Using Matlab ode45 to solve differential equations

Nasser M. Abbasi

May 30, 2012 page compiled on July 1, 2015 at 11:43am
Contents
[1 download examples source code| 1
2 description| 1
13__Simulationl 3
[4 Using ode45 with piecewise function| 5
[> Listing of source code| 5

1 download examples source code

1. first_order_ode.m.txt

2. |second_order_ode.m.txt

3. lengr80_august_14_2006_2.m.txt
4. lengr80_august_14_2006.m.txt

5. lode45_with_piecwise.m.txt

2 description

This shows how to use Matlab to solve standard engineering problems which involves solving a standard second
order ODE. (constant coefficients with initial conditions and nonhomogeneous).

A numerical ODE solver is used as the main tool to solve the ODE’s. The matlab function ode45 will be
used. The important thing to remember is that ode45 can only solve a first order ODE. Therefore to solve a
higher order ODE, the ODE has to be first converted to a set of first order ODE’s. This is possible since an n
order ODE can be converted to a set of n first order ODE’s.

Gives a first order ODE
dx

— = f(z,?
= f)
An example of the above is % = 3e~! with an initial condition x(0) = 0. Here is the result of solving this
ODE in Matlab. Source code is first_order_ode.m.txt

mailto:nma@12000.org
code/first_order_ode.m.txt
code/second_order_ode.m.txt
code/engr80_august_14_2006_2.m.txt
code/engr80_august_14_2006.m.txt
code/ode45_with_piecwise.m.txt
code/first_order_ode.m.txt

function testl

% SOLVE dx/dt = -3 exp(-t).
% initial conditions: x(0) = 0

t=0:0.001:5; % time scalex
initial x=0;

[t,x]=oded45(@rhs, t, initial x);

plot(t,x);
xlabel('t'); ylabel('x'");

function dxdt=rhs(t,x)
dxdt = 3*exp(-t);
end
end

File Edit V¥iew Insert Tools Deskiop Window Help

=12l

DsE&E| kA e (€| 08|a0

3

251

05F

To solve a second order ODE, using this as an example.

Since ode45 can only solve a first order ode, the above has to be converted to two first order ODE’s as follows.

d2z dx

S 455 4a

dat? dt

(t) = sin(10 ¢)

Introduce 2 new state variables x1, z9 and carry the following derivation

r1 =2

Tr9o =T

/

take derivative
—

/ /
T, =2 do replacement
R

xh =2

The above gives 2 new first order ODE’s. These are

Now ode45 can be used to solve the above in the same way as was done with the first example. The only

T = x9

/

Z2

xh = —bwg + 4z + sin (10t)

difference is that now a vector is used instead of a scalar.

This is the result of solving this in Matlab. The source code is second_order_ode.m.txt

/
— 1
ahy = =5z’ + 4 + sin (10t) x5 = =5z + 4z + sin (10t)

}

code/second_order_ode.m.txt

function second_oder_ ode

% SOLVE d2x/dt2+5 dx/dt - 4 x = sin (10 t) leziew Insert Tools Deskiop MWindow Help ;]Q]_:(I
% initial conditions: x(0) = 0, x'(0)=0 DSk eadhs 208 0

0.14

t=0:0.001:3; % time scale

012p

initial_x = 0;

initial _dxdt = 0; 01t
008

[t,x]=ode45(@rhs, t, [initial x initial dxdt]); =

0.06 -

plot(t,x(:,1));
xlabel('t'); ylabel('x");

0.04+

0.02

function dxdt=rhs(t, x)
dxdt 1
dxdt 2

x(2); % UE ; 13 é is 3

-5*x(2) + 4*x(1l) + sin(10*t);

dxdt=[dxdt_1; dxdt 2];
end
end

3 Simulation

Now ode45 is used to perform simulation by showing the solution as it changes in time.
Given a single degree of freedom system. This represents any engineering system whose response can move
in only one direction. A typical SDOF (single degree of freedom) is the following mass/spring/damper system.

%X

M — F(t)

k
BN AV, v —
/ —
|
C

/ OO

The first step is to obtain the equation of motion, which will be the second order ODE. Drawing the free
body diagram and from Newton’s second laws the equation of motion is found to be

ma” + cx’ + kx = f(wyt)

In the above, wy is the forcing frequency of the force on the system in rad/sec.

The response of the system (the solution of the system, or x(t)) is simulated for different parameters.

For example, the damping ¢ can be changed, or the spring constant (the spring stiffness) to see how z(t)
changes. The forcing function frequency w; can also be changed.

The following definitions are used in the Matlab code.

