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Chapter 1
Introduction

1.1 Course description
This course part of my Masters degree in Applied Mathematics at California State University,
Fullerton

Course description (from CSUF catalogue)� �
MATH 504A Simulation Modeling and: Prerequisites:
Math 501A,B; 502A,B; 503A,B. Corequisite: Math 504B.
Advanced techniques of simulation modeling, including
the design of Monte Carlo, discrete event, and continuous
simulations. Topics may include output data analysis,
comparing alternative system configurations,
variance-reduction techniques, and experimental design
and optimization.Units: (3)

MATH 504B Applications of Simulation Modeling
Techniques

Description: Prerequisites: Math 501A,B; 502A,B; 503A,B.
Corequisite: Math 504A. Introduction to a modern
simulation language, and its application to simulation
modeling. Topics will include development of computer
models to demonstrate the techniques of simulation modeling,
model verification, model validation, and methods
of error analysis.Units: (3)� �
1.2 Instructor
Professor Gearhart, W. B. CSUF Math department.

3



chapter 1. introduction 4

1.3 Class description handout/flyer

fki~.rn-t- 1/27-J~"''9'

Math 504: Simulation Modelling and Analysis

Text The course is based on notes written by the instructor. However,
many of the course topics are covered in the text entitled Introduction

.Jo Probability Mode.!§., by S. Ross and published by Academic Press.
This text is an excellent reference in applied probability.

M(ft,.

?-JY
~ -/;.j.,'''h .

Instructor
Office
Phone
Email

W. B. Gearhart
MH 182F
714-278-3184
wgearhart@fullerton.edu

Office Hours MW 4-5 pm, MWThF 2-3 pm. If you wish to see me any
other time, just let me know, and we will arrange a meeting.

Course Description The course concerns the development and analysis
of models of stochastic systems. There are three phases to the course.
The first provides an introduction to the theory of stochastic processes.
The second concerns modelling discrete event systems using simulation.
The software Extend will be used to provide an introduction to the
structure and use of a simulation environment. The third and last
phase is devoted to further topics in stochastic modelling, and may
include statistical aspects of simulation modelling, Brownian motion,
signal processing, and Kalman filtering.

'--"

f-:=.x&,//TI.:> evtt.~
,5=6' 4;j16Z-p., lj'i
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chapter 1. introduction 5

Grading There will be two exams, scheduled approximately every five to
six weeks. Also, there will be a comprehensive final exam. Homework
will be assigned and graded. The course grade will be based on the
weighted average of the homework (5%), the average of the two exams
(60%), and the final exam (35%). In cases when a student's calculated
percentage is borderline, the instructor may raise the grade based on
class participation and attendance, or any other evidence of a strong
effort to do the course work.

Grade Scale A: 90-100 B: 80-89 C: 70-79 D: 60-69 F: 0-59

Attendance Class attendance is required. Please arrive on time. If you
happen to miss a class, it is your responsibility to obtain from your
classmates any missed lecture notes and assignments. However, see the
instructor concerning class handouts.

Class Participation In addition to attending class, you are expected to ac­
tively participate in your own learning. In particular, you should come
to class prepared, having studied the assigned readings and problems,
and be ready to ask questions and participate in the class discussion.

Homework Homework due dates will be specified well in advance. Late
papers will not be accepted.

Exam Make-up Policy No make-up exams will be given, unless you have
a medical emergency or death in the family. These emergencies require
valid documentation, and the instructor must be notified within 24
hours of the ~xam. The grade for a missed exam is zero.

2
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chapter 1. introduction 6

Academic Dishonesty Academic dishonesty is obtaining or attempting to
obtain credit for work by the use of any dishonest, deceptive, fraudu­
lent, or unauthorized means. Academic dishonesty also includes helping
someone commit an act of academic dishonesty. Examples of academic
dishonesty include, but are not limited to:

1. Unacceptable examination behavior - communicating with fellow stu­
dents, copying material from another student's exam or allowing an­
other student to copy from an exam, possessing or using unauthorized
materials, or any behavior that defeats the intent of an exam.

2. Plagiarism - taking the work of another and offering it as one's own
without giving credit to that source, whether that material is para­
phrased or copied in verbatim or near-verbatim form.

3. Unauthorized collaboration on a project, homework or other assign­
ment where an instructor expressly forbids such collaboration.

4. Documentary falsification including forgery, altering of campus docu­
ments or records, tampering with grading procedures, fabricating lab
assignments, or altering medical excuses.

Students who violate university standards of academic honesty are subject to
disciplinary sanctions, including failure in the course, and suspension from
the university. Since dishonesty in any form harms the individual, other
students, and the university, policies on academic dishonesty are strictly
enforced.

Emergency Information In the event of an emergency such as an earth­
quake or fire:

1. Take all your personal belongings and leave the classroom (or lab). Use
the stairways located at the east, west, or center of the building.

2. Do not use the elevator. They may not be working once the alarm
sounds.

3



chapter 1. introduction 7

3. Go to the lawn area towards Nutwood Avenue. Stay with class mem­
bers for further instruction.

4. For additional information on exits, fire alarms and telephones, Build­
ing Evacuation Maps are located near each elevator.

5. Anyone who may have difficulty evacuating the building, please see the
instructor.

Comments

1. Retain this course description and refer to it as needed during the
semester.

2. All personal electronic devices, in particular cell phones, must be turned
off during class.

3. Keep in mind that grades are not given, they are earned.

4. You are responsible for managing your outside responsibilities (work,
family, and social) in order to allow sufficient time to meet the course
requirements.

4
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2.2 Monday 1/22/2008 notes

fki~.rn-t- 1/27-J~"''9'

Math 504: Simulation Modelling and Analysis

Text The course is based on notes written by the instructor. However,
many of the course topics are covered in the text entitled Introduction

.Jo Probability Mode.!§., by S. Ross and published by Academic Press.
This text is an excellent reference in applied probability.

M(ft,.

?-JY
~ -/;.j.,'''h .

Instructor
Office
Phone
Email

W. B. Gearhart
MH 182F
714-278-3184
wgearhart@fullerton.edu

Office Hours MW 4-5 pm, MWThF 2-3 pm. If you wish to see me any
other time, just let me know, and we will arrange a meeting.

Course Description The course concerns the development and analysis
of models of stochastic systems. There are three phases to the course.
The first provides an introduction to the theory of stochastic processes.
The second concerns modelling discrete event systems using simulation.
The software Extend will be used to provide an introduction to the
structure and use of a simulation environment. The third and last
phase is devoted to further topics in stochastic modelling, and may
include statistical aspects of simulation modelling, Brownian motion,
signal processing, and Kalman filtering.

'--"

f-:=.x&,//TI.:> evtt.~
,5=6' 4;j16Z-p., lj'i
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Grading There will be two exams, scheduled approximately every five to
six weeks. Also, there will be a comprehensive final exam. Homework
will be assigned and graded. The course grade will be based on the
weighted average of the homework (5%), the average of the two exams
(60%), and the final exam (35%). In cases when a student's calculated
percentage is borderline, the instructor may raise the grade based on
class participation and attendance, or any other evidence of a strong
effort to do the course work.

Grade Scale A: 90-100 B: 80-89 C: 70-79 D: 60-69 F: 0-59

Attendance Class attendance is required. Please arrive on time. If you
happen to miss a class, it is your responsibility to obtain from your
classmates any missed lecture notes and assignments. However, see the
instructor concerning class handouts.

Class Participation In addition to attending class, you are expected to ac­
tively participate in your own learning. In particular, you should come
to class prepared, having studied the assigned readings and problems,
and be ready to ask questions and participate in the class discussion.

Homework Homework due dates will be specified well in advance. Late
papers will not be accepted.

Exam Make-up Policy No make-up exams will be given, unless you have
a medical emergency or death in the family. These emergencies require
valid documentation, and the instructor must be notified within 24
hours of the ~xam. The grade for a missed exam is zero.

2
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Academic Dishonesty Academic dishonesty is obtaining or attempting to
obtain credit for work by the use of any dishonest, deceptive, fraudu­
lent, or unauthorized means. Academic dishonesty also includes helping
someone commit an act of academic dishonesty. Examples of academic
dishonesty include, but are not limited to:

1. Unacceptable examination behavior - communicating with fellow stu­
dents, copying material from another student's exam or allowing an­
other student to copy from an exam, possessing or using unauthorized
materials, or any behavior that defeats the intent of an exam.

2. Plagiarism - taking the work of another and offering it as one's own
without giving credit to that source, whether that material is para­
phrased or copied in verbatim or near-verbatim form.

3. Unauthorized collaboration on a project, homework or other assign­
ment where an instructor expressly forbids such collaboration.

4. Documentary falsification including forgery, altering of campus docu­
ments or records, tampering with grading procedures, fabricating lab
assignments, or altering medical excuses.

Students who violate university standards of academic honesty are subject to
disciplinary sanctions, including failure in the course, and suspension from
the university. Since dishonesty in any form harms the individual, other
students, and the university, policies on academic dishonesty are strictly
enforced.

Emergency Information In the event of an emergency such as an earth­
quake or fire:

1. Take all your personal belongings and leave the classroom (or lab). Use
the stairways located at the east, west, or center of the building.

2. Do not use the elevator. They may not be working once the alarm
sounds.

3
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3. Go to the lawn area towards Nutwood Avenue. Stay with class mem­
bers for further instruction.

4. For additional information on exits, fire alarms and telephones, Build­
ing Evacuation Maps are located near each elevator.

5. Anyone who may have difficulty evacuating the building, please see the
instructor.

Comments

1. Retain this course description and refer to it as needed during the
semester.

2. All personal electronic devices, in particular cell phones, must be turned
off during class.

3. Keep in mind that grades are not given, they are earned.

4. You are responsible for managing your outside responsibilities (work,
family, and social) in order to allow sufficient time to meet the course
requirements.

4
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liaY7C~
/~ /r!~1v-- 1/:<2/6 '?

A Problem in Conditional Probability

A number is chosen at random from the interval [0,1]. This value is placed in a

box, and twice this value is placed in a second box. One of these boxes is selected at

random and opened to reveal the number inside. Given this observed value, what is the

probability that this number is the smaller of the two.

1. A Solution Let the random variable X denote the observed number, and let S

denote the event that the selected box contains the smaller number. We seek P(SjX = x)

for a ::; x ::; 2. The quantity P(S[X = x) is undefined for other values of x. We will apply

Bayes Theorem which gives us U [0/0 J.-1.--
~~'\

P(SjX = ) = fx(xIS)P(S)
x fx(x) ,

where fx(x) is the density function of the random variable X, and fx(xIS) is the condi­

tional density of X given the event S. If 1 < x ::; 2, then evidently we have the larger of

the two numbers, and so P(SIX = x) = a when 1 < x ::; 2. Thus, we need consider only

the case a ::; x ::; 1. Since a box is selected at random, P(S) = 1/2. Next, the conditional

density of X given the event S is just the uniform density on [0,1]. Thus, fx(xIS) = 1

for a ::; x ::; 1, and fx (xiS) = a otherwise. Finally, to determine the density function of

the random variable X, we use U[o;l) L lJ[OJ2J t f/>;; J.r~ .~
~...,0-- ~ ~ /Y?afJJe;n&I,.-~8

fx(x) = fx(xIS)P(S) + fx(xI5)P(5) . U[o/ t] *'Z~ O[o/lJ

The conditional density of X given the event 5, is the uniform density on [0,2]. Thus,

fx(xI5) = 1/2 for a ::; x ::; 2, and fx(xI5) = a otherwise. Hence, for a ::; x ::; 1,

- - 1 1 1 3
fx(x) = fx(xIS)P(S) + fx(xIS)P(S) = 1· 2+ 2·2 = 4 '

while for 1 < x ::; 2,

- - 1 1 1 1
fx(x) = fx(x[S)P(S) + fx(x[S)P(S) = 0. 2+ 2 . 2 = 4 '

and otherwise, fx(x) = o. Returning now to the formula for P(SIX = x) we have for

a ::; x ::; 1,

P(SIX = x) = (1)(1/2) _ 2
3/4 - 3 .

1
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~ This result shows that when we select a box at random, and observe a value between 0

-S__ .~~f 5 or'

Exercise

and 1, there is a 2/3 chance that the observed value is the smaller of the two.
~ d'Ii'·.O

