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Abstract

The Van Der Pol differential equation

x′′(t)− α
(
1− x2(t)

)
x′(t) + x(t) = 0

is solved using perturbation with first order approximation. Two different solutions are obtained. The first
solution restricted the initial conditions to be x(0)2 + x′(0)2 = 4 which resulted in the forcing function that
caused resonance to be eliminated. This gave a stable solution but with initial conditions restricted to be near
the origin of the phase plane space. The second solution allowed arbitrary initial conditions any where in the
phase plane but the the resulting forcing function that caused resonance resulting in a solution which became
unstable after some time. Phase plane plots are used to compare the two solutions.

1 First solution: Restriction on initial condition. No resonance

The Van Der Pol equation is

ẍ− α
(
1− x2

)
ẋ+ x = 0 (1)

And assuming initial conditions are x(0) = ϕ and ẋ(0) = ξ.
If α ≪ 1, then the equation becomes ẍ0+x0 = 0 which has an exact solution. We perturb the exact solution

for ẍ0 + x0 = 0 to approximate the solution of the nonlinear equation ẍ − α
(
1− x2

)
ẋ + x = 0 in terms of

perturbation parameter α Let the solution of the Van Der Pol equation be x(t) and the solution to the exact
equation ẍ0 + x0 = 0 be x0(t), then

x(t) = x0(t) + αx1(t) + α2x2(t) + · · ·

First order approximation results in

x(t) = x0(t) + αx1(t) (2)

Now we need to determine x0 (t) and x1(t). Substituting (2) into (1) gives

ẍ0 + αẍ1 − αẋ0 + αx20ẋ0 + α3x21ẋ0 + 2α2x1x0ẋ0 − α2ẋ1 + α2x20ẋ1 + α4x21ẋ1 + 2α3x1x0ẋ1 + x0 + αx1 = 0

Collecting terms with same power of α gives

α0 (ẍ0 + x0) + α
(
ẍ1 − ẋ0 + x20ẋ0 + x1

)
+ α2

(
x20ẋ1 + 2x1x0ẋ0 − ẋ1

)
+ α3

(
x21ẋ0 + 2x1x0ẋ1

)
+ α4x21ẋ1 = 0

Setting terms which multiply by higher power α to zero and since it is assumed that α is very small therefore

(ẍ0 + x0) + α
(
ẍ1 − ẋ0 + x20ẋ0 + x1

)
= 0
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For the LHS to be zero implies that

ẍ0 + x0 = 0 (3)

And

ẍ1 − ẋ0 + x20ẋ0 + x1 = 0 (4)

Equation (3) is solved for x0 and (4) is solved for x1 in order to find the solution x(t). Solution to (3) is

x0(t) = A0 cos t+B0 sin t

Assuming initial conditions for x1(t) are zero, then initial conditions for x0(t) can be taken to be those given for
x(t). Solving for A0, B0 gives

x0(t) = ϕ cos t+ ξ sin t

Substituting the solution just found (and its derivative) into (4) gives

ẍ1 + x1 = −ϕ sin t+ ξ cos t− ξ3 cos t sin2 t− 2ξ2ϕ cos2 t sin t+ ξ2ϕ sin3 t

− ξϕ2 cos3 t+ 2ξϕ2 cos t sin2 t+ ϕ3 cos2 t sin t

Using sin t cos2 t = 1
4 (sin t+ sin 3t) and cos t sin2 t = 1

4(cos t− cos 3t) the above can be simplified to

ẍ1 + x1 =

(
−ϕ− ξ2ϕ

2
+

ϕ3

4

)
sin t+

(
ξ − ξ3

4
+

ξϕ2

2

)
cos t+

(
ξ3

4
− ξϕ2

2

)
cos 3t

+

(
−ξ2ϕ

2
+

ϕ3

4

)
sin 3t+ ξϕ

(
ξ sin3 t− ϕ cos3 t

)
Using ξ sin3 t− ϕ cos3 t = 1

4 (−3ϕ cos t− ϕ cos 3t+ 3ξ sin t− ξ sin 3t) the above can be simplified further to

ẍ1 + x1 =

(
−ϕ− ξ2ϕ

2
+

ϕ3

4
+

3ξ2ϕ

4

)
sin t+

(
ξ − ξ3

4
+

ξϕ2

2
− 3

4
ξϕ2

)
cos t

+

(
ξ3

4
− ξϕ2

2
− ξϕ2

4

)
cos 3t+

(
−ξ2ϕ

2
+

ϕ3

4
− ξ2ϕ

4

)
sin 3t (5)

