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Also audited few lecture in physics 555A. Here is one problem I did there

1 Problem
Show that the recurence formula
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2 Solution

Proof by induction on ¢q. For ¢ = 1, equation (1) becomes
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and equation (2) becomes
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Hence it is true for ¢ = 1. Now assume it is true for ¢ = n, in otherwords, assume that
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Now for the induction step. we need to show that it is true for n + 1, i.e. given (4) is true,
we need to show that, by replacing n by n + 1 in the above, that
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implies
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We start with (5), and replace the C,, term with what we assumed to be true from (4), hence
(5) can be rewritten as
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Simplify the above leads to
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Which is (6). Therefore, the relationship is true for any n. QED



	Problem
	Solution