v~ r~ ..e! .fp J hk. i -I .~

~~~~
~ S

,<~~1
~
\~~~.
r'

Suppose that when we select a box, and observe the value, we have an opportunity

to switch to the other box. The result above suggests that if we observe a value

between 0 and 1, then we should switch, and otherwise, hold the value we have.

Let the random variable Y denote the reward using such a strategy. Write a

simulation program (in MATLAB, say) to estimate the expected value of Y. Use a-95% confidence interval, and determine the sample size so that the relative accuracy.
of your estimate is about one percent. In your report, explain how you determined

your sample size. Also, compare theory and practise; that is, did your confidence
,/' ;;b:. S ~.£A-~"

interval~nc1ude the_~ 8:Jff"'- T ....... -, _

\~ +,M~!9>1 s.- ~ ~ /1 'L /-/:;";.~I..-1. Ix h ....J ('~ ':t. f\R t ir'
• /..oI.J>TV'" •

2. Expected Value of Y Suppose now the strategy is to switch if the observed ~

value is less than or equal to 1, and otherwise to hold. Let Y be the reward using this

strategy. Then

./

E(Y) = E(Y I X S l)P(X S 1) + E(Y I X > l)P(X > 1) .

Consider first the events {X S I} and {X > I}. In order for the event {X > I} to

occur, we must select the box with the larger value, which occurs with probability 1/2, and

also the original value must be in the interval (1/2,1), which occurs with probability 1/2.

Since these two events are independent, it follows that P(X > 1) = (1/2)(1/2) = 1/4,

and further, P(X S 1) = 1 - 1/4 = 3/4.

Next consider the expected value of Y given that the event {X > I} has occurred.

Then Y is the observed value X. Given that the event {X > I} has occurred, the random

variable X is uniformly distributed over the interval (1,2). Hence, E(Y I X > 1) = 3/2.

2
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Consider now the expected value of Y given that the event {X :S I} has occurred.

Here, we will switch to the value in the other box. However, we will either (0:) switch to

the larger value, which occurs with probability 2/3, or ((3) switch to the smaller value,

which occurs with probability 1 - 2/3 = 1/3. In case (0:), Y is the larger value, which

is uniformly distributed over the interval (0,2). Hence its expected value is 1, and so

E(Ylo:) = 1. In case ((3), Y is the smaller value, which now, because the event {X :S I}

has taken place, is uniformly distributed over the interval (0,1/2). Hence, the expected

value is 1/4, and so E(YI(3) = 1/4. Thus,

2 1 1 3
E(Y I X :S 1) = E(Ylo:)P(o:) + E(YI(3)P((3) = 1 . :3 + 4. :3 = 4 .

1. Find the density function of the random variable Y.

Exercise

We are ready finally to compute the expected value E(Y). From the formula above,

we get

3331~'
, / E(Y) = E(YIX 0; I)P(X 0; l) + E(Y!X > I)P(X > I) = :I' :I + 2. :I=~

~(J)~ 1y6/S) P(s) -+ ly( ~ I~) p(s)
-I-0'~ ~ Tk

3
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2.3 Monday 1/28/08 notes
Computing project guideline

2.4 Monday 1/28/08 notes
Continuous approximation to random walks
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f!-4h ;r1 p"'-f

t/Jondtl1

f/laf-h 504
}/~ 8/;;;lCJc7 '2

Continuous Approximations To Random Walks

1. A Simple Random Walk Consider a particle that moves along the real line
in such a way that, at each point in time, it makes one step to the right with probability
p, and one step to the left with probability q = 1 - p. Assume that distance is measured
in multiples of an amount .6.x, and that time is measured in multiples of .6.t. Let X n

denote the position of the particle after n steps. We shall assume the particle starts at
the origin.

Let 7ft) = P(Xn = j.6.x). Thus, 7f)n) is the probability that the particle is located
at j.6.x at time n.6.t. Conditioning on the next state, we can write

P(Xn+1 = j.6.x) = P(Xn+1 = j.6.x I X n = (j - l).6.x)P(Xn = (j - l).6.x)

+ P(Xn+1 = j.6.x I X n = (j + l).6.x)P(Xn = (j + l).6.x) ,

or equivalently
(n+1) (n) (n)

7fj = p7fj _ 1 + q7fj+l ,

for j = 0, ±1, ±2, .. " and n = 0,1,···. Consider now a fixed position x and time t,
subject to .1: = j.6.x and t = n.6.t. Suppose that when .6.x and .6.t are small, we have the
approximation

7f)n) ~ f(x, t).6.x ,

where f is some function of x and t. Note that for each fixed t, the function f is a density
function that describes probabilistically the location of the particle. From the recurrence
formula above, we see that for such an approximation to hold, we need approximately

f(x, t + .6.t) ~ pf(x - .6.x, t) + qf(x + .6.x , t) .

Assuming f is twice continuously differentiable, the Taylor series expansion yields

f(x, t) + .6.t~~ + 0(.6.t)2 [
of 1 202 f]p f(x, t) - .6.x- + -(.6.x) -
ox 2 ox2

+ q [f(x,t) +.6.X~~ + ~(.6.X)2~:~] +0(.6.X)3,

which, upon simplification, gives us

of __ ( _ ).6.x of ~ (.6.x? 02f 0(.6.X)3 0(.6.)
ot - p q.6.t ox + 2 .6.t ox2 + .6.t + t.

In order to obtain a limiting equation, assume that for small .6.x and .6.t, there are
constants f3 and D such that approximately,

.6.x 1 (.6.X)2
(p - q) - = f3 and - -- = D .

.6.t 2 .6.t

1
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Recalling that q = 1 - p, these approximations tell us that in the limit we need

1 ( f3~x)
p = 2 1 + 2D and q = ~ (1 _ f3~x)

2 2D'

Going to the limit then, we arrive at the partial differential equation

of = _ (3 of + D 0
2

f .
at ax ax2

Using the Fourier transform, this equation can be solved to get

1 [1 (X - I-l) 2]f(x, t) = o~ exp -2 -0- ,where I-l = (3t, and 0 = V2Dt . (1)

The steps of this method are outlined in Problem 3 below.

There is an alternative way to reach this conclusion. After n steps, the particle will
have made a certain number of steps to the right, say Rn , and a certain number of steps
to the left, say Ln. Then Rn +Ln = nand X n = (Rn -Ln)~x. Hence, X n = (2Rn -n)~x.

Note that Rn is a binomial random variable with parameters nand p. Thus, the central
limit theorem tells us that the distribution of Rn, and hence of X n , is approximately
normal. Further, the mean of position is

(3(~X)2
E(Xn) = (2E(Rn) - n)~x = (2(np) - n)~x = n~x(2p - 1) = n ~,--, ,

where we have used the formula for p above. Hence, the mean of position is

(
(3~x) ~ = ( ~ ) (3(~x)2

n 2D x n t 2D~t

However, in the limit as n gets larger, we have t = n~t and (~X)2/ ~t = 2D. Thus, the
mean of position is simply I-l = f3t.

Next, continuing this line of reasoning, we argue that the variance of position is

Var(Xn) = Var((2Rn - n))~x) = Var(2Rn~x) = 4(~x)2Var(Rn) .

But the variance of R n is npq. Hence, the variance of position is

[
2]2 2 1 (3~x 1 (3~x (~X)2 (3~x4(~x) npq = 4(~x) n- (1 +-) - (1 --) = --(n~t) 1- (-)

2 2D 2 2D ~t 2D'

where we have used the formulas for p and q above. Finally, going to the limit, and noting

again that t = n~t and 2D = (~X)2 / ~t, we conclude that the variance of position is
0 2 = 2Dt. Thus, in the limit, the distribution of position is approximately normal with

2
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--- -

mean fl = /3t and variance a = y'2Dt. This result is the same as the one we obtained
earlier through use of the partial differential equation.

A stochastic process is a family of random variables X(t), where X(t) represents
the state of the process at time t. In our case, the state of the process is the position of
the particle along the real line. A process is said to have stationary increments if for
any t, the distribution of the increment X(s + t) - X(s) depends only on t, the length
of the time interval. Further, if the increments are independent for any set of disjoint
intervals, the process is said to have independent increments.

Since the continuous process above, with transition distribution function (1), was
derived as the limit of a discrete process that has stationary and independent increments,
it is reasonable to expect that the limiting process would also have these two properties.
A continuous process with transition distribution function (1), is called an Einstein­
Wiener process. The parameter /3 is called the drift coefficient, and the parameter D
is called the diffusion coefficient.

2. The Ornstein-Ehrenfest Model For a positive integer a, consider a random
walk in which, at each point in time, if the process is at position j tlx, it moves one
step to the right with probability (a - j)/2a and one step to the left with probability
(a + j)/2a, when -a < j < a. If j = a then it moves to the left with probability 1, and
if j = -a it moves to the right with probability one.

Denote by 1f-;n) the probability that the process is at point jtlx at time ntlt. Then,
by conditioning on the next state, we can write

(n+l) _ a - j + 1 (n) a + j + 1 (n)
1fj - 2a 1fj_l + 2a 1fj+l'

for each j = 1,2, ... , and n = 0,1, .... Consider this process in the limit when the bound

a is large, and the tlx and tlt are small. For a fixed position x and time t, subject to
x = j tlx and t = ntlt, suppose we have the approximation

1f)n) ~ f(x, t)tlx ,

where f is some function of x and t. From the recurrence formula above, we see that for
such an approximation to hold, we need approximately

a-j+1 a+j+1
f(x, t + tlt) = 2 f(x - tlx, t) + f(x + tlx, t) .

a 2a

3
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Assuming f is twice continuously differentiable, the Taylor series expansion yields

of a - j + 1 [ 0f 1 02f]f(x, t) + .6.t-;:;- + O(.6.t)2 = f(x, t) - .6.x~ + _(.6.X)2 !:l 2
ut 2a uX 2 uX

a + j + 1 [ 0f 1 0
2f]+ - f(x, t) +.6.x Ox + 2(.6.X)2 ox2 + O(.6.X)3 ,

which, upon simplification, gives

of = _l_ f (x, t) +~ of + a + 1 (.6.X)2 0
2
f + O(.6.x)3 + O(.6.t) .

ot a.6.t a.6.t Ox a 2.6.t ox2 .6.t

In order to obtain a limiting equation, assume that for small .6.x and .6.t, and large a, we
have approximately,

1 (.6.X)2
a.6.t = c-1 and --- = D

2.6.t '
for some constants c and D. Going to the limit then, we arrive at the partial differential
equation

of _ o(xf) D 02 f
ot -c~+ ox2·

This equation is not so easily solved as in the previous case. However, under the boundary
conditions

of(x, t)
xf(x, t) --+ 0 , ox --+ 0 as x --+ ±oo ,

and using the Fourier transform, the equation can be transformed into a first order,
variable coefficient hyperbolic equation. This hyperbolic equation can then be solved
using the method of characteristics. This method of solution is outlined in Problem 4

below.

Suppose the particle starts at a point Xo. Thus, the initial density of position is a

dirac-delta function centered at the point Xo. Then the solution is found to be

f(x, t) = ~ exp [_~ (X - f-l)2]
CJy 27f 2 CJ '

where f-l = xoe-ct and

CJ2 = ~ (1- e-2ct ) .

A continuous process with stationary and independent increments, and having this tran­

sitional distribution function, is called an Ornstein-Ehrenfest process.

4
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where

.....

Exercises

1. Derive the Einstein-Wiener process by noting that the position of the particle is
x = j6x, where j = Xl + X 2 + ... X n with t = n6t, and the Xi are independent
and identically distributed random variables which have value +1 with probability
p, and value -1 with probability q = 1 - p. Take p = q = 1/2.

2. (a) Use the formulation in the previous exercise to simulate the random walk for
p = q = 1/2, and a specified diffusion coefficient D. Restrict 6x and 6t so that
D = (6X)2/26t. (b) Use the simulation model to test that in the limit as 6x -+ 0
and 6t -+ 0, subject to D = (6X)2/26t, the distribution of position, for fixed time
t and given D, is normal with mean 0 and variance CJ2 = 2Dt.

3. Solve the partial differential equation

of = _(3of + D02f .
ot ox ox2

for the Einstein-Wiener process. Use the Fourier transform, and the following steps.
(a) The Fourier transform of an absolutely integrable, and piecewise continuous
function 9 on (-00, 00), is defined by

1 /00 .F[g](y) = ..j'h -00 g(x)e-~YXdx .

Multiply the differential equation through by e-iyx and integrate with respect to
x over the interval (-00, (0). Then use integration by parts twice to obtain the
equation

~~ = (-i(3y - D y2) </J(y, t) ,

</J(y, t) = ~ /00 f(x, t)e-iYXdx .
v 21f -00

In doing the integrations by parts, assume that

'() of (x, t)j x, t -+ 0 , -+ 0 as x -+ ±oo .

(b) Solve the differential equation for </J to get

</J(y, t) = </J(y, 0) exp ( -i(3ty - Dty2)

Note that </J(y,O) is the Fourier transform of f(x, 0), the density of the location of
the particle at time t = O.

5
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(c) Now make use of the following two properties of the Fourier transform:

2 1 2/(1) For f(x) = e-x , F[J](y) = .,fie-Y 4,

and

(2) For g(x) = f(ax + b), a # 0, F[g](y) = I~I eiy(b/a) F[J](y/a) .

Thus conclude that

For g(x) = e-(ax+b)2 , a # 0 , F[g](y) = _1_eiY(b/a)e-y2/4a2
.,filal

- 1 h(x, t) ,f(x, t) - .j27f

(d) Set b/a = -f3t and 1/4a2 = Dt, and use the previous results to conclude that

¢(y, t) = ¢(y, 0) exp [(-if3y - Dy2) t] = ¢(y, O)F[h(·, t)](y) ,

where

1 [1 (x - p,(t) )2]h(x, t) = a(t) exp -2 a(t) , p,(t) = f3t, a(t) = v2Dt .

(e) Finally, the Fourier transform has the property that

F[J * g] = yl2';F[J]F[g] , where f * g(x) = i: f(u)g(x - u)du .

Use this property to show that

1 rX)
f(x, t) = .j27f J-

oo
f(u, O)h(x - u, t)du .

In particular, if the particle starts that the origin, then we can view the initial

density of position, f(x, 0), as a dirac delta function and thus deduce that in this

case

which is the expression (1) above.6 Solve the partial differential equation

1~/ of _ o(xf) D 02 f
TI' v ot - c ox + ox2'

for the Ornstein-Ehrenfest process. Use the Fourier transform (see definition in
previous problem), and the following steps. (a) Multiply the differential equation

6
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through by e-iyx and integrate with respect to x over the interval (-00, (0). Then
use integration by parts three times to obtain the equation

a¢ = _cya¢ _ D y2¢,
at ay

where
,.1..( ) - 1 /00 f( ) -iyx'f' y, t - rn= x, t e dx .

v 27f -00
In doing the integrations by parts, assume that

af(x, t)
xf(x, t) -+ 0, and C\ -+ 0, as x -+ ±oo .

(b) Introduce the integrating factor

I(y) = exp (~y2)

and show that u(y, t) = I(y)¢(y, t) satisfies the hyperbolic equation

au au
at + cy ay = 0,

subject to the initial condition u(y,O) = uo(y) = I(y)¢(y, O) for -00 < Y < 00.

Note that ¢(y,O) is the Fourier transform of f(x, 0), the density of the location of
the particle at time t = O.

(c) Use the method of characteristics to solve the previous hyperbolic equation and
conclude that

u(y, t) = Uo (ye- ct ) , for - 00 < Y < 00 and t 2:: 0 .

Then, using the definitions of u(y, t) and uo(y), deduce that

¢(y, t) = exp ( _~(J2(t)y2) ¢ (ye- ct ,0) , where (J2(t) = ~ (1 _ e-2ct )

1 .
¢(y,O) = rn=e- tyXo

.
v 27f

In this case, use the previous result to conclude that

(d) To simplify the analysis, assume that the particle starts at a point Xo. Thus,
the initial density of position is a dirac-delta function centered at the point Xo. It
follows that

() 1 (1 22 . )¢ y, t = /2if exp -"2(J (t)y - ZYJ-L(t) , where J-L(t) = xoe-ct .

7
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(e) Set b/a = -/-L(t) and 1/4a2 = (1/2)a2 (t), and use the result of part (c), Problem
3, to conclude that

c/J(y, t) = F[r(o, t)](y) ,

where

[ ( )2]1 1 x - /-L(t)
r (x, t) = a (t) y'21f exp - "2 a (t)

Thus, f(x, t) = r(x, t), which is the solution given above for the Ornstein-Ehrenfest
model.

8
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2.5 Monday 2/25/08 notes
Problems to practice solving first order pde using the characteristics method.

2.6 Monday notes
Craps game and inventory problem. Markov chain computing assignment.
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2.7 Monday 3/10/2008 notes

f/-aY)~J OVt-T· }/JArt:h J0/ Zoo ~ M~f-h 501-

Convergent Finite Markov Chains

1 Introduction

Consider a finite state Markov chain with one-step probability transition
matrix P and state probability distribution vector 1r(n) at time n ~ O. Then

1r(n+l) = 1r(n)P, n = 0,1, ....

A fundamental question is whether or not the process approaches a limit
in the long-run. In other words, given an arbitrary initial state probability
distribution 1r(0), do the state probability distributions 1r(n) converge as n ~
00. Since

1r(n) = 1r(0) p n ,

for each n ~ 0, and since 1r(0) is arbitrary, this question is equivalent to
asking whether the powers of the transition matrix converge as n ~ 00.

A Markov chain with transition matrix P will be called convergent if pn
converges as n ~ 00. In this case, we shall also refer to the transition matrix
as being convergent.

2 Structure and Properties of Finite Markov
Chains

The study of Markov chains hinges on the notion of recurrent and transient
states. For a state i, let Tii denote the time until the process first returns to
state i, given that it starts in state i. Then state i is said to be recurrent
if P(Tii < (0) = 1, and otherwise, if P(1ii < (0) < 1, state i is said to
be transient. Thus, a state is transient if the process, having started in
that state and perhaps having returned to that state a number of times, will
eventually leave that state forever. It can be shown that if states i and j are
transient then

00

" (n)L...J Pij < 00 .
n=l

1
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This expression is the expected number of visits to state j, given that the
process starts in state i. Thus, for transient states i and j, we have

...-..

p(n) ~ a
ZJ '

as n~oo. (1)

One important consequence of this result is that not all states of a finite
chain can be transient.

The process moves among the states randomly, according to the transition
probabilities. Two states i and j are said to communicate if

p(n) > a
ZJ '

d (m) aan Pji > ,

for some nand m. In other words, two states communicate if it is possible
to travel from one state to the other and back again. If state n is recurrent,
and it communicates with state m, then state m must be recurrent also.

A set of states S is closed if Pij = awhenever i E Sand j tf: S. Note that
if the process enters a closed set, then it will never leave that set. A chain
is said to be irreducible if there is no proper closed subset. Otherwise, the
chain is called reducible. For a reducible chain, after possibly re-ordering
the states, the transition matrix can be written in the form

[
Pl 0].

P = Pz P
3

The matrix Pl is the transition matrix for the sub-chain consisting of a closed
set of states.

It follows from these concepts that for an arbitrary finite Markov chain,
the probability transition matrix, again after possibly re-ordering the states,
can be written in the so-called canonical form:

P=[~~] ,
where the matrix D is block diagonal

(2)

D=

D l a
a D z a

a
o

(3)

a ... a D k

2
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To see how this form comes about, start with a recurrent state, and find all
states that communicate with it. These states form an irreducible, closed
set. Let the matrix consisting of the one-step transition probabilities among
these states form the first block D 1 . Next, find a recurrent state (if any)
that is not in the set obtained previously, and determine all states that
communicate with it. This set of states forms another irreducible, closed
set. Let the matrix consisting of the one-step transition probabilities among
these states form the second block D 2 . Continue in this fashion until no
recurrent states are left. The remaining states are transient, and the matrix
consisting of the one-step transition probabilities among these states is the
matrix Q. The matrix R in (2) consists of the one-step transition probabilities
from transient states to recurrent states. Finally, the matrix of zeros in (2)
appears in the upper righthand corner, since it is not possible to go from a
recurrent state to a transient state.

The canonical form reveals much about the behavior of the chain. If
the process starts in an irreducible class, it will stay there and ultimately
approach the limiting behavior of that class, if any. On the other hand, if
the process starts in a transient state, it will ultimately move into one of
the irreducible classes. In fact, as indicated by (1), Qn ----t a as n ----t 00,

since the (i, j)-th entry of this matrix is the probability that the process is
in transient state j, after n steps, given that it started in a transient state
i. Further, entry (k,s) of the matrix QnR is the probability that when the
process starts in transient state k, it will enter for the first time, one of the
irreducible sub-chains in n + 1 steps, and will do so at state s. Summing over
n, it follows that entry (k, s) of the matrix

R + QR + Q2R + ... = (I + Q + Q2 + ...)R ,

is the probability that when the process starts in transient state k, it will
ultimately enter the recurrent classes for the first time at state s. Using the
Neumann expansion N = (I - Q)-l = 1+ Q + Q2 + ... , we can write this
matrix simply as N R.

Example Suppose the one-step transition matrix of a Markov chain is

3
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given by

0.800 0.200 0 0 0 0 0
0.300 0.700 0 0 0 0 0

0 0 1.00 0 0 0 0
p=1 0 0 0 0.400 0.600 0 0

0 0 0 0.200 0.800 0 0
0.100 0.200 0.050 0.150 0.200 0.100 0.200
0.300 0.100 0.200 0.100 0.050 0.100 0.150

The states have been numbered so that the matrix is in canonical form. The
first recurrence class consists of states 1 and 2, the second recurrence class
consists of state 3 only, and is absorbing, while the third and last recurrence
class consists of states 4 and 5. States 6 and 7 are transient. The matrices
Rand Q are

R = [0.100 0.200 0.050 0.150 0.200] Q = [0.150 0.200]
0.300 0.100 0.200 0.100 0.050' 0.100 0.050 .

Thus

-1 [0.195 0.255 0.111 0.198 0.242] .
NR = (I - Q) R = 0.376 0.148 0.248 0.141 0.087

Consider the first row of this matrix. The first entry shows that 19.5% of the