Natural frequency of the system w = /£ — (ﬁ)2

m
Damping ratio ¢ = é where c¢ is the damping coefficient and ¢, is the critical damping.

cr = 2Vkm

When ¢ > ¢, the system is called over damped. When ¢ < ¢, the system is called underdamped
The following example runs a simulation showing the effect of changing the damping when the forcing
function is a step function. The response to a step function is a standard method used to analyze systems.

function engr80_august_14_2006_2()

% shows how to use Matlab to animation response of one degree of

% freedom system.

% show the effect of changing the damping of the system on the response.
% by Nasser Abbasi, UCI.

clear all; close all;
t_start = 0;
tend =6
time_ span =

; %final time in seconds.
t _start:0.001:t end;

I
'
o
o

k = spring stiffness. N/m
m=5; % mass, kg

cr = 2*sqrt(k*m); %critical damping

fprintf ('critical damping coef. of system is %£f\n',cr);

initial_position = 0;
initial_ speed =0;
x0 = [initial position initial_ speed];

% Now start the simulation, change damping.
for ¢ = 0: .5 : cr+.l*cr

[t,x]=oded5 (@rhs, time_span,x0) ;

plot(t,x(:,1));

title(sprintf('Critical damping=%4.1f, current damping coeff. =%4.1f',cr,c));
ylim([-.1 .5]);

drawnow;

pause(.1);

end
grid
Shhkkkhkhkkhkkkhkkhkhkkhkhkkkhkhkhkhkkhkkhkhhkhkhkhkhhkkkhkhkhk

% solves m x''+ ¢ x' + k x = £(t)
Ghhkkhkkhkkhkhkhkhkhkhkhkhkhkhkhkhkdhkhhkhkhkhkhkhkhkhkhkhhhkhhkhk

function xdot=rhs(t,x)

xdot_1
xdot_2

x(2);
-(c/m)*x(2) - (k/m)*x(l) + force(t)/m;

ErYEE— -lofx|
xdot = [xdot 1 ; xdot 2]; Fle Edt View Insert Tools Deskiop Window Help ~
end - - DERa kK Ran €| 08 20

Ghkkkhhhkkkkkhkhkkhhkkkkk Critical damping=28 3, current damping coeff. =31.0

% The forcing function, edit to change as needed.
Shhkkkkkkkkkkkhkkkkkhkkk

function f=force (t) o4

P = 100; % force amplitude o3

%$f=P*sin (omega*t) ;

02

£=10; %unit step
0.1

%$if t<eps %$impulse

% f=1 0
%else

% £=0; 01
%$end ¢

%$f=P*t; S%Sramp input
end
end

4 Using ode45 with piecewise function
ode45 can be used with piecewise function defined for the RHS. For example, given 2”(t) — 2(t) = ¢ where ¢ = 1
for0<=t<land ¢c=20for 1 <=t <2 and ¢= 3 for 2 <=t <= 3, the following code example shows one way

to implement the above.
ode45_with_piecwise.m.txt

5 Listing of source code

first_order_ode.m

1 function first_oder_ode

3 % SOLVE dx/dt = -3 exp(-t).
4 % initial conditions: x(0) = 0

6 t=0:0.001:5; % time scalex
7 initial_x=0;

9 [t,x]=0de45(@rhs, t, initial_x);
10

11 plot(t,x);

12 xlabel('t'); ylabel('x');

13

14 function dxdt=rhs(t,x)
15 dxdt = 3*xexp(-t);
16 end

17 end

second_order_ode.m

1 function second_oder_ode

3 % SOLVE d2x/dt2+5 dx/dt - 4 x = sin(10 t)
4 % initial conditions: x(0) = 0, x'(0)=0

5

6 t=0:0.001:3; % time scale

7

g8 initial_x = 0;

9 initial_dxdt = O0;
11 [t,x]=o0de45(@rhs, t, [initial_x initial_dxdt]);

13 plot(t,x(:,1));
14 xlabel('t'); ylabel('x');

16 function dxdt=rhs(t,x)
17 dxdt_1 = x(2);
18 dxdt_2 = -5%xx(2) + 4xx(1) + sin(10x*t);

code/ode45_with_piecwise.m.txt

19

20 dxdt=[dxdt_1; dxdt_21];
21 end

22 end

engr80_august_14_2006_2.m

1 function engr80_august_14_2006_2()

3 % shows how to use Matlab to animation response of one degree of

s % freedom system.

