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1 Conditions for using BVP eigenvalue method
We are only here talking about second order linear ode of the form a(x) y′′ + b(x) y′ +
c(x) y = 0 with boundary conditions. If it is an IVP ode, then this note does not apply.
The first thing to check for is that B.C. are homogeneous. Which means they are equal
to zero. An example is y(0) = 0, y(L) = 0 or y(0) = 0, y′(L) = 0 and so on. The BC
do not have to be in terms of unknown L. They can be y(0) = 0, y(1) = 0 for example.
If the BC are not homogeneous then we have to do some preprocessing which is not
considered here.

There are two general cases. The first is if the ode itself has an unknown in it or not. For
example y′′ + y′ + λy = 0 would qualify. Also ay′′ + y′ + y = 0 will qualify. The second
general case is that the ode has no unknown it is. Which means all the coefficients are
known. So we have then a total of 4 cases to consider:

1. The ode has at least one unknown in it such as y′′ + y′ + λy = 0 but the BC have
no unknown. For example y(0) = 0, y(1) = 0. This is a BVP eigenvalue problem.
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The above gives the solution

y(x) =
{

2e−x
2 c1 sinh

(1
2

√
1− 4λx

)
sinh

(1
2

√
1− 4λ

)
= 0

0 otherwise

2. The ode has at least one unknown in it such as y′′ + y′ + λy = 0 and also BC
have unknown. For example y(0) = 0, y(L) = 0 where here L is unknown. This is
also BVP eigenvalue problem

y(x) =
{

2e−x
2 c1 sinh

(1
2

√
1− 4λx

)
sinh

(1
2

√
1− 4λL

)
= 0

0 otherwise

3. The ode has NO unknown in it such as y′′ + y′ + 5y = 0 but BC have at least
one unknown. For example y(0) = 0, y(L) = 0 where here L is unknown. This
is BVP but not an eigenvalue problem. There is one eigenfunction The solution
will have the unknown L in it.

y(x) =

 e−
x
2 c1 sin

(√
19
2 x

)
L = 4nπ√

19or L = 2(π+2nπ)√
19 where n ∈ Z

0 otherwise

4. The ode has NO unknown in it such as y′′ + y′ + 5y = 0 and also BC have no
unknown. For example y(0) = 0, y(1) = 0. This is BVP but not an eigenvalue
problem. The solution is y(x) = 0 in this case.

In the above, only 1,2 are considered BVP eigenvalue problems. The others are just
BVP problems. In (3), even though there is no eigenvalues (because the ODE has no
unknown in it), we still give conditions for non-trivial solution, because depending on
value of L this can happen. In (4), only trivial solution is possible.

2 Example 1
Let us solve the second order BVP

y′′ + 3y = 0
y(0) = 0
y(L) = 0

If the boundary condition do not have an arbitrary L in them, i.e. if y(L) = 0 happened
to be for example y(1) = 0 then this can be solved using normal methods giving y = 0
as solution and there is nothing more to say.
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But if we try to solve this using normal methods with y(L) = 0, where L is now a
symbol and not a number, we will see that the result will be also be y(0) = 0 which is
the trivial solution again.

But there is a non-trivial solution to this when L is symbol (undefined length). We
have to use eigenvalue/eigenfunction method instead of normal methods to find this
non-trivial solution. And this note is to show the difference.

First we will solve

y′′ + 3y = 0
y(0) = 0
y(L) = 0

Using normal methods. Since this is constant coefficient ode, then the characteristic
equation is

r2 + 3 = 0
r = ±

√
3i

This means the basis solutions are y1 = e
√
3ix, y2 = e−

√
3ix and the general solution is

y = c1e
√
3ix + c2e

−
√
3ix

Which can be written using Euler formula as

y = c1 cos
(√

3x
)
+ c2 sin

(√
3x

)
(1)

Now we apply boundary conditions to find c1, c2. When y(0) = 0 the above becomes

0 = c1

Hence (1) now becomes
y = c2 sin

(√
3x

)
And when y(L) = 0 the above gives

0 = c2 sin
(√

3L
)

(2)

So we conclude here that c2 = 0 since L is not known and can not be zero, which results
in trivial solution

y = 0
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The difference between the above method and the eigenvalue/eigenfunction method
to solving BVP, is that in (2), we do not choose c2 = 0, but instead we find L values
for L that makes sin (3L) = 0 instead of the constant c2 and thus avoiding trivial
solution. We know that sin

(√
3L

)
= 0 when

√
3L = 0,±π,±2π, · · · but since L > 0

this becomes
√
3L = π, 2π, 3π, · · ·

√
3L = nπ n = Z, n > 0

Hence
L = nπ√

3
n = Z, n > 0

The L values above are called the eigenvalues of the ode. These are the values that
gives non trivial solution. The general solution now becomes

y =
{

c2 sin
(√

3x
)

L = nπ√
3 , n = Z, n > 0

0 otherwise

sin
(√

3x
)
above is the eigenfunction. There is only one eigenfuction in this example.

The above says that the solution is trivial only when L does not satisfy L = nπ√
3 .

Mathematica DSolve command handles this automatically and gives both trivial and
non-trivial and the conditions on L.