entities that start in state 6, will enter the recurrent classes for the first time
at state 1. Similarly, the second entry shows that 25.5% of the entities that
start in state 6, will enter the recurrent classes for the first time at state 2.
Thus, 19.5%+25.5% = 45% of the entities that start in state 6 will ultimately
enter the first recurrence class. These entities however, once having entered
this recurrent class, must then circulate among the states and ultimately
become distributed according to limiting behavior of the class. The third
entry in the first row shows that 11.1% of the entities that start in state 6
will enter the recurrent classes for the first time at state 3. Since this state
is absorbing, the limiting behavior is clear. The entities that enter this state
just stay there. A similar analysis can be done for entries 4 and 5 in this
row.

In general, we will be able to determine the limiting distributions of the
recurrent classes by finding the limit pn as n -t 00. In this case, the limit

4
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matrix is

0.600 0.400 0 0 0 o 0
0.600 0.400 0 0 0 o 0

0 0 1.00 0 0 o 0
w= I 0 0 0 0.250 0.750 0 0

0 0 0 0.250 0.750 0 0
0.270 0.180 0.110 0.110 0.330 0 0
0.314 0.210 0.248 0.057 0.171 0 0

Consider the 6-th row of this matrix. The first two entries show that 27%
of the entities that start in state 6 ultimately go to state 1, and that 18%
ultimately go to state 2. Thus, 27% + 18% = 45% of the entities that start
in state 6 ultimately move to the first recurrence class. We saw this result
earlier using the matrix N R. From the 2 x 2 matrix in the upper left corner,
we see that in the long-run, 60% of the entities in the first recurrence class
will be in state 1, and 40% will be in state 2. In particular, the entities
that reach this recurrence class from state 6 are proportioned this way: the
fraction 0.270 is 60% of the total fraction 0.45, while the fraction 0.180 is
40% of the total fraction 0.45.

A similar analysis applies to the entities that go from state 6 to the third
recurrence class. Indeed, the fourth and fifth entries show that 11% of the
entities that start in state 6 ultimately go to state 4, and that 33% ultimately
go to state 5. Thus, 11% + 33% = 44% of the entities that start in state 6,
ultimately move to the third recurrence class. From the 2 x 2 matrix in the
middle of W, we see that in the long-run, 25% of the entities in the third
recurrence class will be in state 4, and 75% will be in state 5. In particular,
the entities that reach this recurrence class from state 6 are proportioned this
way: the fraction 0.11 is 25% of the total fraction 0.44, while the fraction
0.33 is 75% of the total fraction 0.44.

So far, we have accounted for 45% + 44% = 89% of the entities that start
in transient state 6. But entry (6,3) of W shows that the remaining 11% go
to state 3 and are absorbed. Thus, our accounting of the entities that start
in transient state 6 is complete. The same analysis can be used to account
for the entities that start in transient state 7.

5
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2.8 Monday 3/17/2008 notes

Chapter 5: Some Solutions

5.7 Consider an irreducible Markov chain with a finite number of states
{O, 1, 2, ... ,m}. Let E denote the event that the process reaches state
m before it reaches state O. Set Qi = P(E IX o = i). Then Qo = 0 and
Qm = 1. (a) Find a system of m - 1 linear equations that is satisfied
by Q1, Q2,"', Qm-1. (b) Show that the matrix in this linear system of
equations is nonsingular.

Solution (a) Conditioning on the next state gives us

m m-1

Qi = L P(E IXl = j)Pij = L QjPij + Pim ,
j=O j=l

for i E I = {I, 2, ... ,m -I}. Note that the Markov property was used to get
the second equation. (b) If the matrix in this linear system of equations is
singular, then there is a nonzero vector v E Rm-1 such that

m-1

Vi = L VjPij ,
j=l

for i E I. Normalize v so that each component is less than or equal to one,
and at least one component is equal to one. Set J = {i E I IVi = I} and
S = {i E I IVi < I}.

Suppose first that S I- 0. Assume there is a nonzero Pir for some i E J
and some rES. It then follows that

m-1

1 = Vi = L VjPij + L VjPij < L Pij ::; 1 ,
jEJ jES j=l

which is impossible. Therefore, for any i E J, and any rES, we must have
Pir = O. But then, for each i E J,

1 = Vi = L VjPij = L Pij .
jEJ jEJ

1
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This result tells us that once the process enters a state i E J, it must travel
to another state in J. Thus, in the original chain, the set of states J, which
is not empty, must be a closed set. However, this result is impossible, since
the original chain is irreducible. Therefore, S = 0.

It now follows that J = {1, 2, ... , m - 1}. But then, for each i E J,

1 = Vi = L VjPij = L Pij ,
jEJ jEJ

since Vj = 1 for each j E J. Thus, as before, the set J is seen to be a closed
set, which is a contradiction.

2
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2.9 Wed 3/19/2008 notes

Chapter 6 Some Solutions

6.3 For an absorbing Markov chain, let Vij denote the number of visits
to transient state j before absorption, given that the process starts
in transient state i. Let B denote the matrix whose (i, j)-th entry is
bij = E(Vij). (a) Show that B = N = (I - Q)-l. (b) Given that
the process starts in state i, give a formula for the expected number of
steps until absorption.

Solution (a) Condition on the next state to get

E(Vij) = L E(Vij IXl = k)Pik + L E(Vij IXl = k)Pik
kEA kET

where A denotes the set of absorbing states, and T denotes the set of transient
states. Let 6ij be the Kronecker delta, which equals one when i = j , and
equals zero otherwise. Then, in the first sum, E (Vij IXl = k) = 6ij , since k is
an absorbing state. For the second sum, making use of the Markov property,
E(Vij IXl = k) = 6ij + E(Vkj ) , since here k is a transient state. Thus,

E(Vij) = L 6ijPik + L [6ij + E(Vkj)]Pik = 6ij + L PikE(Vkj ) .
kEA kET kET

Therefore, for each pair of states i and j in T,

bij - L Pikbkj = 6ij .
kET

In matrix form, these equations are expressed as B - QB = I, where I is
the identity matrix. Note that this result shows that I - Q is invertible, and
that B = (I - Q)-l.

Here is another proof. Note first that

•
where In = 1 tf X n = j and In = 0 otherwise. Thus,

1

4(Jt1/It .-.r
prod6f1'LIVr

lI-Q) ~
/11~dh '6lt .
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where qr;) is the (i,j)-th element of the matrix Qn. Therefore, E(Vij) is the
(i, j)-th element of the matrix

00

1 + L Qn = (1 _ Q)-l .
n=l

(b) The sum of the elements in the i- th row of B is the expected value of
the random variable

li = L Vij ,
JET

which is the number of visits to transient states before absorption, given that
the process started in transient state i.

6.5 Consider a regular Markov chain, with state space 1 = {I, 2, ... ,r}.
Denote by Tij the first entrance time into state j, given that the process
starts in state i. Set mij = E(Tij). (a) Show that

mij = 1 + LPikmkj .
ki-j

(b) Let (WI, W2,"', wr ) be the stationary probability state vector for
the process. Show that mjj = l/wj, for each state j. (c) Give a
heuristic argument to justify the result of part (b).

Solution (a) Conditioning on the next state yields

E(Tij) = L E(Tij IXl = k)Pik = E(Tij IXl = j)Pij + L E(Tij IXl = k)Pik .
kEf ki-j

This equation then becomes

E(Tij) = 1· Pij + L(l + E(Tkj))Pik = 1 + LPikE(Tkj ) ,
ki-j ki-j

which is the result to be shown. (b) In the last equation above, for a fixed
j, multiply the i-th equation by Wi, and sum over i to get

r r r

L WiE(Tij) = L Wi + L L WiPikE(Tkj ) .
i=l i=l i=l ki-j

2
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We have that W = wP, and the sum of the components of w is one. Therefore,
interchanging the order of summation, we get

r

L Wi E (1ij) = 1 + L WkE(Tkj ) .
i=l k-tj

Cancelling like terms on each side of this equation yields wjE(Tjj ) = 1, as
required. (c) Over a long number of time steps T, the average number
of times the process is in state j is wjT. But the average duration between
these times that the process is in state j is mij. Hence, in the long-run,
(wjT)mij = T. Thus, dividing by T, yields mjj = l/wj.

3
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2.10 Wed 4/23/2008 notes
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Chapter 10: Solutions to Selected Problems

10.4 Consider a set of m machines that are in continuous operation, and
which fail independently of each other at an exponential rate A. Assume
there are s : 1 S s S m, repair persons that service the machines
independently and each at exponential rate fJ. Let X (t) denote the
number of machines at time t that are not operational; that is, they
are in the repair shop. Determine the arrival and departure rates for
the birth-and-death model.

Solution Suppose the state of the system is i and that s S i < m. Then
m - i machines are in operation, and s repair persons are busy. Hence, for a
small time interval of length h, the probability Pi,i+l (h) of an increase of one

in the system is ~e 6~ <-b. .
. .fa to. ;1... ~\~ -e.-t\-~"

(m-z) ~1 (Ah + o(h))(l - Ah + o(h))m-i-l(1- fJh + o(h))S + o(h) .

The first factors covers the event of one breakdown and no service comple­
tions, while the last o(h) term covers other less likely possibilities, such as
two breakdowns and one service completion, say. For the case 0 S i < s, the
same expression holds, except the last factor becomes (1 - fJh + o(h))i, since
now i repair persons are busy. Thus, for 0 S i < m, we have

Pi,i+l (h) = (m - i)Ah + o(h) as h ----t 0+ .

Hence, the birth rates are Ai = (m - i)A, for 0 S i < m. For i = m, evidently
Ai = 0 since no arrivals are possible in this case.

For the departure rates, suppose again that the state of the system is i

and that s S i < m. Then m - i machines are in operation, and s repair
persons are busy. Hence, for a small time interval of length h, the probability

Pi,i-l (h) of a decrease of one in the system is

( ~ ) (fJh + o(h))(l - fJh + o(h))S-l(l - Ah + o(h))m-i + o(h) .

1
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The first factors covers the event of no breakdowns and one service comple­
tion, while the last o(h) term covers other less likely possibilities, such as one
breakdown and two service completions, say. For the case 1 :::; i < s, the
probability Pi,i-l (h) becomes

( ~ ) (ph + o(h))(l - ph + O(h))i-l(l - )"h + o(h))m-i + o(h) .

since now i repair persons are busy. Thus, asymptotically, Pi,i-l(h) = sph +
o(h), for s :::; i < m, while for 1 :::; i < S, Pi,i-l (h) = iph + o(h). Hence, the
departure rates are Pi = sp for s :::; i < m, and Pi = ip, for 1 :::; i < S.

2
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2.11 Mon 4/28/2008 notes
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Chapter 10: The Kolmogorov Equations

The purpose of this note is to develop the forward Kolmogorov equations,
and also the backward Kolmogorov equations, for the case of a pure-jump,
continuous-time Markov chain.

For a stationary Markov chain, define the transition probability

Pij(t) = P(X(r + t) = j IX(r) = i) .

Denote the state space by I. Then, considering the transition probability
Pij (t + s), and partitioning over all intermediate states k E I at time s, it
follows that

Pij(t + s) = LPik(S)Pkj(t) .
kEf

These equations are the Chapman-Kolmogorov equations, which playa fun­
damental role throughout the analysis of Markov chains. From these equa­
tions, we can derive the forward Kolmogorov equations and the backward
Kolmogorov equations.

The Forward K olmogorov Equations We have

Pij(t + s) = LPik(t)Pkj(S) = LPik(t)Pkj(S) + Pij (t)Pjj (s) .
kEf ktj

Thus,

Pij(t + s) - Pij(t) = LPik(t)Pkj(S) + Pij(t) (Pjj(S) - 1) .
ktj

Dividing both sides by s, and proceeding formally, we can take the limit as
S -+ 0+, to get

P~j(t) = LPik(t)qkj - VjPij(t) .
ktj

These equations are called the forward Kolmogorov equations.

1
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The Backward Kolmogorov Equations We have

Pij(t + s) = LPik(S)Pkj(t) = LPik(S)Pkj(t) + Pii(S)Pij(t) .
kEf ki-i

Thus,

Pij(t + s) - Pij(t) = LPik(S)Pkj(t) = LPik(S)Pkj(t) + (Pii(S) - l)Pij(t) .
kEf ki-i

Dividing both sides by S, and proceeding formally, we can take the limit as
S ---+ 0+, to get

P~j(t) = L qikPkj(t) - ViPij(t) .
ki-j

These equations are called the backward Kolmogorov equations.

Let P(t) be the matrix whose (i, j)-th entry is Pij(t). Denote the state
probability vector at time t by z(t). Thus, zn(t) = P(X(t) = n), for n E I.
For any time t 2: 0, we then have z(t) = z(O)P(t). Next, define Q to be the
matrix whose (i, j)-th entry is Qij, for i =I- j, and qii = -Vi. Then the forward
Kolmogorov equations can be written

P'(t) = P(t)Q, for t> 0 ,

while the backward Kolmogorov equations can be written

?'(t) = QP(t) , for t> 0 .

In developing mathematical models using continuous time Markov chains,
the elements of the matrix Q are typically determined first. See for instance,
Example 10.3.1 in the text, and also Problems 10.4, 10.5, and 10.6. Then,
in theory at least, the differential equations above can be solved to find the
transition matrix P(t) and the state probability vector z(t) defined above.

Example 1 The Poisson process: The Poisson process, with rate con­
stant A > 0, is a pure birth process with state space I = {O, 1,2," '}, for

2
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which qi,i+l = A, Vi = A, and qi,j = 0 otherwise. Thus, the matrix Q has the
form

Q=

-A A 0
o -A A
o 0 -A

The entries in the transition matrix P(t) can be found by induction. However,
we will just find the state probability vector z(t), assuming the process starts
in state O. Recalling that zn(t) = P(X(t) = n), we have z(O) = (1,0,0", .).

In effect, we are finding the first row of P(t), since at any time t ~ 0,
z(t) = z(O)P(t). Using the forward Kolmogorov equations gives us

z' (t) = z(0) P' (t) = z (0) P (t) Q = z(t) Q .

Thus, for n = 0, we have zb(t) = -AZo(t), and for n ~ 1,

z~ (t) = AZn-l (t) - AZn(t) .

The equation for n = 0 yields zo(t) = e-At , where we have used the initial
condition Zo (0) = 1. Next, for n ~ 1, using the integrating factor eAt, we can
solve for Zn (t) to get

zn(t) = Ae-At lot eASzn_l(s)ds,

where we have invoked the initial condition zn(O) = 0 for n ::::: 1. Working
with these equations successively, starting with zo, gives us

Zn(t) = (At)n e-At
n! '

for n ~ 0 . •
u... c\:-L-..l. ~ .......\.t. Co'\-.

~ C?...\:..>;-v- ~..-

Example 2 A device is either operational (state 1), or being repaired
(state 0). If it is in state 1, it can fail in an interval of time (t, t + h) with
probability J-th + o(h). If it is in state 0, it can be repaired and become

3
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operational in an interval of time (t, t + h) with probability Ah + o(h). For
this model, we have

Q = [-A A].
fJ -fJ

The forward Kolmogorov equations P'(t) = P(t)Q are, in the first row:

p~,o(t) = -APO,O(t) + fJPO,l(t) and P~,l(t) = APO,O(t) - fJPO,l(t) ,

and in the second row:

P~,o(t) = -API,O(t) + fJPl,l(t) and P~,l(t) = APl,O(t) - fJPl,l(t) .

( e1 v~ h'"""?

'-t v""'~

P~,l (t) t (A + fJ)PO,1 (t) = t-A .

From the first set of equations, noting that Po,o(t) + PO,l(t) = 1, we obtain
the single differential equation I

c!"t'V'- "it -t\. t~' rs f:: I I

Using the initial condition PO,l (0) = 0, and employing the integrating factor
e-(A+Jl)t, yields

A A -(A+Jl)t- --e
PO,l = A + fJ A + fJ

and thus,
__fJ_ + _A_e-(A+Jl)t

Po,o - A + fJ A + fJ

In a similar way, it follows that

fJ _ _fJ_e-(A+Jl)t
Pl,O = A + fJ A + fJ

and,
__A_ + _fJ_e-(A+Jl)t

PI,1 - A + fJ A + fJ

Note that by taking the limit as t ----t 00, the long-run state probability vector
7f is found to be

(
fJ A)7f= -- --

A+fJ' A+fJ .

This result could also have been obtained by solving the balance equations

7fQ = 0, subject to 7fo + 7fl = 1. •

4
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Exercises

1. For the machine repair problem in Problem 10.4 of the notes, what is
the Q matrix? Assume there is only one repair person (s = 1).

2. For the machine repair problem with spares in Problem 10.5 of the
notes, what is the Q matrix? Assume there is one repair person (s = 1),
and one machine (m = 1).

3. For the light bulb problem, Problem 10.6 of the notes, what is the Q
matrix?

5
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2.12 Wed 5/7/08 notes
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Chapter 9: The Poisson Process - Solutions to Selected
Problems

9.1 A randomly occurring event E is called a Poisson event if (i) for some
constant A, the probability that E occurs during a time interval of
length h is Ah + o(h), (ii) the probability that E occurs two or more
times during an interval of length h is o(h), and (iii) the occurrence or
lack of occurrence of E during disjoint time intervals are independent
events. Let T be the waiting time for a Poisson event E to occur. Show
that T is exponentially distribution with parameter A.

Solution The probability

P(T> t) = lim(1- Ah + O(h))N ,
h---+O

where Nh = t. Thus,

P(T > t) = lim(1 - Ah + o(h))t/h = e->.t.
h---+O

The distribution of the time until the first Poisson event occurs is therefore
exponential. Note further that it follows, using the binomial distribution,
that during a time interval of length t, the expected number of occurrences
of a Poisson event is the limit as h ----t 0+ of N(Ah + o(h)), where again
Nh = t. This expected value is thus At.

9.2 Consider two independent Poisson processes, type 1 having rate A1' and
type 2 having rate A2' Show that the combined process, where events
are observed without regard to type, is still Poisson and that the rate
is A1 + A2.

Solution Since each of the processes are Poisson, and since each operates
independently of the other, it follows that in the combined process, we again
have independent and stationary increments. Next, since the sum of two
Poisson random variables is again Poisson, with mean equal to the sum of
the two means, it follows that property (c) in the first definition of a Poisson
process is satisfied.

1
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9.3 Consider a Poisson process such that each time an event occurs, it
is of type 1 with probability p > 0, or it is type 2 with probability
q = I-p > O. Assume these two types appear independently from event
to event. Show that these two processes each are Poisson processes and
that they are independent of each other. Help: Let N1(t) and N 2 (t)
be the counting processes for each type of event. Find the their joint
distribution by conditioning on N(t), where N(t) = N1(t) + N2 (t).

Solution We can think of the processes N 1 and N 2 as being formed by
tossing a coin each time an event in the process N occurs. If the coin is
heads (with probability p,) then the event is viewed as one in the N 1 process,
and otherwise (with probability q), it is viewed as one in the N2 process. The
coin tossing is done independently on each occasion. It follows that since the
original process has stationary increments, so must the processes N 1 and N 2 .

Indeed, since the number of events for the original process in an interval of
time (3,3 + t) does not depend on 3, and only on t, the same must be true
of the derived processes N 1 and N2 . Similarly, since the original process has
independent increments, it follows that each of the processes N 1 and N2 must
have independent increments. Indeed, since the number of events in disjoint
intervals of the original process are independent, and since the coin tossing
takes place independently from each occasion to the next, each of the derived
processes must have independent increments. All of these conclusions hold
whether or not the original process follows the Poisson process, only the
independent and stationary increments of the original process are needed.

To find the distributions of N 1 and N2 , note that for any nonnegative
integers nand m, the probability P(N1 (t) = n, N2 (t) = m) is equal to

00

L P(N1(t) = n, N2 (t) = m IN(t) = v)P(N(t) = v) .
v=o

But each conditional probability in the sum is zero, except for v = n + m.
Therefore, this sum becomes simply

P(N1(t) = n, N2 (t) = m IN(t) = n + m)P(N(t) = n + m) .

2
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Next, by the coin tossing interpretation above, it follows that

(
n+m)P(N1(t) = n, N2 (t) = mIN(t) = n + m) = p11qm .

m

since each of the n + m events corresponds to a Bernoulli trial, and the trials
are independent with probability p that a type 1 process occurs. Therefore,

( () ( ) ) (
n + m) 11 m -At (At)n+m

P N[ t = n, N 2 t = m = m p q . e (n + m)!

Simplifying this expression, and writing A = AP + Aq, we find that

P(N1(t) = n,N
2
(t) = m) = e_>.pt(Apt)11 e_>.qt(AQt)m

n! m!

Since the joint distribution of N 1 and N2 can be written as the product of
a function of n alone, and a function of m alone, it follows that N 1 (t) and
N 2 (t) are independent. However, each term in this product is a distribution
function itself, and so

P(N1(t) = n) = e->.pt (Apt)11
n!

and P(N
2
(t) = m) = e->.qt (Aqt)m

m!

Using these formulas, and the conclusion above that each process is station­
ary, it follows that property (c) of the first definition in the class notes for
a Poisson process holds for N 1 and N2 . Alternatively, these formulas can be
used to establish property (c) of the second definition of a Poisson process.
Either way, we can conclude that N1 is Poisson with parameter AP, and N2

is Poisson with parameter Aq.

9.5 A vehicle-controlled traffic light will stay green for T seconds after a car
passes through the intersection, and if no cars arrive during a period
of time T, then it turns red. Let X denote the number of cars that
