
Generating 4-degree of freedom beam stiffness matrix
by Nasser M. Abbasi oct 26,2009

This diagram below is from the book "Concepts and applications of finite element methods" 4th edition. The
goal is to find the stiffness matrix for this beam. It has 2 degrees of freedom per node. I will start by assuming
the deflection wHxL to be a approximated by a cubic polynomial as a function of x, and then use minimum
potential energy approach to find the stiffness matrix.

Assume that the deflection is approximated by w = a1 + a2 x + a3 x2 + a4 x3and from this we need to obtain the

shape function N so that we can write w = N

v1

Θ1

v2

Θ2

 hence we see that N must be a 1 by 4 row vector. We call

a1, a2, a3, a4 the generalized coordinates, and v1, v2, Θ1, Θ2 as the nodal degrees of freedom.

In[1]:= w = a1 + a2 x + a3 x
2 + a4 x

3;

Now find an expression for each of the above 4 nodal unknowns in terms of the deflection. Notice that the

angle Θ =
dw
dx

 as it is being approximated for small deflection (as in the angle of an arc (in radian) is the arc

length over radius)

In[6]:= eq1 = v1 � w �. x ® 0;

eq2 = v2 � w �. x ® L;

eq3 = Θ1 == D@w, xD �. x ® 0;

eq4 = Θ2 == D@w, xD �. x ® L;

Now to solve for the generalized d.o.f a1, a2, a3, a4

In[42]:= generalDegreOfFreedomVars = 8a1, a2, a3, a4<;
First�Solve@8eq1, eq2, eq3, eq4<, generalDegreOfFreedomVars D;
wNew = w �. %;

Print@"wHxL=" <> ToString@wNew, FormatType ® TraditionalFormDD

wHxL=-

x3 H-L Θ1 - L Θ2 - 2 v1 + 2 v2L
L3

-

x2 H2 L Θ1 + L Θ2 + 3 v1 - 3 v2L
L2

+ v1 + x Θ1

To write the above in the form w = N d we do

Printed by Mathematica for Students

To write the above in the form w = N d we do

In[46]:= nodalsDegreOfFreedomVars = 8v1, Θ1, v2, Θ2<;
8b, shapeFunctions< = Normal@CoefficientArrays@wNew, nodalsDegreOfFreedomVars DD;
wNew = shapeFunctions.nodalsDegreOfFreedomVars ;

Print@"wHxL=", wNewD

wHxL= 1 -

3 x2

L2
+

2 x3

L3
v1 +

3 x2

L2
-

2 x3

L3
v2 + x -

2 x2

L
+

x3

L2
Θ1 + -

x2

L
+

x3

L2
Θ2

Now that we have found the shape functions, we can find the B matrix. Notice that for beam, the strain matrix

B is given by d2 w

dx2

In[50]:= B = D@shapeFunctions, 8x, 2<D

Out[50]= :-
6

L2
+
12 x

L3
, -

4

L
+
6 x

L2
,

6

L2
-
12 x

L3
, -

2

L
+
6 x

L2
>

and now P, the element potential energy is found (here I only consider strain energy, no loading is needed
since we only need to find the element stiffness matrix, not solve a system for unknowns).

In[53]:= N = 8shapeFunctions<;
B = 8B<;
d = Transpose@8nodalsDegreOfFreedomVars <D;
Dimensions@ND
Dimensions@dD
Dimensions@BD

Out[56]= 81, 4<
Out[57]= 84, 1<
Out[58]= 81, 4<

In[59]:= P =
1

2
à
0

LHE I Transpose@dD.Transpose@BD.B.dL âx;

P = P@@1, 1DD

Out[60]=
1

L3
2 E I I3 v12 + 3 v2

2 - 3 L v2 HΘ1 + Θ2L + L2 IΘ1
2 + Θ1 Θ2 + Θ2

2M + 3 v1 H-2 v2 + L HΘ1 + Θ2LLM

Now that we have the element potential energy, we can generate the element stiffness matrix

2 finding_beam_shape_functions_from_generalized_dof.nb

Printed by Mathematica for Students

In[61]:= kmat = à
0

LHE I Transpose@BD.BL âx;

PrintBToStringB E I

L3
, FormatType ® TraditionalFormF <>

ToStringBkmat � E I

L3
, FormatType ® TraditionalFormF <>

ToString@d, FormatType ® TraditionalFormDF

E I

L3

12 6 L -12 6 L

6 L 4 L2 -6 L 2 L2

-12 -6 L 12 -6 L

6 L 2 L2 -6 L 4 L2

v1
Θ1

v2
Θ2

finding_beam_shape_functions_from_generalized_dof.nb 3

Printed by Mathematica for Students

