Project, EGME 511 (Advanced Mechanical Vibration) Analysis of Van Der Pol differential equation

Nasser M. Abbasi

June 28, 2015

Contents

1 Introduction 1
$\begin{array}{ll}2 \text { Stability } & 1\end{array}$
3 Phase diagram 2
4 Phase diagram 3

1 Introduction

Van der Pol differential equation is given by

$$
x^{\prime \prime}(t)-c\left(1-x^{2}\right) x^{\prime}(t)+k x(t)=0
$$

In this analysis, we will consider the case only for positive c, k. We will analyze the stability of this equation and generate a phase diagram.

2 Stability

The first step in examining stability of a non-linear differential equation is to convert it to state space by introducing 2 state variables.

$$
\left.\left.\left.\begin{array}{l}
x_{1}=x \\
x_{2}=x^{\prime}
\end{array}\right\} \rightarrow \begin{array}{c}
x_{1}^{\prime}=x^{\prime} \\
x_{2}^{\prime}=x^{\prime \prime}=c\left(1-x^{2}\right) x^{\prime}-k x
\end{array}\right\} \rightarrow \begin{array}{c}
x_{1}^{\prime}=x_{2} \\
x_{2}^{\prime}=c\left(1-x_{1}^{2}\right) x_{2}-k x_{1}
\end{array}\right\}
$$

Therefore

$$
\binom{x_{1}^{\prime}}{x_{2}^{\prime}}=\binom{x_{2}}{c\left(1-x_{1}^{2}\right) x_{2}-k x_{1}}=\binom{g\left(x_{1}, x_{2}\right)}{f\left(x_{1}, x_{2}\right)}
$$

Equilibrium points are found by solving $\binom{x_{1}^{\prime}}{x_{2}^{\prime}}=\binom{0}{0}$, hence from the above, we see that $x_{2}=0$ and from $c\left(1-x_{1}^{2}\right) x_{2}-k x_{1}=0$ we conclude that $x_{1}=0$ as well. Hence

$$
x_{e q}=\binom{0}{0}
$$

The system matrix is now found. First we note that $\frac{\partial g}{\partial x_{1}}=0, \frac{\partial g}{\partial x_{2}}=1, \frac{\partial f}{\partial x_{1}}=-2 c x_{2} x_{1}-k$, and $\frac{\partial f}{\partial x_{2}}=-c x_{1}^{2}+c$, hence

$$
A=\left(\begin{array}{cc}
\frac{\partial g}{\partial x_{1}} & \frac{\partial g}{\partial x_{2}} \\
\frac{\partial f}{\partial x_{1}} & \frac{\partial f}{\partial x_{2}}
\end{array}\right)=\left(\begin{array}{cc}
0 & 1 \\
-2 c x_{2} x_{1}-k & -c x_{1}^{2}+c
\end{array}\right)
$$

Hence A at $x_{e q}$ becomes

$$
A=\left(\begin{array}{cc}
0 & 1 \\
-k & c
\end{array}\right)
$$

Now we find the characteristic equation

$$
\begin{aligned}
\left|\begin{array}{cc}
-\lambda & 1 \\
-k & c-\lambda
\end{array}\right| & =0 \\
-\lambda(c-\lambda)+k & =0 \\
\lambda^{2}-\lambda c+k & =0
\end{aligned}
$$

Hence $\lambda_{1,2}=\frac{-b}{2} \pm \frac{1}{2} \sqrt{b^{2}-4 a c}=c \pm \frac{1}{2} \sqrt{c^{2}-4 k}$, therefore

$$
\lambda_{1,2}=c \pm \frac{1}{2} \sqrt{c^{2}-k}
$$

If $c^{2}>k$ then both roots are on the RHS, hence system is unstable (equilibrium point is a repelling point).

If $c^{2}<k$ then we have $\lambda_{1,2}=c \pm j \beta$, and we have spiral out equilibrium point, unstable.

3 Phase diagram

We need to obtain a relation between x_{2} and x_{1}. From the differential equation

$$
x^{\prime \prime}(t)-c\left(1-x^{2}\right) x^{\prime}(t)+k x(t)=0
$$

rewrite in state space variables, we obtain

$$
\begin{aligned}
\frac{d x_{2}}{d t}-c\left(1-x_{1}^{2}\right) x_{2}+k x_{1} & =0 \\
\frac{d x_{2}}{d x_{1}} \frac{d x_{1}}{d t}-c\left(1-x_{1}^{2}\right) x_{2}+k x_{1} & =0 \\
\frac{d x_{2}}{d x_{1}} x_{2}-c\left(1-x_{1}^{2}\right) x_{2}+k x_{1} & =0 \\
\frac{d x_{2}}{d x_{1}} & =\frac{c\left(1-x_{1}^{2}\right) x_{2}-k x_{1}}{x_{2}}
\end{aligned}
$$

Hence the above is in the form $\frac{d x_{2}}{d x_{1}}=f\left(x_{1}, x_{2}\right)$, therefore the isoclines lines can be found by setting

$$
f\left(x_{1}, x_{2}\right)=\xi
$$

Where ξ is a constant. Hence we obtain the parameterize equation to use to plot the gradient lines as

$$
\xi=\frac{c\left(1-x_{1}^{2}\right) x_{2}-k x_{1}}{x_{2}}
$$

4 Phase diagram

To generate the phase diagram ${ }^{\top}$, a program was written which allows one to adjust the initial conditions and the parameters k and c and observe the effect on the shape of the limit cycle. We see that starting from different initial conditions, the solution trajectory always ends up in a limit cycle.

The following is a screen shot of the program written for this project.

Phase Plane Plot of the Van der Pol Differential Equation

phase plane plot

[^0]
[^0]: ${ }^{1}$ A plot of $x^{\prime}(t)$ vs. $x(t)$