pass through the intersection following dissipation of the initial queue
and until the light next turns red. Assume cars arrive according to a
Poisson distribution with rate A. Find the probability distribution of X
and find the expected value of X. Help: Note that the event {X ;::::: n}
occurs if the inter-arrival times of the next n arriving cars are each no
more than T.

3
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Solution We have

P(X = n) = P(T1 < T,"', Tn < T, Tn+1 ;:::: T) ,

where the T i are the inter-arrival times of the next n cars following queue
dissipation. Since cars arrive according to a Poisson process, the Ti are
independent random variables that are each exponentially distributed with
parameter A. Thus,

for n = 0,1,2, ....

P(X = n) = (1- e-ATf e-AT ,

~+ G.eo-tt[;; c..
To find the expected value of X, note that Y = X + 1 has a geometric

distribution. Indeed,

( )

k-l
P(Y = k) = P(X = k - 1) = e-AT 1 - e-AT ,

for k = 1,2, .. '. Therefore, the random variable Y is geometric with param­
eter e-AT . Hence,

E(X) = E(Y - 1) = E(Y) - 1 = [l/(e- AT )] - 1 = eAT - 1 .

e'lo..

9.6 An investor must decide on just one investment to make during a fixed
period of time T. The opportunities are of two types, those of profit H,
and those of profit L, where L < H. Opportunities appear at random
according to a Poisson process of rate A. Each time an opportunity
appears it is worth L with prohability p, and worth H with independent
probability q = 1 - p. Consider the following strategy. For a given time
T, we invest only if an opportunity of profit H occurs. After this time,
we invest in the next opportunity that appears, if any. What is the
expect profit?

Solution Let Y denote the profit, and let X denote the first time an in­
vestment opportunity arrives. Partition the sample space according to the
events E = {X:::; T}, F = {T < X :::; T}, and G = {T < X}. Then

E(Y) = E(YIE)P(E) + E(YIF)P(F) + E(YIG)P(G) .

4



chapter 2. handouts given during the course 168

Since opportunities arrive according to a Poisson process, say N(t), we see
that P(E) = P(N(T) 2: 1) = 1 - P(N(T) = 0) = 1 - e-AT . Further, P(G) =
P(N(T) = 0) = e-AT . Hence

P(F) = 1- (1- e- AT ) - e- AT = e- AT - e- AT .

neturning to the expression for E(Y) above, note that in the last term,
E(YIG) = 0, and so

E(Y) = E(YIE)P(E) + E(YIF)P(F) .

Consider next, in the second term, E(YIF). Given that the event F has
occurred, the next opportunity will yield profit L with probability p and
profit H with probability q. Hence E(YIF) = pL +qH. Thus, we have so far

E(Y) = E(YIE)P(E) + (pL + qH) (e- M
- e-AT

) .

Finally, consider E(Y IE). Given that the event E has occurred, namely
that at least one opportunity has arrived in the period up to time T, the
probability that n opportunities arrive in this time interval is

1qn = P(E) P(N(T) = n) = 1 e-AT (-\T)n
1 - e- AT n!'

and the possible values for n are 1,2,3,' ... Therefore, the probability, say
QL, that all the arriving opportunities yield profit L is

QL = f pnqn = 1 e-AT f (/\Tp)n = 1 e-M (eATP - 1)
1 1 - e-AT 1 n! 1 - e-AT

and so,
e-ATq _ e- AT

QL = 1 -A- e '

Hence, given that the event E has occurred, the probability that in the period
up to time T, at least one of the arriving opportunities yields profit H is

1 _ QL = 1 _ e-
Mq

- e-
M

1 - e-M

5

1 - e- ATq

1 - e-AT .
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\Ve now write

1 - e- ATq

E(1"IE) = H(1 - QL) + 0 . QL = H 1 _ e-AT

Returning to the last expression for E (1") we get

E(Y) = H (1 - e-ATq
) + (pL + qH) (e- AT - e-AT

)

\\o~
e'l-(A"W'

9.7 Consider the GIM 11 model. (a) Is the chain irredudble? Is the
chain aperiodic? Help: 'Write the transition probability matrix with a
+, say, for each entry that is positive, and a 0 otherwise. (b) Find
the transition probabilities when the inter-arrival time distribution is
exponential with parameter A. (c) Under the assumption of part (b),
find the stationary distribution?

Solution (a) The transition matrix has nonzero entries on and below the
diagonal, and also on the first upper diagonal. Given any two states i and j,
it follows that j is accessible from i. Indeed, if j ::; i + 1, then it is possible to
go from state i to state j in one step. However, if j 2': i + 1, then it is possible
to go to state i + 1 in one step, then from state i + 1 to state i + 2, and so
on until state j is reached. It follows that any two states communicate with
each other, and so the chain is irreducible. Thus all states must be of the
same type and each must have the same period. Since Pll > 0, state 1 has
period one, and so all states have period one.

(b) Substitution of the density f(t) = Ae-At into the expressions for the
transition probabilities yields

Pil = q!, for i 2': 1, and Pij = pqi+l-j for 1 < j ::; i + 1 ,

where q = pI(A + p), and P = 1 - q, and where Pij = 0 otherwise.

(r) The solution for this case at hand should be the same as the one for
tlw earlier problem concerning the !v!IGII queue. Thus, we could consider
a solution to the stationary equations of the form 7ri = Cpi, where p = Alp,
and then verify that such a solution works.

6
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However, it is possible to show that a stationary vector exists in the
general for an arbitrary inter-arrival time distribution. Consider a solution
of the form 7Ii = cr'i, for some constants c > a and T: a < T < 1, which are
to be determined. The stationary equations are

00

71.1 == L 7IiPi.1 ,
i=.1-1

for j = 2,3,00' , where 711 + 712 + 0.. = 1 .

so we need

It suffices to consider only the equations for j = 2,3, .. 0, since the condition
711 + 712 + 0 • 0 = 1 implies that the equation for j = 1 is a consequence of the
other equations. Now, for j > 1, plugging the hoped for solution into the
j-th equation gives us

, 00 00 i roo ~ t (/-It)i+1- j

CT
J = 7Ij = L 7IiPij = L CT In e {L (' ')' j(t) dt

i=j-l i=j-1' 0 Z + 1 - J .

Making the change of variables v = i - (j - 1), simplifying, and then using
the series expansion for the exponential function yields

r = :t roo e-{Lt (f.LT~)1/ j(t) dt = roo e-{L(l-r')t j(t) dt ,
1/=0 io v. io

which gives us the equation

r = ¢(r) = hoo
e-rl(l-r)t j(t)dt .

Note that ¢(T) is a positive and increasing function of r, and that ¢(1) = 1.
It follows that a solution to this equation for r exists and is unique, provided
¢'(1) > 1. But

¢'(T) = f.L hoo
te-{L(1-r)t j(t)dt ,

¢' (1) = /-lhoo

t j (t) dt > 1 .

Note that ¢'(1) can be interpreted as a traffic intensity, defined as the ratio
of the arrival rate to the service rate.

It follows now from Theorem 5.5.3 of the notes on classification of states,
that when the condition ¢'(1) > 1 holds, the Markov chain CI!vI/l is irre­
ducible, aperiodic and all states are positive recurrent.

7
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2.13 Wed 5/7/08 notes
Key solutions to continuous time Markov chains, chapter from lecture notes, chapter 10.

~~&~ weet· lv\-6La- 8/ '2ocJ)2

Chapter 10: Solutions to Selected Problems

~tl 10.2

e.:iJ)...-

Find the recurrence formula for the expected values of the first entrance
times Ti,i-l for the birth-and-death process. Remark: To use such a
recurrence formula to find the expected values E(~,i-d, it is necessary
to specify boundary conditions. Generally, however, the boundary con­
ditions can ouly be determined on a case by case basis.

Solution Following the steps in Section 10.4, let Tij denote the first en­
trance time into state j, given that the process has just entered state i. For a
birth-and-death process, we shall find the expected value of Ti,i-l, i ~ 1, by
conditioning on the next state. Thus, let S denote the event that the next
state isi - 1. Then

E(Ti,i-l) = E(Ti,i-l IS)P(S) + E(Ti,i-l IS)P(S)

Note that S is the event that the next state is i + 1. Using the jump proba­
bilities for the birth-and-death process, we have

( ) ( I) f-li ( - Ai
E Ti,i-l = E Ti,i-l S A + E Ti,i-l IS)-\- ,

i + ~Li Ai + f-li

Now, E(Ti,i-l 1S) = l/(Ai + f-li), because the expected time to reach state
i - 1, given that the next state is i - 1, is simply the expected time spent in

state i, which is l/(Ai + f-li)' Next, .

- 1
E(Ti,i-l IS) = Ai + f-li + [E(~+l,i) + E(Ti,i-dJ ,

for if the next state is i + 1, then the process must spend the expected time

in state i, which is l/(Ai + f-li), then spend the expected time E(Ti+l,i) to
get back to state i, and then finally spend the expected time E(Ti,i-l) to get
from state i to state i - 1. Substituting these results, and then solving for

E(Ti,i+l), yields
1 Ai

E(Ti,i-d = - + - E(~+l,i) .
f-li f-li

1
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As remarked above, to use this recurrence formula to find the expected
values E(Ti,i-l), it is necessary to specify boundary conditions. Generally,
however, the boundary conditions can only be determined on a case by case
basis. Such a case appears in the next problem.

0D~ 10.3

e1-()."I'l'
(a) For the 1\11/M /1 queue, find the expected first entrance time

E(T1,o). This time can be interpreted as the busy time for the queue.
Assume A < fJ,. (b) For the M / Al/3 queue, find the expected values
E(Ti,i-l) for all i ~ 1. Help: Use the recurrence formula obtained in
problem 10.2 above. Argue that all the values E(Ti,i-d are the same
for all i ~ s, where S is the number of servers.

Solution For the NI/NI/s queue, when i ~ s, we have Ai = A and fJ,i = S{t,
and these rates to not depend on the state i. The random variables Ti,i-l,
for i ~ s, are concerned only with transitions above state i until the first
instant that a transition to state i-I occurs. Thus, the set of sample paths
associated with the event {Ti,i-l = n} is the same for each i ~ s, and each
sample path for one value of i ~ S is just as likely to occur as for another.
Therefore, the stochastic nature of each Ti,i-l for i ~ S is the same. Note
that this argument could not be made for the Ti,i+l. In these cases, the
random variables are concerned only with transitions below state i until the
first instant that a transition to state i + 1 occurs. The set of sample paths
associated with the event {Ti,i+l = n} now depends on i, as some sample
paths go below state s. Moreover, for smaller values of i, transitions that
include visits to state 0 are more likely than for larger values of i. Thus, not
all sample paths associated with the event {Ti,i+l = n} are as likely to occur
for one i as for another.

Continuing now with the solution, it follows that for i ~ s, each E(Ti,i-d
is a constant, say T. Substituting T into the recurrence formula obtained in
the solution to Problem 10.2, we get

T = (1/SfJ,) + (A/ SfJ,)T ,

2



chapter 2. handouts given during the course 173

and solving this equation yields

T = E(Ti,i-l) = l/(sJ-l- "\), for i 2: s.

Now, for part (a), when s = 1, we have E(T1,o) = 1/(J-l- ..\). Next, for
part (b), when s = 3, we have

E(T3,2) = 1/(3J-l- ..\) .

Using again the recurrence formula obtained in the solution to Problem 10.2,
we get

1..\ 3/2
E(T2,d = -2- + -2- E(T3,2) = -3- \ ,. J-l . J-l J-l -

and finally,

E(T1,o) = _1_ +~ E(T21 ) = 3J-l + (1/2)..\
1 . J-l 1 . J-l ' J-l(3J-l -..\) .

~0.4 Consider a set of m machines that are in continuous operation, and
which fail independently of each other at an exponential rate ..\. Assume
there are s : 1 ::; s ::; m, repair persons that service the machines
independently and each at exponential rate J-l. Let X (t) denote the
number of machines at time t that are not operational; that is, they
are in the repair shop. Determine the arrival and departure rates for
the birth-and-death model.

Solution Suppose the state of the system is i and that s ::; i < m. Then
m - i machines are in operation, and s repair persons are busy. Hence, for a
small time interval of length h, the probability Pi,i+l (h) of an increase of one
in the system is

(m; i ) (..\h + o(h))(l -..\h + o(h))m-i-l(l - f-/,h + o(h))S + o(h) .

The first factors cover the event of one breakdown and no service completions,
while the last o(h) term covers other less likely possibilities, such as two

3
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breakdowns and one service completion, say. For the case 0 ::; i < s, the
same expression holds, except the last factor becomes (1 - tth + o(h) )i, since
now i repair persons are busy. Thus, for 0 ::; i < m, we have

Pi,i+l (h) = (m - i)Ah + o(h) as h ~ 0+ .

Hence, the birth rates are Ai = (m - i)A, for 0 ::; i < m. For i = m, evidently
Ai = 0 since no arrivals are possible in this case.

For the departure rates, suppose again that the state of the system is i

and that s ::; i < m. Then m - i machines are in operation, and s repair
persons are busy. Hence, for a small time interval of length h, the probability
Pi,i-l (h) of a decrease of one in the system is

( ~ ) (tth + o(h))(1 - tth + o(h))S-1(1 - Ah + o(h))m-i + o(h) .

The first factors covers the event of no breakdowns and one service comple­
tion, while the last o(h) term covers other less likely possibilities, such as one
breakdown and two service completions, say. For the case 1 ::; i < s, the
probability Pi,i-l (h) becomes

( ~ ) (tth + o(h))(1 - tth + O(h))i-l(1 - Ah + o(h))m-i + o(h) .

since now i repair persons are busy. Thus, asymptotically, Pi,i-l (h) = Stth +
o(h), for s ::; i < m, while for 1 ::; i < s, Pi,i-l(h) = itth + o(h). Hence, the
departure rates are tti = Stt for s ::; i < m, and tti = itt, for 1 ::; i < s.

10.5 Consider a set of m+n machines which fail independently of each other
at an exponential rate A. It is intended that m machines are to he in
operation at any time. The remaining machines serve as spares and are
called into operation when an operating machine fails. If more than
n machines are in a state of failure, then all the operational machines
will be in service. Suppose there are s, 1 ::; s ::; m, repair persons
that service the machines independently and each at exponential rate

4
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fJ. Let X (t) denote the number of machines at time t that are not
operational; that is, they are in the repair shop. Determine the arrival
and departure rates for the birth-and-death model.

Solution Suppose the state of the system is i. Then the number of machines
not in the repair shop is m + n - i. Thus, if m + n - i ~ m, or equivalently
i S n, then the arrival rate to the repair shop is mA, while if m + n - i < m,
or equivalently i > n, then the arrival rate to the repair shop is (m +n - i) A.

Finally, as in the case of the M / M / s queue, the departure rates are fl'i = ifJ

for i < s, and fli = SfJ for i ~ s.
~ )'-

10.6 Consider a sign that contains N light bulbs, each with a lifetime that
follows an exponential distribution with parameter A. Assume that the
bulbs function independently of each other. Suppose it is the policy to
allow bulbs to hurn out until the moment the r-th bulb expires, and to
then replace all burned out bulbs at that time. Define the state of the
system X (t) to be the number of burned out bulbs at time t. Argue that
this stochastic process (a) has the Markov property, (b) is stationary,
and (c) can be represented as a pure jump process. Determine the
parameters Vi and qij of the jump process. (d) Determine the balance
equations for this system, and find the long-run probability distribution
for the states.

Solution For (a) and (b), suppose it is known that the state of the system is
i at time s. Then there are N - i bulbs still functioning. These N - i bulbs
operate independently of each other, and each has a lifetime that follows
the exponential distribution. However the exponential distribution has the
memoryless property. Thus, the situation is the same as if we were faced
with N - i new bulbs, whose lifetimes are not influenced by the behavior of
the bulbs that have expired previously. The future evolution of the system
depends only this information, and therefore depends only on the current
state i, and not on how the system arrived at this state, nor on the current
time. Hence, the process has the Markov property and is stationary. (c) Set

Pij(h) = P(X(t + h) = j IX(t) = i) .

u
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Using the properties of the exponential distribution, it follows that for small
h, and 'i < r - 1,

Pi,i+1(h) = ( N; 'i ) (Ah + O(h))l(1- Ah + O(h))N-i-1 = (N - i)Ah + o(h) .

Thus, qi,i+1 = (N - 'i)A. For j #- 'i + 1 and j #- i, this transition probability
Pij(h) = o(h). Hence,

Pi,i(h) = 1 - (N - i)Ah + o(h) .

Therefore, when 'i < r -1, we have qi,i+1 = (N - i)A, and Vi = (N - 'i)A, while
qij = 0 otherwise. Finally, for 'i = r - 1, using reasoning similar to above,
and because all bulbs are replaced at the instance the r-th bulb expires, we
get

Pr-1,0(h) = (N - r + l)Ah + o(h) ,

and

Pr-1,r-l(h) = 1 - (N - r + l)Ah + o(h) .

Therefore, when 'i = r - 1, we have qr-1,0 = (N - r + l)A, and Vr-l
(N -r+1)A, while Qij = 0 otherwise. (d) The balance equations in this case
are

7fi = 1 _1_. .h(r N) N ., for ~ = 0, 1 2 ... r - 1, - ~ ",.

Requiring that 7fo + 7f1 + ... + 7fr -1 = 1, we get

~/
~

1/'
-vi-r\1f1~ ~i)~' l

N-'i
- 7fi,

7fi+1 - N - ('i + 1) for 'i = 0,1,2,'" ,r-2,
N

7fo .and 7fr -1 = N _ r + 1

where h(r, N) is,

1 1 1
h(r, N) = N + N _ 1 + ... + N - (r - 1)

6
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1 1 1
E(R) = NA + (N - 1)A + ... + (N - (r - 1))A .

~ For the previous light bulb problem: (a) What is the expected time
between replacements? (b) Suppose for each replacement, it costs
0: + f3r dollars to replace the r bulbs, where 0: and {3 are constants.
Develop a formula that gives a reasonable estimate of the expected
cost per unit time.

Solution (a) The time between replacements is

R = T1 + T2 + ... + Tr ,

where T i is the time between the (i - 1)-st burnout and the i-th burnout.
The random variable Ti is an exponential random variable with rate constant
(N - i)A. Thus, E(Ti ) = 1/(N - 'i)A. Hence, -r ~----[5(12-)

r

(b) One could argue as follows. Over a long period of time T, the average
number of renewals is approximately T IE(R). The total cost over this period
of time is (o:+{3r)[TIE(R)]. Dividing by the total time T yields an estimate of

the ;.ost per unit tim~ The final formula is therefore C(r) = (0: + (3r)1 E(R).

10.12 For the l\lfIM 12 queue, find the long-run probability distribution for
the states. Use these probabilities to find E(X), the expected number
of customers in the system in the long-run. Help: Let p = A/2f.1. Then
E(X) = 2pI( 1 _ p2

).

Solution For the AII!vIIs queue, with arrival rate A and service rate f.1, the
steady state probabilities are given by

(/\j ~I,)n
Pn= , Po, for n=1,2,···,s,

n.

where:

and Pn = (AI p,)n
s!sn-s Po , for n ~ s,

1

Po

s s-1 (AI )n
(AI p,) 1 + L ~ , provided p = AISf.1 < 1 .

s! 1 - (AI Sf.1) n=O n.

7
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For the case of two servers,

00 00 00

L = L npn = L npn = PI + L npn
n=O n=1 n=2

where PI = (AI p,)po = 2ppo, and for each n ~ 2, Pn = 2pnpo · Substituting
yields

00 00

L = 2ppo + 2po L npn = 2ppo + 2ppo L npn-l
n=2 n=2

( ~ n-I) d (~n) 2ppo2ppo 1 + LJ np = 2PPo d LJ p = (1 _ )2'
n~ p n~ p

It remains to find Po. From the formula above,

(
(AI)2 1 ) -1 ( 2 2)-1

Po = 2~ 1 _ P + [1 + (AI p,)] = 1 + 2p + 1 ~ P

Hence, we get finally L = 2pl (1 - p2) .

1-p

l+p

~

*~\
10.15 Consider the mlm/1 queueing model, with the modification that when

a customer finishes being served, there is a probability p that the cus­
tomer will be returned to the queue to repeat the required service.
(a) Assume this process follows a birth-and-death model, and find the
arrival and departure rates. (b) Find the long-run state probability
distribution.

C>

I
q,

Solution The state is the number of customers in the system. Suppose first

the state i = O. Then we have PO,l (h) = Ah+o(h), and Po,o(h) = 1- Ah+o(h).
Suppose now the state i ~ 1. Then

P'i,'i-l(h) = (1 - Ah + o(h))(p,h + o(h))q .

The first factor indicates that no arrival has occurred, and the next two
factors indicate that a service completion has taken place, and the customer

8
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10.16

Y
~i) JV/
~

was not returned for service. Thus, asymptotically, P'i,i-l (h) = /-lqh + 0(17,).
Next, we have

Pi,i+l(h) = (Ah + 0(17,))(1 - /-lh + 0(17,)) .

The first factor indicates that an arrival has occurred, and the next factor
indicates that no service completion has taken place. Thus, asymptotically,
Pi,i+l (h) = Ah+o(h). Next, since the process follows a birth-and-death model,

we could determine Pi,i(h) from Pi,i-l(h) and Pi,i+l(h). However, it is instruc­
tive to find this term directly. Thus, we have

pi,i(h) = (1 - Ah + 0(17,))(1 - /-lh + 0(17,)) + (1- Ah + o(h))(/-lh + o(h))p .

The first term in the sum indicates that no arrival nor service completion
have occurred. The second term in the sum indicates that no arrival has
occurred, but a service completion has taken place, and the customer was
returned for service. Asymptotically then,

pi,i(17,) = 1 - A17, - /-l17, + /-lph + 0(17,) = 1 - (A + /-lq)h + 0(17,) .

In summary, then, we have Ai = A, for all i, and for i :::::: 1, /-li = /-lq.
(b) Appealing to the solution of the balance equations given in the class

notes, we have Pn = rnpo, for n = 1,2,"', where r = AI/-lq. For a steady
state to exist, we must require that r < 1. With this restriction, we get

Pn = (1 - r)rn, for n = 0,1,2,···.

For the mimi8 queueing model, assume that when a customer arrives
and finds servers idle, the customer selects a server at random from
those available.. Consider a particular server, say server number 1.

Show that the probability, in the long-run, that this server is idle is
1 - P where p = AI8/-l. Help: Condition on the number in the system
in the long-run.

Solution Let I denote the event that server one is idle. Then, for n < 8,