The above is the equation we will now solve for x1 (t), which has four forcing functions, hence four particular
solutions. two of these particular solutions will cause a complete solution blows up as time increases (the first
two in the RHS shown above). If we however restrict the initial conditions such that(

−ϕ− ξ2ϕ

2
+

ϕ3

4
+

3ξ2ϕ

4

)
= 0

And (
ξ − ξ3

4
+

ξϕ2

2
− 3

4
ξϕ2

)
= 0

Then those forcing function will vanish. The above two equation result in the same restriction, which can be
found to be

4 = ξ2 + ϕ2

By restricting ξ2 + ϕ2 to be exactly 4, then the solution we obtain for x1 (t) from (5) will not blow up. Hence
(4) can now be rewritten without the two forcing functions which caused resonance resulting in

ẍ1 + x1 = ξ

(
ξ2 − 3ϕ2

4

)
cos 3t+ ϕ

(
ϕ2 − 3ξ2

4

)
sin 3t
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But ϕ2 = 4− ξ2 and ξ2 = 4− ϕ2, hence the above becomes after some simplification

ẍ1 + x1 = ξ
(
ξ2 − 3

)
cos 3t+ ϕ

(
ϕ2 − 3

)
sin 3t (6)

The homogeneous solution to the above is

x1,h = c1 cos t+ c2 sin t

And we guess two particular solutions x1,p1 = a1 cos 3t+a2 sin 3t and x1,p2 = d1 cos 3t+d2 sin 3t. By substituting
each of these particular solutions into (6) one at a time, and comparing coefficients, we can determine a1, a2, d1, d2.
This results in

x1,p1 =
ξ
(
3− ξ2

)
8

cos 3t

Similarly,

x1,p2 =
ϕ
(
3− ϕ2

)
8

sin 3t

Hence the solution to (6) becomes

x1 (t) = x1,h + x1,p1 + x1,p2

= (c1 cos t+ c2 sin t) +
ξ
(
3− ξ2

)
8

cos 3t+
ϕ
(
3− ϕ2

)
8

sin 3t (7)

Now applying initial conditions, which are x1 (0) = 0 and ẋ1 (0) = 0, to (7) and determining c1 and c2 results in

x1 (t) =
ξ
(
ξ2 − 3

)
8

cos t+
3

8
ϕ
(
ϕ2 − 3

)
sin t+

ξ
(
3− ξ2

)
8

cos 3t+
ϕ
(
3− ϕ2

)
8

sin 3t

Therefore we now have the final perturbation solution, which is

x (t) = x0 (t) + αx1 (t)

= ϕ cos t+ ξ sin t+ α

(
ξ
(
ξ2 − 3

)
8

cos t+
3

8
ϕ
(
ϕ2 − 3

)
sin t+

ξ
(
3− ξ2

)
8

cos 3t+
ϕ
(
3− ϕ2

)
8

sin 3t

)

Where x (0) = ϕ and ẋ (0) = ξ and the above solution is valid under the restriction that

x2 (0) + ẋ2 (0) = 4

We notice that the above restriction implies that both x (0) and ẋ (0) have to be less than 4 to avoid getting a
quantity which is complex. This implies that his solution is valid near the center of the phase plane only. In
addition, it is valid only for small α. To illustrate this solution, We show the phase plot which results from the
above solution, and also plot the solution x (t). Selecting x (0) = 1.5 and ẋ (0) =

√
4− 1.52 = 1.3229
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2 Second solution. No restriction on initial conditions. Resonance present
in the solution

The same initial steps are repeated as in the first solution, up the equation to solve for x1 (t)

ẍ1 + x1 = ϕ

(
ϕ2 + ξ2

4
− 1

)
sin t+ ξ

(
1− ξ2 − ϕ2

4

)
cos t (8)

+ ξ

(
ξ2 − 3ϕ2

4

)
cos 3t+ ϕ

(
ϕ2 − 3ξ2

4

)
sin 3t
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There exists four particular solutions relating to the above four forcing functions

f1 (t) = ϕ

(
ϕ2 + ξ2

4
− 1

)
sin t

f2 (t) = ξ

(
1− ξ2 − ϕ2

4

)
cos t

f3 (t) = ξ

(
ξ2 − 3ϕ2

4

)
cos 3t

f4 (t) = ϕ

(
ϕ2 − 3ξ2

4

)
sin 3t

For each of the above, we guess a particular solution, and determine the solution parameters. We guess x1,p1 =
t (c1 sin t+ c2 cos t), x1,p2 = t (c1 sin t+ c2 cos t), x1,p3 = c1 sin 3t+ c2 cos 3t, and x1,p4 = c1 sin 3t+ c2 cos 3t. By
substituting each of the above into (8) one at a time and comparing coefficients, we arrive at the following
solutions

