Small note on solving $x^{\frac{n}{m}}=a$

Nasser M. Abbasi

March 25, 2024
Compiled on March 25, 2024 at 6:44am

We want to solve

$$
x^{\frac{n}{m}}=a
$$

Where n, m are integers. n is called the power and m is called the root. We start by writing the above as

$$
\left(x^{\frac{1}{m}}\right)^{n}=a
$$

Let $x^{\frac{1}{m}}=y$. The above becomes

$$
y^{n}=a
$$

This is solved using De Moivre's formula.

$$
\begin{aligned}
y & =a^{\frac{1}{n}} \\
& =(a \times 1)^{\frac{1}{n}} \\
& =\left(a e^{2 i \pi}\right)^{\frac{1}{n}}
\end{aligned}
$$

Since $1=e^{2 \pi i}$. Using Euler formula $1=\cos (2 \pi)+i \sin (2 \pi)$. Hence

$$
y=a^{\frac{1}{n}}(\cos (2 \pi)+i \sin (2 \pi))^{\frac{1}{n}}
$$

But by De Moivre's formula

$$
(\cos (2 \pi)+i \sin (2 \pi))^{\frac{1}{n}}=\cos \left(\frac{2 \pi}{n}+k \frac{2 \pi}{n}\right)+i \sin \left(\frac{2 \pi}{n}+k \frac{2 \pi}{n}\right) \quad k=0,1, \cdots n-1
$$

Therefore

$$
y=a^{\frac{1}{n}}\left(\cos \left(\frac{2 \pi}{n}+k \frac{2 \pi}{n}\right)+i \sin \left(\frac{2 \pi}{n}+k \frac{2 \pi}{n}\right)\right) \quad k=0,1, \cdots n-1
$$

For example, let $n=3$ then we have 3 solutions

$$
y=\left\{\begin{array}{c}
a^{\frac{1}{3}}\left(\cos \left(\frac{2 \pi}{3}\right)+i \sin \left(\frac{2 \pi}{3}\right)\right) \\
a^{\frac{1}{3}}\left(\cos \left(\frac{2 \pi}{3}+\frac{2 \pi}{3}\right)+i \sin \left(\frac{2 \pi}{3}+\frac{2 \pi}{3}\right)\right) \\
a^{\frac{1}{3}}\left(\cos \left(\frac{2 \pi}{3}+\frac{4 \pi}{3}\right)+i \sin \left(\frac{2 \pi}{3}+\frac{4 \pi}{3}\right)\right)
\end{array}\right.
$$

Which simplifies to

$$
y=\left\{\begin{array}{c}
a^{\frac{1}{3}}\left(\frac{1}{2} i \sqrt{3}-\frac{1}{2}\right) \\
a^{\frac{1}{3}}\left(-\frac{1}{2} i \sqrt{3}-\frac{1}{2}\right) \\
a^{\frac{1}{3}}
\end{array}\right.
$$

Now we need to replace y back to $x^{\frac{1}{m}}$ and the above becomes

$$
x^{\frac{1}{m}}=\left\{\begin{array}{c}
a^{\frac{1}{3}}\left(\frac{1}{2} i \sqrt{3}-\frac{1}{2}\right) \\
a^{\frac{1}{3}}\left(-\frac{1}{2} i \sqrt{3}-\frac{1}{2}\right) \\
a^{\frac{1}{3}}
\end{array}\right.
$$

Since the exponent now is a root, then

$$
x=\left\{\begin{array}{c}
\left(a^{\frac{1}{3}}\left(\frac{1}{2} i \sqrt{3}-\frac{1}{2}\right)\right)^{m} \\
\left(a^{\frac{1}{3}}\left(-\frac{1}{2} i \sqrt{3}-\frac{1}{2}\right)\right)^{m} \\
a^{\frac{m}{3}}
\end{array}\right.
$$

For example, if $m=2$

$$
x=\left\{\begin{array}{c}
\left(a^{\frac{1}{3}}\left(\frac{1}{2} i \sqrt{3}-\frac{1}{2}\right)\right)^{2} \\
\left(a^{\frac{1}{3}}\left(-\frac{1}{2} i \sqrt{3}-\frac{1}{2}\right)\right)^{2} \\
a^{\frac{2}{3}}
\end{array}\right.
$$

Notice that if the solution x is meant to be real, then the above reduces to

$$
x=a^{\frac{2}{3}}
$$

And for $m=4$

$$
\begin{aligned}
x & =\left\{\begin{array}{c}
a^{\frac{4}{3}}\left(\frac{1}{2} i \sqrt{3}-\frac{1}{2}\right)^{4} \\
a^{\frac{4}{3}}\left(-\frac{1}{2} i \sqrt{3}-\frac{1}{2}\right)^{4} \\
a^{\frac{4}{3}}
\end{array}\right. \\
& =\left\{\begin{array}{c}
a^{\frac{4}{3}}\left(-\frac{1}{2}+\frac{i \sqrt{3}}{2}\right) \\
a^{\frac{4}{3}}\left(-\frac{1}{2}-\frac{i \sqrt{3}}{2}\right) \\
a^{\frac{4}{3}}
\end{array}\right.
\end{aligned}
$$

Notice that if the solution x is meant to be real, then the above reduces to

$$
x=a^{\frac{4}{3}}
$$

For $a \geq 0$. And so on. For the case of power n being negative integer, for example,

$$
x^{\frac{-3}{2}}=a
$$

Then let $n=3$ and move the negative sign to the denominator to become $x^{\frac{3}{-2}}$. This way we can now use De Moivre's formula for positive n.