~~~
~tt

P(I I N = n) =

(8~1)

(:)
9

8-n

8
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and so

while P(I I N = n) = 0 for n 2:: 8. Thus

s-l s-l ( )8-n
P(I) = L P(I I N = n)Jrn = L -8- Jrn ·

n=a n=a

Using the formulas from Example 10.3.2 for the long-run state probabilities,
and setting r = AIf-l, gives us

s-l

P(I) = L (8 - n) rn
Jra

n=a 8 n! '

where
s-l i r S 1

1 ",~+ __ .
- = L..J i! s! 1 - PJra i=a

To ease notation, set
s-l ri

Ts = L i!
i=a

Then we can write the previous equation as

r S Jr r S

1 = TsJra + ~__a_, or equivalently 1 - p = Jra(1 - p)Ts + Jra, .
s. 1 - P 8.

Now,

[S-l (s-n) rn] [ r ( rS~l)]
P(I) = Jra ~ -s- n! = Jra Ts - -; Ts - (8 - 1)!

[
r

S

] r
S

P(I) = Jra (1 - p)Ts+, = Jra(1- p)Ts + Jra, .
s. s.

Finally, recalling the expression for 1- p in the equation two lines up, we see
that P(I) = 1 - p.

10
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2.14 Wed 5/7/08 notes
Hastings metropolis algorithm lecture 11
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Chapter 3
study notes,lecture notes

3.1 some code I wrote for testing things...
1. expected_test.m

2. solving_3_dot_6.nb

3. A small note on using the left eigenvector of the one step transition matrix for a
regular chain to determine the limiting distribution trying_8_1_problem.nb try-
ing_8_1_problem.pdf

3.2 Definitions
Source of this block unknown and lost from the net:

“Continuous Time Markov Chains

Most of our models will be formulated as continuous time Markov chains. On this page we
describe the workings of these processes and how we simulate them.

Definition.

We say that an event happens at rate r(t) if an occurence between times t and t + dt has
probability about r(t)dt when dt is small.

Fact. When r(t) is a constant r, the times t[i] between occurrences are independent exponen-
tials with mean 1/r, and we have a Poisson process with rate r.

Markov chains in continuous time are defined by giving the rates q(x,y) at which jumps occur
from state x to state y. In many cases (including all our examples) q(x,y) can be written
as p(x,y)Q where Q is a constant that represents the total jump rate. In this case we can
construct the chain by taking one step according to the transition probability p(x,y) at each
point of a Poisson process with rate Q.

If we throw away the information about the exponential holding times in each state, the
resulting sequence of states visited is a discrete time Markov chain, which is called the
embedded discrete time chain. In our simulations, the total flip rate Q at any one time is a
multiple of the number of sites, CQ. Since the number of sites is typically tens of thousands,
we lose very little accuracy by simulating TCQ steps and calling the result the state at time
T.

To build the discrete time chain we must pick from the various transitions with probabilities
proportional to their rates. In our particle systems we can do this by picking a site at random,
applying a stochastic updating rule, and then repeating the procedure. Because of this,
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continuous time is occasionally referred to as asynchronous updating. This is to distinguish
that porcedure from the synchronous updating of a discrete time process which updates all
of the sites simultaneously. ”

3.2.1 Regular finite M.C.

definition 1: There exist some n such that P (n) has all positive entries

definition 2: A regular finite chain is one which is irreducible and aperiodic

Notice that this means regular chain has NO transient states.

3.2.2 irreducible M.C.
A M.C. which contains one and only one closed set of states. Note that for finite MC, this
means all the states are recurrent. In otherwords, its state space contains no proper subset
that is closed.

3.2.3 Stationary distribution
This is the state vector π which contains the probability of each state that the MC could be
in the long term. For an irreducible MC, this is independent of the starting π(0), however,
for a reducible MC, the Stationary distribution will be different for different initial π(0)

3.2.4 recurrent state
1. fii = 1. In otherwords, the probability of reaching state i eventually, starting from

state i is always certain.

2.
∞∑
n=0

p
(n)
ii = ∞, in otherwords, since sum diverges, this means the probability to return

back to i starting from i will always exist, not matter how large n is (i.e. sum terms
never reach all zeros after some limiting value n)

3.2.5 transient state
1. fii < 1. In otherwords, the probability of reaching state i eventually, starting from state

i is not certain. i.e. there will be a chance that starting from i , chain will never again
get back to state i.

2.
∞∑
n=0

p
(n)
ii < ∞, in otherwords, since sum converges, this means the probability to return

back to i starting from i will NOT always exist (i.e. sum terms reach all zeros after
some limiting value n)

3.2.6 Positive recurrent state
A recurrent state where the expected number of steps to return back to the state is finite.
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3.2.7 Null recurrent state
A recurrent state where the expected number of steps to return back to the state is infinite.

3.2.8 Period of state

GCD of the integers n such that p(n)ii > 0. In otherwords, find all the steps MC will take to
return back to the same state, then find the GCD of these values. If the GCD is 1, then the
period is 1 and the state is called Aperiodic (does not have a period).

3.2.9 Ergodic state
A state which is Aperiodic and positive recurrent. i.e. a recurrent state (with finite number
of steps to return) but it has no period.

3.2.10 First entrance time Tij

The number of steps needed to reach state j (first time) starting from transient state i

3.2.11 f
(n)
ij

This is the probability that it will take n steps to first reach state j starting from transient
state i. i..e f

(n)
ij = P (Tij = n) .

3.2.12 fij

This is the probability of reaching state j (for first time) when starting from transient state

i. Hence fij =
∞∑
n=1

f
(n)
ij = P (Tij < ∞)

3.2.13 Closed set
A set of states, where if MC enters one of them, it can’t reach a state outside this set. i.e.
Pij = 0 whenever i ∈ S and j /∈ S, then set S is called closed set.
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3.2.14 Absorbing M.C.

All none-transient states are absorbing states. Hence the P matrix looks like


1 0 0 0
0 1 0 0
R R q11 q12
R R q21 q22

i.e.
[
I 0
R Q

]

3.2.15 Q Matrix
Properties of a Q matrix are: There is at least one row which sums to less than 1. And there
is a way to reach such row(s) from other others. and Qn → 0 as n → ∞

3.2.16 Balance equations

3.3 HOW TO finite Markov chain

3.3.1 How to find f
(n)
ij

This is the probability it will take n steps to first reach state j from state i. In Below C(J)
means the closed set which contains the state j and T means the transient set

i ∈ C(J), j ∈ C(J) use formula (1) below
i ∈ C(J), j /∈ C(J) f

(n)
ij = 0

i ∈ T , j Absorbing state Calculate Am = QmR where m = n− 1 then the i, j entry of Am gives f (n)
ij

i ∈ T , j ∈ T
Normally we are interested in finding expected number
of visits to j before absorbing. i.e E(Vij). see below. Otherwise use (1)

We can use p
(n)
ij . Notice the subtle difference between f

(n)
ij and p

(n)
ij .

f
(n)
ij gives the probability of needing n steps to first reach j from i, while p

(n)
ij gives the

probability of being in state j after n steps leaving i. So with p
(n)
ij could have reached state

j before n steps, but left state j and moved around, then came back, as long as after n steps
exactly MC will be in state j. With f

(n)
ij this is not allowed. The chain must reach state j

the very first time in n steps from leaving i. So in a sense, f (n)
ij is a more strict probability.

