
+
12 x

L3
, -

4

L
+
6 x

L2
,

6

L2
-
12 x

L3
, -

2

L
+
6 x

L2
>

and now P,  the element potential energy is found (here I only consider strain energy, no loading is needed
since we only need to find the element stiffness matrix, not solve a system for unknowns).

In[53]:= N = 8shapeFunctions<;
B = 8B<;
d = Transpose@8nodalsDegreOfFreedomVars <D;
Dimensions@ND
Dimensions@dD
Dimensions@BD

Out[56]= 81, 4<
Out[57]= 84, 1<
Out[58]= 81, 4<

In[59]:= P =
1

2
à
0

LHE I Transpose@dD.Transpose@BD.B.dL âx;

P = P@@1, 1DD

Out[60]=
1

L3
2 E I I3 v12 + 3 v2

2 - 3 L v2 HΘ1 + Θ2L + L2 IΘ1
2 + Θ1 Θ2 + Θ2

2M + 3 v1 H-2 v2 + L HΘ1 + Θ2LLM

Now that we have the element potential energy, we can generate the element stiffness matrix
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In[61]:= kmat = à
0

LHE I Transpose@BD.BL âx;

PrintBToStringB E I

L3
, FormatType ® TraditionalFormF <>

ToStringBkmat � E I

L3
, FormatType ® TraditionalFormF <>

ToString@d, FormatType ® TraditionalFormDF

E I

L3

12 6 L -12 6 L

6 L 4 L2 -6 L 2 L2

-12 -6 L 12 -6 L

6 L 2 L2 -6 L 4 L2

v1
Θ1

v2
Θ2
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