3 Example 2
Another variation of this problem is when the ode has the arbitrary value in the ode
itself, instead of in the boundary condition as in the above example. Now the boundary
conditions do not have an arbitrary symbol in them. An example is

y′′ + λy = 0
y(0) = 0
y(1) = 0

Let us solve this using normal method again. Since this is constant coefficient ode, then
the characteristic equation is

r2 + λ = 0
r = ±

√
−λ

Hence the general solution is

y = c1e
√
λix + c2e

−
√
λix

= c1 cos
(√

λx
)
+ c2 sin

(√
λx

)
(3)
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At y(0) = 0 the above gives
0 = c1

And (3) becomes
y = c2 sin

(√
λx

)
At y(1) = 0 the above gives

0 = c2 sin
(√

λ
)

And we conclude that c2 = 0 which gives the trivial solution

y = 0

Now the ode is solved using eigenvalue/eigenvector approach. Starting from r = ±
√
−λ

and since we do not know what λ is, we have to check each possible case. We assume
λ is real value in all of this.

case λ < 0 Hence −λ > 0 and we let
√
−λ = µ where µ > 0. The roots then are r = ±µ

and the general solution is

y = c1 cos (µx) + c2 sinh (µx)

At y(0) = 0 the above gives
0 = c1

So the solution becomes
y = c2 sinh (µx)

At y(1) = 0 the above becomes
0 = c2 sinh (µ)

But sinh (µ) is only zero when µ = 0 or λ = 0 which is not the case here. This means
only other option is c2 = 0 which leads to trivial solution. Hence λ < 0 is not valid
assumption.

case λ = 0 The roots now are r = 0 double root. In other words, the ode is y′′ = 0.
Hence the general solution is

y = c1 + c2x

At y(0) = 0 this gives c1 = 0. Hence y = c2x. At y(1) = 0 this gives 0 = c2. Which
means the trivial solution y = 0. So λ = 0 is again not a valid assumption.

case λ > 0 The roots now are r = ±i
√
λ which means the general solution is

y = c1 cos
(√

λx
)
+ c2 sin

(√
λx

)
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At y(0) = 0 the above gives 0 = c1 and the solution now becomes

y = c2 sin
(√

λx
)

At y(1) = 0 the above gives
0 = c2 sin

(√
λ
)

For non-trivial solution we want sin
(√

λ
)
= 0. This means

√
λ = π, 2π, 3π, · · · or

√
λ = nπ n = Z, n > 0
λn = n2π2

Notice that n > 0 because we assumed λ > 0 we can’t pick −π,−2π, · · · values. We
also can not pick n = 0. The general solution hence becomes

y =
{

c2 sin
(√

λnx
)

λ = n2π2, n = Z, n > 0
0 otherwise

In the above λn are called the eigenvalues and Φn = sin
(√

λnx
)
, n = 1, 2, · · · are called

the eigenfunctions. In this example, there is one eigenfunction Φn associated with each
eigenvalue λn.

4 Example 3
Final example is when the ode has an arbitrary value (the eigenvalue) in the ode itself
and the boundary condition also has an arbitrary value.

y′′ + λy = 0
y(0) = 0
y(L) = 0

Let us solve this using normal method again. Since this is constant coefficient ode, then
the characteristic equation is

r2 + λ = 0
r = ±

√
−λ

Hence the general solution is

y = c1e
√
λix + c2e

−
√
λix

= c1 cos
(√

λx
)
+ c2 sin

(√
λx

)
(3)
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At y(0) = 0 the above gives
0 = c1

And (3) becomes
y = c2 sin

(√
λx

)
At y(L) = 0 the above gives

0 = c2 sin
(√

λL
)

And since L can not be zero, we conclude that c2 = 0 which gives the trivial solution

y = 0

Now the problem is solved using eigenvalue/eigenvector approach. Starting from r =
±
√
−λ and since we do not know what λ is, we have to check each possible case. We

assume λ is real value in all of this.

case λ < 0 Hence −λ > 0 and we let
√
−λ = µ where µ > 0. The roots then are r = ±µ

and the general solution is

y = c1 cos (µx) + c2 sinh (µx)

At y(0) = 0 the above gives
0 = c1

So the solution becomes
y = c2 sinh (µx)

At y(L) = 0 the above becomes

0 = c2 sinh (µL)

But sinh (µ) is only zero when µL = 0 or λ = 0 (since L can not be zero), which is not
the case here. This means only other option is c2 = 0 which leads to trivial solution.
Hence λ < 0 is not valid assumption.

case λ = 0 The roots now are r = 0 double root. In other words, the ode is y′′ = 0.
Hence the general solution is

y = c1 + c2x

At y(0) = 0 this gives c1 = 0. Hence y = c2x. At y(L) = 0 this gives 0 = Lc2. Which
means c2 = 0 since L can not be zero. Hence the trivial solution y = 0. So λ = 0 is
again not a valid assumption.

case λ > 0 The roots now are r = ±i
√
λ which means the general solution is

y = c1 cos
(√

λx
)
+ c2 sin

(√
λx

)
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At y(0) = 0 the above gives 0 = c1 and the solution now becomes

y = c2 sin
(√

λx
)

At y(L) = 0 the above gives
0 = c2 sin

(√
λL

)
For non-trivial solution we want sin

(√
λL

)
= 0. This means

√
λL = π, 2π, · · · or

√
λ = nπ

L
n = Z, n > 0

λn = n2π2

L2

Hence the general solution now becomes

y =
{

c2 sin
(√

λnx
)

λ = n2π2

L2 , n = Z, n > 0
0 otherwise

In the above λn are called the eigenvalues and Φn = sin
(√

λnx
)
, n = 1, 2, 3, · · · are

called the eigenfunctions. This is basically the same solution as second example, with
the difference is that the length is now unknown L and not a specific value 1 as before.
That is why the length L shows in the eigenvalues.
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