x1,p1 = t

(
1

2
ϕ

(
1− ϕ2 + ξ2

4

)
cos t

)
x1,p2 = t

(
1

2
ξ

(
1− ξ2 − ϕ2

4

)
sin t

)
x1,p3 =

1

8
ξ

(
ξ2 − ϕ2

4
− 1

)
cos 3t

x1,p4 =
1

8
ϕ

(
3ξ2 − ϕ2

4

)
sin 3t

x1 (t) = x1,h + x1,p4 + x2,p4 + x3,p4 + x4,p4

= (c1 cos t+ c2 sin t) + t

(
1

2
ϕ

(
1− ϕ2 + ξ2

4

)
cos t

)
+ t

(
1

2
ξ

(
1− ξ2 − ϕ2

4

)
sin t

)
+

1

8
ξ

(
ξ2 − ϕ2

4
− 1

)
cos 3t+

1

8
ϕ

(
3ξ2 − ϕ2

4

)
sin 3t

Now applying initial conditions which are x1 (0) = 0 and ẋ1 (0) = 0 and determining c1 and c2 results in

x1 (t) =

(
− 1

32
ξ3 +

1

32
ξϕ2 +

1

8
ξ

)
cos t− 1

32
ϕ
(
5ξ2 − 7ϕ2 + 16

)
sin t

+ t

(
1

2
ϕ

(
1− ϕ2 + ξ2

4

)
cos t

)
+ t

(
1

2
ξ

(
1− ξ2 − ϕ2

4

)
sin t

)
+

1

8
ξ

(
ξ2 − ϕ2

4
− 1

)
cos 3t+

1

8
ϕ

(
3ξ2 − ϕ2

4

)
sin 3t

We can now write the final solution for x (t) as

x (t) = x0 (t) + αx1 (t)

= ϕ cos t+ ξ sin t+

α

(
− 1

32
ξ3 +

1

32
ξϕ2 +

1

8
ξ

)
cos t− α

1

32
ϕ
(
5ξ2 − 7ϕ2 + 16

)
sin t

+ αt

(
1

2
ϕ

(
1− ϕ2 + ξ2

4

)
cos t

)
+ αt

(
1

2
ξ

(
1− ξ2 − ϕ2

4

)
sin t

)
+ α

1

8
ξ

(
ξ2 − ϕ2

4
− 1

)
cos 3t+ α

1

8
ϕ

(
3ξ2 − ϕ2

4

)
sin 3t
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To illustrate this solution, we show the phase plot which results from the above solution, and also plot the
solution x (t). We select x (0) = 1.5 and ẋ (0) = 1.3229. We note that the same initial conditions are used as in
the earlier solution to compare both solutions.
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We see clearly the effect of including resonance particular solutions. The limit cycle boundary is increasing
with time.
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The effect becomes more clear if we plot the solution x (t) itself, and compare it to the solution earlier with
no resonance. Below, We show x(t) from both solutions. We clearly see the effect of including the resonance
terms. This is the solution with no resonance terms

This is the solution with resonance terms

In the second solution (with resonance), there is no restriction on initial conditions. Hence we can for example
look at the solution starting from any x (0) and ẋ (0). This is the phase plot for x (0) = 5 and ẋ (0) = 2. This
would not be possible using the first solution, due to the restriction on x (0)2 + ẋ (0)2 having to be equal to 4
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3 Conclusion

Van Der Pol was solved using perturbation for first order approximation. It was solved using two methods. In
the first method, the solution was restricted to not include forcing functions which leads to resonance.

In the second method, no such restriction was made. In both methods, this problem was solved for general
initial conditions (i.e. both x (0) and ẋ (0) can both be nonzero.

In the first method, it was found that the we must restrict the initial conditions to be such that x (0)2

+ẋ (0)2 = 4. This is the condition which resulted in the resonance terms vanishing from the solution. This leads
to a solution which generated a limit cycle which did not blow up as the solution is run for longer time. In other
words, once the solution enters a limit cycle, it remains in the limit cycle.

In the second method, no restriction on the initial conditions was made. This allowed the solution to start
from any state. However, the limit cycle would grow with time, and the solution will suffer from fluttering due
to the presence of the resonance terms. However, even though the solution was not stable in the long term, this
second approach allowed one to examine the solution for a shorter time but with the flexibility of choosing any
initial conditions.

It was also observed that increasing the value of the perturbation parameter α gradually resulted in an
inaccurate solution as would be expected, as the solutions derived here all assumed a very small value of α1.

For future research, it would be interesting to consider the effect of higher order approximation on the
solutions and compare with accurate numerical solutions.

1α = 0.01 was used in generating the solutions and plots shown
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