Using the recursive formula

p
(n)
ij = f

(n)
ij + f

(n−1)
ij p

(1)
jj + f

(n−2)
ij p

(2)
jj + · · ·+ f

(1)
ij p

(n−1)
jj (1)

We can calculate f
(n)
ij . We see that f (1)

ij = p
(1)
ij and so f

(2)
ij = p

(2)
ij − f

(1)
ij p

(1)
jj and also

f
(3)
ij = p

(3)
ij − f

(2)
ij p

(1)
jj − f

(1)
ij p

(2)
jj

= p
(3)
ij −

(
p
(2)
ij − f

(1)
ij p

(1)
jj

)
p
(1)
jj − f

(1)
ij p

(2)
jj

= p
(3)
ij −

(
p
(2)
ij p

(1)
jj − p

(1)
ij

[
p
(1)
jj

]2)
− p

(1)
ij p

(2)
jj

= p
(3)
ij − p

(2)
ij p

(1)
jj + p

(1)
ij

[
p
(1)
jj

]2
− p

(1)
ij p

(2)
jj

and
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f
(4)
ij = p

(4)
ij − f

(3)
ij p

(1)
jj − f

(2)
ij p

(2)
jj − f

(1)
ij p

(3)
jj

= p
(4)
ij −

(
p
(3)
ij − p

(2)
ij p

(1)
jj + p

(1)
ij

[
p
(1)
jj

]2
− p

(1)
ij p

(2)
jj

)
p
(1)
jj −

(
p
(2)
ij − f

(1)
ij p

(1)
jj

)
p
(2)
jj − f

(1)
ij p

(3)
jj

= p
(4)
ij −

(
p
(3)
ij p

(1)
jj − p

(2)
ij

[
p
(1)
jj

]2
+ p

(1)
ij

[
p
(1)
jj

]3
− p

(1)
ij p

(1)
jj p

(2)
jj

)
−
(
p
(2)
ij p

(2)
jj − p

(1)
ij p

(1)
jj p

(2)
jj

)
− p

(1)
ij p

(3)
jj

= p
(4)
ij − p

(3)
ij p

(1)
jj + p

(2)
ij

[
p
(1)
jj

]2
− p

(1)
ij

[
p
(1)
jj

]3
+ p

(1)
ij p

(1)
jj p

(2)
jj − p

(2)
ij p

(2)
jj + p

(1)
ij p

(1)
jj p

(2)
jj − p

(1)
ij p

(3)
jj

= p
(4)
ij − p

(3)
ij p

(1)
jj − p

(2)
ij p

(2)
jj + p

(2)
ij

[
p
(1)
jj

]2
− p

(1)
ij

[
p
(1)
jj

]3
+ 2p(1)ij p

(1)
jj p

(2)
jj − p

(1)
ij p

(3)
jj

etc...

Hence knowing just the P matrix, we can always obtain values of the fij for any powers

However, using the following formula, from lecture notes 6.2 is easier

A(n) = QnR

the i, j entry of A(n) gives the probability of taking n + 1 steps to first reaching j when
starting from transient state i . So use this formula. Just note this formula works only when
i is transient.

question: If i is NOT transient, and we asked to find what is the prob. it will take n steps
to first reach state j from state i. Then use (1). right?

3.3.2 How to find fij

This is the probability that chain will eventually reach state j given it starts in state i

i ∈ C(J)
j ∈ C(J) fij = 1

i ∈ C(J)
j /∈ C(J) fij = 0

i ∈ T

j recurrent but not absorbent, hence in a closed set with other states

Use formula in page 5.5 lecture notes fij =
∑
k∈T

pikfkj +
∑

k∈C(J)

pik F = (I −Q)−1 Z , hence just needs to find Z

zij =probability that transient state i will reach class that contains j
i ∈ T

j is an absorbent fij =
[
(I −Q)−1R

]
i,j

i ∈ T

j ∈ T
We know eventually pij = 0 for i, j ∈ Q, but can we talk about fij here?

3.3.3 How to find E(Vij) the expected number of visits to j before
absorbing?

Here, i ∈ T and j ∈ T Then
E(Vij) = (I −Q)−1

i,j

The above gives the average number of visits to state j (also transient) before chain is
absorbed for first time.

question: Note that if chain is regular, then all states communicates with each others and
then i ∈ R, j ∈ R and so E(Vij) can be found from the stationary distribution π∞ , right?
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3.3.4 How to find average number of steps E(Tij) between state i

and state j?

regular : i ∈ R, j ∈ R
E(Tij) = 1 +

∑
k 6=j

pikE(Tkj)

if i = j then E(Tij) = 1
wjj

where w is the stationary probability vector
i ∈ T, j ∈ T does not make sense to ask this here?

3.3.5 How to find number of visits to a transient state?
Number of visits to transient state is a geometric distribution.

Pr (n) = fn−1
ii (1− fii)

The expected number of visits to transient state i is

E(X) = 1
1− fii

where fii is the probability of visiting state i if chain starts in state i

3.4 Some useful formulas

limn→∞
(
1− z

n

)n = e−z

limh→0 (1− λh+ o(h))
t
h = e−λt

3.4.1 Law of total probability

Pr (A) =
∑

Pr (A|Bi) Pr (Bi)

3.4.2 Conditional (Bayes) formula

Pr (A|B) = Pr (A,B)
Pr (B)

3.4.3 Inverse of a 2 by 2 matrix

[
a b

c d

]−1

=

[
d −b

−c a

]
ad− bc

3.4.4 ωj = 1
µj

The above says that for a regular finite MC, where a stationary probability exist (and is
unique), then it is inverse of the mean number of steps between visits µj to state j in steady
state.
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3.4.5 ω = ωP

The above says that for a regular M.C. there exist a stationary probability distribution ω

3.4.6 Poisson random variable
N is number of events that occur over some period of time.

N is a Poisson random variable if

1. N(0) = 0

2. Independent increments

3. P (N = n) = λne−λ

n!

Where λ is the average number of events that occur over the same period that we are asking
for the probability of this number of events to occur. Hence remember to adjust λ accordingly
if we are given λ as rate (i.e. per unit time).

3.4.7 Poisson random Process
N(t) is a Poisson random variable if

1. N(0) = 0

2. Independent increments

3. P (N(t) = n) = (λt)ne−(λt)

n!

Where λ is the average number of events that occur in one unit time. So N(t) is random
variable which is the number of events that occur during interval of length t

The probability that ONE event occure in the next h interval, when the interval is very small, is λh+ o(h)
This can be seen by setting n = 1 in the definition and using series expansion for e−(λh) and
then letting h → 0

Expected value of Poisson random variable: E(N) = λ. For a process, E(N(t)) = λt where
λ is the rate.

3.4.8 Exponential random variable
T is random variable which is the time between events where the number of events occur as
Poisson distribution,

pdf: f(t) = λe−λt

P (T > t) =
∞∫
t

λe−λsds = e−λt

P (T < t) =
t∫

0

λe−λsds = −
[
e−λs

]t
0 = −

[
e−λt − 1

]
= 1− e−λt

pdf=derivative of CDF

Probability that the waiting time for n events to occur ≤ t is a GAMMA distribution.
gn(t) = λ

(n−1)!(λt)
n−1 e−λt
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3.5 Diagram to help understanding

3.5.1 Continouse time Markov chain

pii(h) = 1− vih+ o(h)
pij(h) = qijh+ o(h) i 6= j

vi is the parameter (rate) for the exponential distributed random variable which represents
the time in that state. Hence The probability that system remains in state i for time larger
than t is given by

Pr (Ti > t) = e−vit

◦) Jump probability Qij = qij
vi

for i 6= j. This is the probability of going from state i to state
j (once the process leaves state i)

◦) FOrward Komogolv equation



chapter 3. study notes,lecture notes 195

P ′(t) = P (t)Q, let z(t) = z(0)P (t), hence z′(t) = z(0)P ′(t) , hence z′(t) = z(0)P (t)Q
therefore

z′(t) = z(t)Q

◦) Balance equations
πjvj =

∑
k 6=j

qkjπk

This is ’flow out’ = ’flow in’.

This equation can also be obtaind more easily I think from πQ = 0 Where Q is the matrix
made up from the q′s and the v′s on the diagonal. Just write then down, and at the end add
π0 + π1 + · · · = 1 to find π0
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4.1 Computing Assignment 1. Wed 2/7/08

Grade 5/5.

A problem in conditional probability (the first simulation HW, confidence interval, histogram)
see first hand out for more details

liaY7C~
/~ /r!~1v-- 1/:<2/6 '?

A Problem in Conditional Probability

A number is chosen at random from the interval [0,1]. This value is placed in a

box, and twice this value is placed in a second box. One of these boxes is selected at

random and opened to reveal the number inside. Given this observed value, what is the

probability that this number is the smaller of the two.

1. A Solution Let the random variable X denote the observed number, and let S

denote the event that the selected box contains the smaller number. We seek P(SjX = x)

for a ::; x ::; 2. The quantity P(S[X = x) is undefined for other values of x. We will apply

Bayes Theorem which gives us U [0/0 J.-1.--
~~'\

P(SjX = ) = fx(xIS)P(S)
x fx(x) ,

where fx(x) is the density function of the random variable X, and fx(xIS) is the condi­

tional density of X given the event S. If 1 < x ::; 2, then evidently we have the larger of

the two numbers, and so P(SIX = x) = a when 1 < x ::; 2. Thus, we need consider only

the case a ::; x ::; 1. Since a box is selected at random, P(S) = 1/2. Next, the conditional

density of X given the event S is just the uniform density on [0,1]. Thus, fx(xIS) = 1

for a ::; x ::; 1, and fx (xiS) = a otherwise. Finally, to determine the density function of

the random variable X, we use U[o;l) L lJ[OJ2J t f/>;; J.r~ .~
~...,0-- ~ ~ /Y?afJJe;n&I,.-~8

fx(x) = fx(xIS)P(S) + fx(xI5)P(5) . U[o/ t] *'Z~ O[o/lJ

The conditional density of X given the event 5, is the uniform density on [0,2]. Thus,

fx(xI5) = 1/2 for a ::; x ::; 2, and fx(xI5) = a otherwise. Hence, for a ::; x ::; 1,

- - 1 1 1 3
fx(x) = fx(xIS)P(S) + fx(xIS)P(S) = 1· 2+ 2·2 = 4 '

while for 1 < x ::; 2,

- - 1 1 1 1
fx(x) = fx(x[S)P(S) + fx(x[S)P(S) = 0. 2+ 2 . 2 = 4 '

and otherwise, fx(x) = o. Returning now to the formula for P(SIX = x) we have for

a ::; x ::; 1,

P(SIX = x) = (1)(1/2) _ 2
3/4 - 3 .

1
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~ This result shows that when we select a box at random, and observe a value between 0

-S__ .~~f 5 or'

Exercise

and 1, there is a 2/3 chance that the observed value is the smaller of the two.
~ d'Ii'·.O