5 % show the effect of changing the damping of the system on the response.
6 % by Nasser Abbasi, UCI.

s clear all; close all;

10 t_start
11 t_end = %final time in seconds.
12 time_span =t_start:0.001:t_end;

0;
6;

13

14 k = 40; % spring stiffness. N/m

15 m = 5; 7 mass, kg

16

17 cr = 2*sqrt(k*m); YJcritical damping

18
19 fprintf('critical damping coef. of system is %f\n',cr);

20

21 initial_position = O;

22 initial_speed = 0;

23

24 x0 = [initial_position initial_speed];

25
26 % Now start the simulation, change damping.

27

28 for ¢ = 0: .5 : cr+.1lxcr

29

30 [t,x]=0ded45(@rhs,time_span,x0);

31 plot(t,x(:,1));

32 title(sprintf ('Critical damping=%4.1f, current damping coeff.
=%4 .1f',cr,c));

33 ylim([-.1 .51);

34 drawnow;

35 pause (.1);

36

37 end

38

39 grid

40 %**************************************

41 % solves m x''+ ¢ x' + k x = f(t)
42 Y sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok sk ok sk ok sk sk sk sk sk ok ok ok ok ok ok ok ok ok ok ok

43 function xdot=rhs(t,x)

44

45 xdot_1 = x(2);

46 xdot_2 = -(c/m)*x(2) - (k/m)*x(1) + force(t)/m;
47

48 xdot = [xdot_1 ; xdot_2 1J];

49 end

50 ok %k %k ok sk sk ok ok sk sk ok ok sk %k %k >k k k%

51 % The forcing function, edit to change as needed.
52 Yok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok

53 function f=force(t)

54

55 P = 100; % force amplitude
56 hf=Pxsin (omegax*t) ;

57

58 £f=10; Junit step

59

60 %if t<eps himpulse
61 % f=1

62 %helse

63 b £=0;

64 %end

65

66 %f=Pxt; YJramp input
67 end

6s end

engr80_august_14_2006.m

1 function engr80_august_14_2006 ()

2 % shows how to use Matlab to animation response of one degree
3 % freedom system.

4 % by Nasser Abbasi, UCI.

6 clear all; close all;

s t_start 0;

9 t_end 6; %final time in seconds.
10 time_span =[t_start t_end];

11 time_span =t_start:0.001:t_end;

12

100; % spring stiffness. N/m
20; % damping coeff. N-s/m
5; % mass, kg

13

(¢}
I

14

15

16

17 natural_damped_omega = sqrt(k/m - (c/(2xm)) "2);

18

19 fprintf ('Natural damped frequency of system is
%f\n',natural_damped_omega) ;

20

of

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

initial_position = O;
initial_speed 0;

x0 = [initial_position initial_speed];

for omega=0:0.1:natural_damped_omega+0.1
[t,x]=o0de45(@rhs,time_span,x0);
plot(t,x(:,1));
title(sprintf ('forcing freq=%4.1f',omega));

% ylim([-.1 2]);
drawnow;

yA pause (.1);

end
grid

O sk sk sk sk sk sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok 3k ok 3k 3k 3 3k ko ok ok ok ok ok K
% solves m x''+ ¢ x' + k x = f(t)

O sk sk sk sk sk sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok 3k ok 3k 3k 3k 3k ko kR ok ok ok K
function xdot=rhs(t,x)

xdot_1
xdot_2

x(2);
-(c/m)*x(2) - (k/m)*x(1) + force(t)/m;

xdot = [xdot_1 ; =xdot_2 1;
end

%********************

0,
b
%********************

function f=force(t)

P = 100; % force amplitude
f=Pxsin(omegax*t);

%f=10; ‘unit step

%if t<eps himpulse
hoo f=1

helse

% £=0;

%end

hf=Pxt; Jramp input

end

end

ode45_with_piecwise.m

2 hmm e e
ERA

4+ %Example solve x''- x = ¢

5

6 fhwhere c=1 for 0<t<1

7 % c=20 for 1<t<2

s % c=3 for 2<t<3

9

w AIC x =0, t =20

1% x'= 1, t =0

12 %

13

14

15 % ____________________

16 function oded45_with_piecwise ()

17

18t = 0:0.1:3; % time scale
19 initial_x = 0;

20 initial_dxdt = 1;

21

22 [t,x] = ode45(@rhs, t, [initial_x initial_dxdt]);
23

24 plot (t,x(:,1));

25 xlabel('t'); ylabel('x');

26

27 end

28

29 % ____________________

30 %hodedb rhs

31 function dxdt=rhs(t,x)

32 dxdt_1 x(2);

33 dxdt_2 x(1)+ 1x((0<t)&(t<1)) + 20*x((1<t)&(t<2))+ 3*x((2<t)&(t<3));
34 dxdt [dxdt_1; dxdt_217;

35 end

	download examples source code
	description
	Simulation
	Using ode45 with piecewise function
	Listing of source code

