Generating 4-degree of freedom beam stiffness matrix
by Nasser M. Abbasi oct 26,2009

This diagram below is from the book " Concepts and applications of finite element methods" 4th edition. The
goal isto find the stiffness matrix for this beam. It has 2 degrees of freedom per node. | will start by assuming
the deflection w(x) to be a approximated by a cubic polynomial as a function of x, and then use minimum
potentia energy approach to find the stiffness matrix.
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Assume that the deflection is approximated by w = a; + a, X + ag X° + a4 x°and from this we need to obtain the
Vi
. . 0
shape function N so that we can writew = N vl hence we see that N must be a 1 by 4 row vector. We call
2
)
a;, ap, ag, as thegeneralized coordinates, and vy, Vs, 0 6, asthe nodal degrees of freedom.

n[il= W= aj +azX +azx2+agx°;

Now find an expression for each of the above 4 nodal unknowns in terms of the deflection. Notice that the
angle 6 = % as it is being approximated for small deflection (as in the angle of an arc (in radian) is the arc

length over radius)

nel= €eql =vy=w/. X > 0;
eq2 =VvVy =W/. X » L;
eq3 =6; == D[w, x] /. x » 0;
eq4 = 6, == D[w, x] /. X » L;

Now to solvefor the generalized d.o.f a;, ay, az, a4

n42):= gener al DegreOf FreedonVars = {ai, az, as, as};
First @eSol ve[{eql, eq2, eq3, eq4}, general Degre FreedonVars 1;
wNew = w /. %;
Print ["w(x)=" <>ToString [wNew, Fornat Type - Traditi onal Form]]

x3 (-Ley1-L6ey-2vy+2Vy) x2 (2L6y+L6y +3Vvy-3Vy)
W(X)=- 3 - 5 +V1 +X 61
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To writethe abovein theformw =N d we do

in46:= nodal sDegr e FreedonVars = {vi, 61, V2, 62};
{b, shapeFunctions} = Nornal [CoefficientArrays [wWNew, nodal sDegr eCf Fr eedonVars 117;
wNew = shapeFuncti ons. nodal sDegr e* Fr eedonVars ;
Print ["w(x)=", wNew]
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Now that we have found the shape functions, we can find the B matrix. Notice that for beam, the strain matrix
L d’w
B isgiven by v

nis0):= B = D[shapeFunctions, {x, 2}]

6 12 x 4 6X 6 12 x 2 6Xx
out[50]= {——+ , , . —— 4 _}
L2 L3 L Lz L2 L3 L L2

and now IT the element potential energy is found (here | only consider strain energy, no loading is needed
since we only need to find the element stiffness matrix, not solve a system for unknowns).

in[s3):= N = {shapeFunctions };
B = {B};
d = Transpose [ {nodal sDegr ef Fr eedonVar s }];
Di nensi ons [N]
Di nensi ons [d]
Di nensi ons [B]

outsel= {1, 4}
Oout[57]= {41 1]’
outsel= {1, 4}

1 AL
In[59;:= I E J. (E I Transpose [d]. Transpose [B]. B. d) dx;
o

m=nf[[l, 1]]

1
out[60]= |__32EI (3V§+3V§—3LV2 (61 +67) +L2 (9%+6162+6§) +3Vy (m2va+L (61+92)))

Now that we have the element potential energy, we can generate the element stiffness matrix
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L
1= kmat = J (E I Transpose [B]. B) dX;
0
Print [TOS’[I’I ng [—3 For mat Type - Tradi ti onal Form] <>
L

EI
ToString [kmat/ (—3] For mat Type - Tradi ti onal Form] <>
L

ToString[d, Format Type - Traditi onal For m]]

12 6L -12 6L | vy,
ET| 6L 4L%2 -6L 2L% ||6
13| -12 -6L 12 -6L || V2
6L 2L2 -6L 4L2)'©2
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