v~ r~ ..e! .fp J hk. i -I .~

~~~~
~ S

,<~~1
~
\~~~.
r'

Suppose that when we select a box, and observe the value, we have an opportunity

to switch to the other box. The result above suggests that if we observe a value

between 0 and 1, then we should switch, and otherwise, hold the value we have.

Let the random variable Y denote the reward using such a strategy. Write a

simulation program (in MATLAB, say) to estimate the expected value of Y. Use a-95% confidence interval, and determine the sample size so that the relative accuracy.
of your estimate is about one percent. In your report, explain how you determined

your sample size. Also, compare theory and practise; that is, did your confidence
,/' ;;b:. S ~.£A-~"

interval~nc1ude the_~ 8:Jff"'- T ....... -, _

\~ +,M~!9>1 s.- ~ ~ /1 'L /-/:;";.~I..-1. Ix h ....J ('~ ':t. f\R t ir'
• /..oI.J>TV'" •

2. Expected Value of Y Suppose now the strategy is to switch if the observed ~

value is less than or equal to 1, and otherwise to hold. Let Y be the reward using this

strategy. Then

./

E(Y) = E(Y I X S l)P(X S 1) + E(Y I X > l)P(X > 1) .

Consider first the events {X S I} and {X > I}. In order for the event {X > I} to

occur, we must select the box with the larger value, which occurs with probability 1/2, and

also the original value must be in the interval (1/2,1), which occurs with probability 1/2.

Since these two events are independent, it follows that P(X > 1) = (1/2)(1/2) = 1/4,

and further, P(X S 1) = 1 - 1/4 = 3/4.

Next consider the expected value of Y given that the event {X > I} has occurred.

Then Y is the observed value X. Given that the event {X > I} has occurred, the random

variable X is uniformly distributed over the interval (1,2). Hence, E(Y I X > 1) = 3/2.

2
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Consider now the expected value of Y given that the event {X :S I} has occurred.

Here, we will switch to the value in the other box. However, we will either (0:) switch to

the larger value, which occurs with probability 2/3, or ((3) switch to the smaller value,

which occurs with probability 1 - 2/3 = 1/3. In case (0:), Y is the larger value, which

is uniformly distributed over the interval (0,2). Hence its expected value is 1, and so

E(Ylo:) = 1. In case ((3), Y is the smaller value, which now, because the event {X :S I}

has taken place, is uniformly distributed over the interval (0,1/2). Hence, the expected

value is 1/4, and so E(YI(3) = 1/4. Thus,

2 1 1 3
E(Y I X :S 1) = E(Ylo:)P(o:) + E(YI(3)P((3) = 1 . :3 + 4. :3 = 4 .

1. Find the density function of the random variable Y.

Exercise

We are ready finally to compute the expected value E(Y). From the formula above,

we get

3331~'
, / E(Y) = E(YIX 0; I)P(X 0; l) + E(Y!X > I)P(X > I) = :I' :I + 2. :I=~

~(J)~ 1y6/S) P(s) -+ ly( ~ I~) p(s)
-I-0'~ ~ Tk

3
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4.1.1 Problem description

4.1.2 Purpose and design of project
The purpose of this project is to estimate the expected value of a random variable (called
Y ) which is generated by an experiment that is described in the above problem statement.
Each experiment generates one random variable y. The experiment is described well in the
above problem statement and no need to repeat it here again.

In addition, we are asked to determine the interval over which we are 95% confident the
estimated expected value will lie within. We are asked that the interval should not be wider
than 1% of the true mean from either side of the estimated expected value.

The simulation involve a two stage process. In the first stage, an initial simulation was
made for 20, 000 experiments in which we obtained an estimate of the population standard
deviation s and estimate of the population mean given by the sample mean X̄. These 2
values are used to determined the sample size (number of experiments) needed for the second
simulation performed to meet the above stated requirement for relative accuracy in expected
value of Y . Therefore, once the first simulation is completed, the sample size for the second
simulation was found by solving for n (sample size) by setting the expression for the standard
error to be 1% of the population mean (in which we are using an estimate of which is X̄ as
generated by the first simulation). Therefore, we solve for n from

1.96 s√
n
= 0.01X̄

Finally, the second simulation was now run using the above computed n, and the confidence
interval was found from

C.I. =
{
X̄ − 1.96 s√

n
· · · X̄ + 1.96 s√

n

}
Where in the above equation the s and X̄ are the sample standard deviation and the sample
mean resulting from this second simulation (and not the first simulation run used to estimate
n).

Next, the histogram Y was plotted to obtain an estimated of the probability density function
of Y .
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4.1.3 Summary of numerical results
For the initial simulation run, we used 20, 000 experiments and obtained the following estimate
of the standard deviation and the population mean

s = 0.625760
X̄ = 0.931717

Now solve for n from
1.96 s√

n
= 0.01X̄

we found
n = 17328

Running the second stage simulation now to estimate the expected value of Y we obtain the
following result that the estimate of the expected value of Y is

X̄ = 0.9311632

and the 95% confidence interval was found to be

{0.92190 · · · 0.94043}

4.1.4 Discussion of numerical results
Since we know that the true value of E(Y ) = 15

16 = 0.937 5, we see that the

95% confidence interval did contain the true value

We also notice that the relative error in X̄ (the estimate of the expected value) when compared
to the true mean µ = 15

16 is calculated as µ−X̄
µ

= 0.937 5−0.9311632
0.937 5 = 0.006759 3 ' 0.7% which is

little below the 1% requirement.

We note that the value of the relative error did not come out exactly 1% because we used
an estimate of the true mean in order to find the sample size needed for the calculation.

The result of the simulation is the estimate of the PDF of Y which is shown in the plot below.
The number of bins used is 50. This was determined by trial and error to obtain the most
pleasing looking histogram.
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We note that the true PDF is given below (derived in the class) and we see from the above
plot that the estimated PDF is very close to the analytical PDF.

P (Y = y) =


3
4 0 ≤ y ≤ 0.5
1
4 0.5 ≤ y ≤ 1
1
2 1 < x ≤ 2

4.1.5 Code listing

nma_Math504_HW1.m� �
function nma_Math504_HW1(nBins,nSims,seed)

%by Nasser Abbasi, HW1, Math 504
%calculate expected value of y by simulation

%clear all; close all;

%
% C O N S T A N T S and P A R A M E T E R S
%

%nSims = 20000;
%nBins = 50;
%seed = 01010101;

skip = round(0.01*nSims);
a = 0; b = 1;
str = 'HW1 Mathematics 504 CSUF spring 2008';
str =[str '\nsimulation[%d], std[%4.3f], mean[%6.5f], true mean[%5.4f]'];
barWidth = 2/nBins;

%
% I N I T I A L I Z A T I O N
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%
rand('twister',seed);
box = zeros(1,2);
y = zeros(nSims,1);
figure(1);

%
% L O G I C
%
for i=1:nSims

box(1)=rand;
box(2)=2*box(1);
boxSelected=((a + (b-a).*rand)<=.5)+1;

y(i)=box(boxSelected);

if y(i)<=1 %switch box if needed
if boxSelected==1

boxSelected=2;
else

boxSelected=1;
end

y(i)=box(boxSelected);
end

[n,x]=hist(y(1:i),nBins);
currentArea = barWidth*sum(n);
if mod(i,skip)==0

bar(x,n/currentArea,'y'); %relative frequency
title(sprintf(str,i,std(y),mean(y),15/16));
xlabel('x=final observed value');
ylabel('P(X=x)');
xtrue=[0 .5 .5 1 1 2]; ytrue=[.75 .75 .25 .25 .5 .5];
line(xtrue,ytrue,'Color','r','LineWidth',4);
ylim([0,1]);
legend('simulation PDF','exact PDF');
drawnow;
pause(0.01)

end
end

end� �
nma_Math504_HW1_as_script.m� �
function nma_Math504_HW1_part2()

%by Nasser Abbasi, HW1, part 2, Math 504
%calculate expected value of y by simulation

%This scripts simulates the pdf of the observed value from
%the following expeirment:
%
%pick a random number x from uniform[0,1], put this
%number in a box, and put twice the number in a second
%box. Next, pick one of these boxes by random, and look



chapter 4. hws 205

%at the number inside. Call this y. If the number is smaller than
%one, then switch the box. Find the pdf of final y observed y, and
%find the estimate of the mean of y.
%Notice that 0<= y <= 2.

clear all; close all;

seed = 01010101;
rand('twister',seed);

% First do an initial estimate using simulation to estimate
% population mean and standard deviation, and then use these to
% obtain the needed sample size for the error level required

[s,xBar] = initialEstimate();
err = 0.01 * xBar;
sampleSize = ((1.96*s)/err)^2;

%
% C O N S T A N T S and P A R A M E T E R S
%
nBins = 50;
skip = round(0.01*sampleSize);

barWidth = 2/nBins;

%
% I N I T I A L I Z A T I O N
%
y = zeros(sampeSize,1);
figure(1);
set(0,'DefaultTextinterpreter','none');
h=title('');
axpos = get(gca,'pos');
extent = get(h,'extent');
set(gca,'pos',[axpos(1) axpos(2) axpos(3) axpos(4)-.45*extent(4)]);
set(h,'VerticalAlignment','Middle');

%
% L O G I C
%
for i=1:sampleSize

y(i) = makeAnObservation();
% currentArea = barWidth*sum(n);
if mod(i,skip)==0

generateOneFrame(y(1:i),nBins,sampleSize);
end

end

generateFinalResult(y,nBins);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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function [s,xbar]=initialEstimate()

sampleSize = 20000;
y = zeros(sampleSize,1);

for i = 1:sampleSize
y(i) = makeAnObservation()

end

s = std(y);
xbar = mean(y);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function y = makeAnObservation()

box = zeros(1,2);
box(1) = rand;
box(2) = 2*box(1);
boxSelected = (rand<.5)+1; %pick a box by random

y =box(boxSelected);

if y <=1 %switch box if needed
if boxSelected == 1

boxSelected = 2;
else

boxSelected = 1;
end

y = box(boxSelected);
end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function generateOneFrame(y,nBins,sampleSize)

currentFrameNumber = length(y);

firstLineTitle = 'HW1 Mathematics 504, part(2) CSUF spring 2008';
secondLineTitle = 'simulation[$%d$], $s=%6.5f$, $\\bar{X}=%9.8f$, $\\mu=%5.4f$';

[n,x]=hist(y,nBins);
bar(x,n/sampleSize,'y'); %relative frequency
ls=sprintf(secondLineTitle,currentFrameNumber,std(y),mean(y),15/16);

h=title(char(firstLineTitle,ls),'fontsize',12,'interpreter','latex');
xlabel('x=final observed value');
ylabel('P(X=x)');
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xtrue=[0 .5 .5 1 1 2]; ytrue=[.75 .75 .25 .25 .5 .5];
line(xtrue,ytrue,'Color','r','LineWidth',2,'LineStyle','--');
ylim([0,1]);
legend('simulation PDF','exact PDF');
drawnow;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function generateFinalResult(y,nBins)

sampleSize = length(y);

firstLineTitle = 'HW1 Mathematics 504, CSUF spring 2008';
secondLineTitle = 'simulation[$%d$], $s=%6.5f$, $\\bar{X}=%9.8f$, $\\mu=%5.4f$';

%
% Compare estimated mean with theortical mean
%
estimatedMean = mean(y);
standardError = 1.96*std(y)/sqrt(sampleSize);

lss=sprintf('95 perecent confidence interval for mean is (%6.5f ... %6.5f)',...
estimatedMean-standardError,estimatedMean+standardError);

ls=sprintf(secondLineTitle,sampleSize,std(y),mean(y),15/16);
title({firstLineTitle,ls,lss},'fontsize',12,'interpreter','latex');

[n,x]=hist(y,nBins);
bar(x,n/sampleSize,'y'); %relative frequency
ls=sprintf(secondLineTitle,sampleSize,std(y),mean(y),15/16);

h=title(char(firstLineTitle,ls),'fontsize',12,'interpreter','latex');
xlabel('x=final observed value');
ylabel('P(X=x)');
xtrue=[0 .5 .5 1 1 2]; ytrue=[.75 .75 .25 .25 .5 .5];
line(xtrue,ytrue,'Color','r','LineWidth',2,'LineStyle','--');
ylim([0,1]);
legend('simulation PDF','exact PDF');
drawnow;

end� �
nma_Math504_HW1_part1_as_script.m� �
% file nma_Math504_HW1_part1_as_script
%by Nasser Abbasi, HW1, Math 504

%This scripts simulates the pdf of the observed value from
%the following expeirment:
%
%pick a random number x from uniform[0,1], put this
%number in a box, and put twice the number in a second
%box. Next, pick one of these boxes by random, and look
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%at the number inside. Call this y. Find the pdf of
%y. Notice that 0<= y <= 2.

clear all; close all;

%
% C O N S T A N T S and P A R A M E T E R S
%

nSims = 20000;
nBins = 50;
seed = 01010101; %my seed to reproduce same results.
skip = round(0.01*nSims);

str = 'HW1 Mathematics 504, part 1. CSUF spring 2008';
str =[str '\nsimulation[%d], std[%4.3f], mean[%6.5f], true mean[%5.4f]'];
barWidth = 2/nBins;

%
% I N I T I A L I Z A T I O N
%
rand('twister',seed);
box = zeros(1,2);
y = zeros(nSims,1);
figure(1);

%
% L O G I C
%
for i=1:nSims

box(1) = rand;
box(2) = 2*box(1);
boxSelected = (rand<.5)+1;
y(i)=box(boxSelected);

[n,x]=hist(y(1:i),nBins);
currentArea = barWidth*sum(n);
if mod(i,skip)==0

bar(x,n/currentArea,'y'); %relative frequency
title(sprintf(str,i,std(y),mean(y),3/4));
xlabel('x=observed value');
ylabel('P(X=x)');
xtrue=[0 1 1 2]; ytrue=[.75 .75 .25 .25];
line(xtrue,ytrue,'Color','r','LineWidth',2,'LineStyle','--');
ylim([0,1]);
legend('simulation PDF','exact PDF');
drawnow;
%pause(0.01)

end
end

title(sprintf(str,nSims,std(y),mean(y),3/4));� �
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nma_Math504_HW1_part2.m� �
function nma_Math504_HW1_part2()
%function nma_Math504_HW1_part2()
%
%This function simulates the pdf of the observed value from
%the following expeirment:
%
%pick a random number x from uniform[0,1], put this
%number in a box, and put twice the number in a second
%box. Next, pick one of these boxes by random, and look
%at the number inside. Call this y. If the number is smaller than
%one, then switch the box. Find the pdf of final y observed y, and
%find the estimate of the mean of y.
%Notice that 0<= y <= 2.

%by Nasser Abbasi, HW1, part 2, Math 504

clear all; close all;

seed = 01010101;
rand('twister',seed);

% First do an initial estimate using simulation to estimate
% population mean and standard deviation, and then use these to
% obtain the needed sample size for the error level required

[s,xBar] = initialEstimate();
err = 0.01 * xBar;
sampleSize = round(((1.96*s)/err)^2);
fprintf('s=%f, xBar=%f\n',s,xBar);

%
% C O N S T A N T S and P A R A M E T E R S
%
nBins = 50;
skip = round(0.01*sampleSize); %for simulation, skip frames

%
% I N I T I A L I Z A T I O N
%
y = zeros(sampleSize,1);
figure(1);
set(0,'DefaultTextinterpreter','none');
h=title({'','',''});
axpos = get(gca,'pos');
extent = get(h,'extent');
set(gca,'pos',[axpos(1) axpos(2) axpos(3) axpos(4)-.20*extent(4)]);
set(h,'VerticalAlignment','Middle');

%
% L O G I C
%
for i=1:sampleSize

y(i) = makeAnObservation();
if mod(i,skip)==0

generateOneFrame(y(1:i),nBins);
end
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end

generateFinalResult(y,nBins);

end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [s,xbar]=initialEstimate()

sampleSize = 20000;
y = zeros(sampleSize,1);

for i = 1:sampleSize
y(i) = makeAnObservation();

end

s = std(y);
xbar = mean(y);

end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function y = makeAnObservation()

box = zeros(1,2);
box(1) = rand;
box(2) = 2*box(1);
boxSelected = (rand<.5)+1; %pick a box by random

y = box(boxSelected);

if y <=1 %switch box if needed
if boxSelected == 1

boxSelected = 2;
else

boxSelected = 1;
end

y = box(boxSelected);
end

end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function generateOneFrame(y,nBins)

barWidth = 2/nBins;
sampleSize = length(y);

firstLineTitle = 'HW1 Mathematics 504, part(2) CSUF spring 2008';
secondLineTitle = 'simulation[$%d$], $s=%6.5f$, $\\bar{X}=%9.8f$, $\\mu=%5.4f$';
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[n,x] = hist(y,nBins);
currentArea = barWidth*sum(n);
bar(x,n/currentArea,'y'); %relative frequency
ls=sprintf(secondLineTitle,sampleSize,std(y),mean(y),15/16);

title(char(firstLineTitle,ls),'fontsize',12,'interpreter','latex');
xlabel('x=final observed value');
ylabel('P(X=x)');
xtrue = [0 .5 .5 1 1 2]; ytrue=[.75 .75 .25 .25 .5 .5];
line(xtrue,ytrue,'Color','r','LineWidth',2,'LineStyle','--');
ylim([0,1]);
legend('simulation PDF','exact PDF');
drawnow;

end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function generateFinalResult(y,nBins)

barWidth = 2/nBins;
sampleSize = length(y);

firstLineTitle = 'HW1 Mathematics 504, CSUF spring 2008';
secondLineTitle = 'simulation[$%d$], $s=%6.5f$, $\\bar{X}=%9.8f$, $\\mu=%5.4f$';

%
% Compare estimated mean with theortical mean
%
estimatedMean = mean(y);
standardError = 1.96*std(y)/sqrt(sampleSize);

lss=sprintf('95 perecent confidence interval for mean is (%6.5f ... %6.5f)',...
estimatedMean-standardError,estimatedMean+standardError);

ls=sprintf(secondLineTitle,sampleSize,std(y),mean(y),15/16);

[n,x]=hist(y,nBins);
currentArea = barWidth*sum(n);
bar(x,n/currentArea,'y'); %relative frequency
title({firstLineTitle,ls,lss},'fontsize',12,'interpreter','latex');
xlabel('x=final observed value');
ylabel('P(X=x)');
xtrue=[0 .5 .5 1 1 2]; ytrue=[.75 .75 .25 .25 .5 .5];
line(xtrue,ytrue,'Color','r','LineWidth',2,'LineStyle','--');
ylim([0,1]);
legend('simulation PDF','exact PDF');
drawnow;

end� �
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rhist.m� �
function [no,xo] = rhist(varargin)
%RHIST Relative Histogram.
% N = HIST(Y) bins the elements of Y into 10 equally spaced containers
% and returns the relative frequency of elements in each container. If Y is a
% matrix, RHIST works down the columns.
%
% N = RHIST(Y,M), where M is a scalar, uses M bins.
%
% N = RHIST(Y,X), where X is a vector, returns the relative freqency of Y
% among bins with centers specified by X. The first bin includes
% data between -inf and the first center and the last bin
% includes data between the last bin and inf. Note: Use HISTC if
% it is more natural to specify bin edges instead.
%
% N = RHIST(Y,M,Any_Character) returns relative frequency density of
% Y among bins.Any_Character is the any character inside single quotation
% or any numeric value.
% You can omit second optional argument using single quotation
% i.e. N = RHIST(Y,'',Any_Character) returns relative frequency density
% for 10 bins.
% It is to be noted that sum(N)equals unity for relative frequency
% while area under curve for relative frequency density equals unity.
% Note that as size(Y,1) and M increases relative frequency density is
% close to probability density for continous random variable.
%
% [N,X] = RHIST(...) also returns the position of the bin centers in X.
%
% RHIST(...) without output arguments produces a histogram of relative
% frequency or relative frequency densisty bar plot of the results.
% The bar edges on the first and last bins may extend to cover the min
% and max of the data unless a matrix of data is supplied.
%
% RHIST(AX,...) plots into AX instead of GCA.
%
% Class support for inputs Y, X:
% float: double, single
%
% See also HIST.

% Copyright 2004-2005 Durga Lal Shrestha.
% $Revision: 1.0.0 $ $Date: 2005/6/20 14:30:00 $

% Parse possible Axes input

error(nargchk(1,inf,nargin));
[cax,args,nargs] = axescheck(varargin{:});

y = args{1};
if nargs == 1

x = 10;
elseif nargs == 2

x = args{2};
else

if isempty(args{2})
x = 10;

else



chapter 4. hws 213

x = args{2};
end

end
[m,n] = size(y);
[nn,x]=hist(y,x); % frequency
nn = nn./m; % relative frequency

% relative frequency density
if nargs == 3

binwidth = x(2)-x(1);
nn = nn./binwidth;

end

if nargout == 0
if ~isempty(cax)

bar(cax,x,nn,[min(y(:)) max(y(:))],'hist');
else

bar(x,nn,[min(y(:)) max(y(:))],'hist');
end
xlabel('y')
if nargs == 3

ylabel('relative frequency density')
else

ylabel('relative frequency')
end

else
no = nn;
xo = x;

end� �
hw1.nb Mathematica

hw1.nb

4.2 Mon 2/5/08

Grade: 2/2.

Derive PDF of Y from an experiment where we switch boxes, uses probability decision tree

4.2.1 Problem description
This problem is a follow up on the problem described in HW1.

In this problem we are asked to derive analytically the PDF of the random variable Y by
conditioning on the box selected.

Y is the random variable which is the observation from the following experiment: Generate
random variable X from uniform [0, 1]. Put this number is box labeled S and put twice this
number in a box labeled S̄. Next, we pick one of these 2 boxes by random. If the number
inside the box selected is found to be greater than 1, then we switch the boxes and pick the
number inside the second box. The random variable Y is the final number selected.

HWs/HW1_assigned_janurary_23_2008/code/hw1.nb
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4.2.2 Solution
We first note the following known probabilities in this problem. The probability of picking
box S or box S̄ is 1

2 . Once we pick box S, then we have to switch the box. If we pick the S̄

box, then we switch only if the observed X is less than 1.

To help solve this problem, we start by drawing the decision tree describing the possible flow
and assign a probability to each branch. At the end of each branch we draw the PDF of
Y resulting from traversing that branch only. Next, we combine (add algebraically) all the
PDF’s together after we scale each PDF by the probabilities found along the edges which
lead to the end of the branch.

Using the above diagram as a guide, we now calculate the PDF for Y as follows (starting
from the right most branch to the left most branch)
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P (Y = y) = 1
2 ×


1
2 0 < y < 1

2
1
2

1
2 < y < 1

1
2 1 < y < 2

+ 1
2 × 1

2 ×


2 0 < y < 1

2
0 1

2 < y < 1
0 1 < y < 2

+ 1
2 × 1

2 ×


0 0 < y < 1

2
0 1

2 < y < 1
1 1 < y < 2

=


1
4 0 < y < 1

2
1
4

1
2 < y < 1

1
4 1 < y < 2

+


1
2 0 < y < 1

2
0 1

2 < y < 1
0 1 < y < 2

+


0 0 < y < 1

2
0 1

2 < y < 1
1
4 1 < y < 2

=


3
4 0 < y < 1

2
1
4

1
2 < y < 1

1
2 1 < y < 2

4.3 Wed 2/20/2008

Grade: 2/2.

The long analytical problem. Problem #4 from handout #3 above. Solving Einstein-Weiner
pde using fourier transform
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4.3.1 Problem
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4.3.2 Solution
The PDE equation to solve is

∂f(x, t)
∂t

= c
∂(xf(x, t))

∂x
+D

∂2f(x, t)
∂x2

part A

multiply through by e−iyx and integrate w.r.t. x from −∞ to ∞ we obtain

∂

∂t

 ∞∫
−∞

f(x, t) e−iyxdx

 = c

∞∫
−∞

∂(xf(x, t))
∂x

e−iyxdx+D

∞∫
−∞

∂2f(x, t)
∂x2 e−iyxdx (A)

Now do integration by parts on the first and second terms on the RHS above. We start with
the first term

∞∫
−∞

dv︷ ︸︸ ︷
∂

∂x
(xf(x, t))

u︷︸︸︷
e−iyxdx = [vu]∞−∞ −

∞∫
−∞

vdu

=
[
xf(x, t) e−iyx

]∞
−∞ + iy

∞∫
−∞

xf(x, t) e−iyxdx

Using the assumption given that xf(x, t) → 0 as x → ±∞ then the first term above will
vanish leaving

∞∫
−∞

∂

∂x
(xf(x, t)) e−iyxdx = iy

∞∫
−∞

xf(x, t) e−iyxdx (1)

Now we need to solve the RHS of the above. To do that, we take the derivative of the Fourier
transform itself with respect to its variable y and write

d

dy
z[f ] (y) = d

dy

1√
2π

∞∫
−∞

f(x, t) e−iyxdx

= 1√
2π

∞∫
−∞

d

dy

(
f(x, t) e−iyx

)
dx

= 1√
2π

∞∫
−∞

− ix f(x, t) e−iyxdx

Therefore we see that

∞∫
−∞

x f(x, t) e−iyxdx =
√
2π
−i

d

dy
z[f ] (y)

= i
√
2π d

dy
z[f ] (y) (2)
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We now use this result to complete the solution. Substitute (2) into (1) we obtain

∞∫
−∞

∂

∂x
(xf(x, t)) e−iyxdx = −y

√
2π d

dy
z[f ] (y) (3)

And using

z[f(x, t)] (y) ≡ φ(y, t) = 1√
2π

∞∫
−∞

f(x, t) e−iyxdx

Then (3) becomes

∞∫
−∞

∂
∂x
(xf(x, t)) e−iyxdx = −y

√
2π ∂

∂y
φ(y, t) (4)

Now going back to equation (A) above, we do integration by parts twice on the second term
on the RHS of that equation and obtain

D

∞∫
−∞

∂2f(x, t)
∂x2 e−iyxdx = D

∞∫
−∞

dv︷ ︸︸ ︷
∂

∂x

[
∂f(x, t)

∂x

] u︷︸︸︷
e−iyxdx

= D

[vu]−
∞∫

−∞

vdu


= D


[
∂f(x, t)

∂x
e−iyx

]∞
−∞

+ iy

∞∫
−∞

∂f(x, t)
∂x

e−iyxdx


The term

[
∂f(x,t)

∂x
e−iyx

]∞
−∞

vanishes from the assumption that ∂f(x,t)
∂x

→ 0 as x → ±∞, hence
the above becomes

D

∞∫
−∞

∂2f(x, t)
∂x2 e−iyxdx = D

iy

∞∫
−∞

dv︷ ︸︸ ︷
∂f(x, t)

∂x

u︷︸︸︷
e−iyxdx


Doing integration by parts again on the above we obtain

D

∞∫
−∞

∂2f(x, t)
∂x2 e−iyxdx = iyD

[vu]−
∞∫

−∞

vdu


= iyD

[f(x, t) e−iyx
]∞
−∞ + iy

∞∫
−∞

f(x, t) e−iyxdx


The term [f(x, t) e−iyx]∞−∞ vanishes from the assumption that f(x, t) → 0 as x → ±∞, hence
the above becomes



chapter 4. hws 219

D

∞∫
−∞

∂2f(x, t)
∂x2 e−iyxdx = −y2D


∞∫

−∞

f(x, t) e−iyxdx


= −y2D

√
2πz[f ] (y)

= −y2D
√
2πφ(y, t) (5)

Substituting (5) and (4) into (A) gives

∂

∂t

 ∞∫
−∞

f(x, t) e−iyxdx

 = −cy
√
2π ∂

∂y
φ(y, t)− y2D

√
2πφ(y, t)

Hence

√
2π ∂

∂t
φ(y, t) = −cy

√
2π ∂

∂y
φ(y, t)− y2D

√
2πφ(y, t)

Simplifying

∂φ(y, t)
∂t

= −cy
∂φ(y, t)

∂y
−Dy2 φ(y, t)

part B

We need to show that
u(y, t) = I(y)φ(y, t) (1)

satisfies the hyperbolic equation shown below in (2), where I(y) = exp
(
D
2cy

2) and φ(y, t) =

1√
2π

∞∫
−∞

f(x, t) e−iyxdx

∂u

∂t
+ cy

∂u

∂y
= 0 (2)

One way to do this is to plug in the expression for u(y, t) given in (1) into the LHS of (2)
and see if that gives zero. Hence the LHS of the above pde becomes

LHS = ∂u

∂t
+ cy

∂u

∂y

= ∂

∂t
I(y)φ(y, t) + cy

∂

∂y
I(y)φ(y, t)

=
[
φ(y, t) ∂I(y)

∂t
+ I(y) ∂φ(y, t)

∂t

]
+ cy

[
φ(y, t) ∂I(y)

∂y
+ I(y) ∂φ(y, t)

∂y

]
(3)

But ∂I(y)
∂t

= 0 and ∂I(y)
∂y

= Dy
c
I(y) and ∂φ(y,t)

∂t
= −cy ∂φ(y,t)

∂y
−Dy2 φ(y, t) since this is the pde

we obtained in part(A), hence putting all these into (3) we obtain

LHS =
[
I(y)

{
−cy

∂φ(y, t)
∂y

−Dy2 φ(y, t)
}]

+ cy

[
φ(y, t) Dy

c
I(y) + I(y) ∂φ(y, t)

∂y

]

=
︷ ︸︸ ︷
−cyI(y) ∂φ(y, t)

∂y
− I(y)Dy2 φ(y, t)︸ ︷︷ ︸+ I(y)Dy2φ(y, t)︸ ︷︷ ︸+

︷ ︸︸ ︷
cyI(y) ∂φ(y, t)

∂y
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Which is zero.

Hence u(y, t) = I(y)φ(y, t) satisfies ∂u
∂t

+ cy ∂u
∂y

= 0 by direct substitution.

Part C

Now we need to solve the first order hyperbolic PDE equation

∂u

∂t
+ cy

∂u

∂y
= 0 (1)

In the method of characteristics we convert the PDE to an ODE by looking for parametric
path along which solutions for PDE exist. Let t = t(s) and y = y(s) where s is a parameter.
So now we can write

u ≡ u(t, y) = u(t(s) , y(s))

Therefore taking full derivative of u w.r.t. to the parameter s we obtain using the chain rule
the following

du

ds
= ∂u

∂t

dt

ds
+ ∂u

∂y

dy

ds
(2)

Compare (2) to (1) we see that if we set

dt

ds
= 1 (2.1)

with the initial condition t(s = 0) = 0 and if we set

dy

ds
= cy (2.2)

with initial condition y(s = 0) = y0, then this would make du
ds

= 0, which means that the
solution is constant along each specific parameter s which is what we want. Let the initial
condition u(s = 0) ≡ u(y(s = 0) , t(s = 0)) = u0(y0, 0) . Hence solution to du

ds
= 0 is

u = u0(y0) (3)

Now, from (2.1) we have t = s since t(0) = 0 and from (2.2) we have y = y0e
cswhere y0 comes

from initial condition of y(s) as above.

Now, since t = s hence we have

y = y0e
ct

Hence solve for y0 we have
y0 = ye−ct

Pluging the above into (3) gives

u(t, y) = u0
(
ye−ct

)
Which is the solution for t ≥ 0 and −∞ ≤ y ≤ ∞
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Now to show the final part. From part(B) we showed that

u(y, t) = I(y)φ(y, t) (4)

But since u(t, y) = u0(ye−ct) then we write (4) as

u0
(
ye−ct

)
= I(y)φ(y, t) (5)

But
u0
(
ye−ct

)
= I
(
ye−ct

)
φ
(
ye−ct, 0

)
(6)

which is the initial conditions we are given in the problem statement (where I replaced y by
ye−ct) Hence plug (6) into (5) we obtain

I
(
ye−ct

)
φ
(
ye−ct, 0

)
= I(y)φ(y, t)

or

φ(y, t) = I(ye−ct)
I (y) φ

(
ye−ct, 0

)
(7)

But I
(
ye−ct

)
I(y) =

exp
(

D
2c

(
ye−ct

)2)
exp

(
D
2cy

2
) = exp

(
D
2cy

2e−2ct − D
2cy

2) = exp
(
−D

2cy
2(1− e−2ct)

)
Hence (7) becomes

φ(y, t) = exp
(
−D

2cy
2(1− e−2ct))φ

(
ye−ct, 0

)
Letting σ2(t) ≡ D

c
(1− e−2ct), then the above can be rewritten as

φ(y, t) = exp
(
−1

2σ
2(t) y2

)
φ(ye−ct, 0) (8)

Part (D)

Since now φ(y, 0) = 1√
2π exp (−iyx0), then

φ
(
ye−ct, 0

)
= 1√

2π
exp

(
−iye−ctx0

)
where I replaced y by ye−ct

Substitute the above into (8)

φ(y, t) = exp
(
−1
2σ

2(t) y2
)

1√
2π

exp
(
−iye−ctx0

)
= 1√

2π
exp(−1

2σ
2(t) y2 − iyµ(t))

Where µ(t) = e−ctx0
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part(E)

We need to show that

1
σ (t)

√
2π

exp
(
−1
2

(
x− µ(t)
σ (t)

)2
)

z→ 1√
2π

exp(−1
2σ

2(t) y2 − iyµ(t))

where z is the Fourier transform operator.

Since the transform variable is y, we can rewrite the above as needing to show the following

exp
(
−1
2

(
x− µ(t)
σ (t)

)2
)

z→ σ(t) exp(−1
2σ

2(t) y2 − iyµ(t)) (1)

We start by using result from problem (3) part (c) which says the following is true

exp
(
−(ax+ b)2

) z→ 1√
2 |a|

exp(− y2

4a2 + iy
b

a
) (2)

Hence, we know (2) is true, and we need to show that (1) is true. Using the hint given, we
let a = 1√

2σ(t) and
b
a
= −µ(t) in (2) to arrive at (1). hence starting with (2) we write

exp
(
−
[
a

(
x+ b

a

)]2)
z→ 1√

2 |a|
exp(− y2

4a2 + iy
b

a
)

exp
(
−
[

1√
2σ (t)

(x− µ(t))
]2)

z→
∣∣√2σ(t)

∣∣
√
2

exp(− y2

4
(

1√
2σ(t)

)2 − iyµ(t))

Simplify, we obtain

exp
(
−1
2

(
x− µ(t)
σ (t)

)2
)

z→ σ(t) exp(−1
2σ(t) y

2 − iyµ(t))

Which is the same as (1). QED

4.4 Computing Assignment #2, Wed 2/27/2008

Grade: 2/2.

The limiting process simulation. Show that random walk final position is normally distributed
in the limit under the Einstein-Weiner process (see problem 2 in this handout
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f!-4h ;r1 p"'-f

t/Jondtl1

f/laf-h 504
}/~ 8/;;;lCJc7 '2

Continuous Approximations To Random Walks

1. A Simple Random Walk Consider a particle that moves along the real line
in such a way that, at each point in time, it makes one step to the right with probability
p, and one step to the left with probability q = 1 - p. Assume that distance is measured
in multiples of an amount .6.x, and that time is measured in multiples of .6.t. Let X n

denote the position of the particle after n steps. We shall assume the particle starts at
the origin.

Let 7ft) = P(Xn = j.6.x). Thus, 7f)n) is the probability that the particle is located
at j.6.x at time n.6.t. Conditioning on the next state, we can write

P(Xn+1 = j.6.x) = P(Xn+1 = j.6.x I X n = (j - l).6.x)P(Xn = (j - l).6.x)

+ P(Xn+1 = j.6.x I X n = (j + l).6.x)P(Xn = (j + l).6.x) ,

or equivalently
(n+1) (n) (n)

7fj = p7fj _ 1 + q7fj+l ,

for j = 0, ±1, ±2, .. " and n = 0,1,···. Consider now a fixed position x and time t,
subject to .1: = j.6.x and t = n.6.t. Suppose that when .6.x and .6.t are small, we have the
approximation

7f)n) ~ f(x, t).6.x ,

where f is some function of x and t. Note that for each fixed t, the function f is a density
function that describes probabilistically the location of the particle. From the recurrence
formula above, we see that for such an approximation to hold, we need approximately

f(x, t + .6.t) ~ pf(x - .6.x, t) + qf(x + .6.x , t) .

Assuming f is twice continuously differentiable, the Taylor series expansion yields

f(x, t) + .6.t~~ + 0(.6.t)2 [
of 1 202 f]p f(x, t) - .6.x- + -(.6.x) -
ox 2 ox2

+ q [f(x,t) +.6.X~~ + ~(.6.X)2~:~] +0(.6.X)3,

which, upon simplification, gives us

of __ ( _ ).6.x of ~ (.6.x? 02f 0(.6.X)3 0(.6.)
ot - p q.6.t ox + 2 .6.t ox2 + .6.t + t.

In order to obtain a limiting equation, assume that for small .6.x and .6.t, there are
constants f3 and D such that approximately,

.6.x 1 (.6.X)2
(p - q) - = f3 and - -- = D .

.6.t 2 .6.t

1
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Recalling that q = 1 - p, these approximations tell us that in the limit we need

1 ( f3~x)
p = 2 1 + 2D and q = ~ (1 _ f3~x)

2 2D'

Going to the limit then, we arrive at the partial differential equation

of = _ (3 of + D 0
2

f .
at ax ax2

Using the Fourier transform, this equation can be solved to get

1 [1 (X - I-l) 2]f(x, t) = o~ exp -2 -0- ,where I-l = (3t, and 0 = V2Dt . (1)

The steps of this method are outlined in Problem 3 below.

There is an alternative way to reach this conclusion. After n steps, the particle will
have made a certain number of steps to the right, say Rn , and a certain number of steps
to the left, say Ln. Then Rn +Ln = nand X n = (Rn -Ln)~x. Hence, X n = (2Rn -n)~x.

Note that Rn is a binomial random variable with parameters nand p. Thus, the central
limit theorem tells us that the distribution of Rn, and hence of X n , is approximately
normal. Further, the mean of position is

(3(~X)2
E(Xn) = (2E(Rn) - n)~x = (2(np) - n)~x = n~x(2p - 1) = n ~,--, ,

where we have used the formula for p above. Hence, the mean of position is

(
(3~x) ~ = ( ~ ) (3(~x)2

n 2D x n t 2D~t

However, in the limit as n gets larger, we have t = n~t and (~X)2/ ~t = 2D. Thus, the
mean of position is simply I-l = f3t.

Next, continuing this line of reasoning, we argue that the variance of position is

Var(Xn) = Var((2Rn - n))~x) = Var(2Rn~x) = 4(~x)2Var(Rn) .

But the variance of R n is npq. Hence, the variance of position is

[
2]2 2 1 (3~x 1 (3~x (~X)2 (3~x4(~x) npq = 4(~x) n- (1 +-) - (1 --) = --(n~t) 1- (-)

2 2D 2 2D ~t 2D'

where we have used the formulas for p and q above. Finally, going to the limit, and noting

again that t = n~t and 2D = (~X)2 / ~t, we conclude that the variance of position is
0 2 = 2Dt. Thus, in the limit, the distribution of position is approximately normal with

2
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--- -

mean fl = /3t and variance a = y'2Dt. This result is the same as the one we obtained
earlier through use of the partial differential equation.

A stochastic process is a family of random variables X(t), where X(t) represents
the state of the process at time t. In our case, the state of the process is the position of
the particle along the real line. A process is said to have stationary increments if for
any t, the distribution of the increment X(s + t) - X(s) depends only on t, the length
of the time interval. Further, if the increments are independent for any set of disjoint
intervals, the process is said to have independent increments.

Since the continuous process above, with transition distribution function (1), was
derived as the limit of a discrete process that has stationary and independent increments,
it is reasonable to expect that the limiting process would also have these two properties.
A continuous process with transition distribution function (1), is called an Einstein­
Wiener process. The parameter /3 is called the drift coefficient, and the parameter D
is called the diffusion coefficient.

2. The Ornstein-Ehrenfest Model For a positive integer a, consider a random
walk in which, at each point in time, if the process is at position j tlx, it moves one
step to the right with probability (a - j)/2a and one step to the left with probability
(a + j)/2a, when -a < j < a. If j = a then it moves to the left with probability 1, and
if j = -a it moves to the right with probability one.

Denote by 1f-;n) the probability that the process is at point jtlx at time ntlt. Then,
by conditioning on the next state, we can write

(n+l) _ a - j + 1 (n) a + j + 1 (n)
1fj - 2a 1fj_l + 2a 1fj+l'

for each j = 1,2, ... , and n = 0,1, .... Consider this process in the limit when the bound

a is large, and the tlx and tlt are small. For a fixed position x and time t, subject to
x = j tlx and t = ntlt, suppose we have the approximation

1f)n) ~ f(x, t)tlx ,

where f is some function of x and t. From the recurrence formula above, we see that for
such an approximation to hold, we need approximately

a-j+1 a+j+1
f(x, t + tlt) = 2 f(x - tlx, t) + f(x + tlx, t) .

a 2a

3
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Assuming f is twice continuously differentiable, the Taylor series expansion yields

of a - j + 1 [ 0f 1 02f]f(x, t) + .6.t-;:;- + O(.6.t)2 = f(x, t) - .6.x~ + _(.6.X)2 !:l 2
ut 2a uX 2 uX

a + j + 1 [ 0f 1 0
2f]+ - f(x, t) +.6.x Ox + 2(.6.X)2 ox2 + O(.6.X)3 ,

which, upon simplification, gives

of = _l_ f (x, t) +~ of + a + 1 (.6.X)2 0
2
f + O(.6.x)3 + O(.6.t) .

ot a.6.t a.6.t Ox a 2.6.t ox2 .6.t

In order to obtain a limiting equation, assume that for small .6.x and .6.t, and large a, we
have approximately,

1 (.6.X)2
a.6.t = c-1 and --- = D

2.6.t '
for some constants c and D. Going to the limit then, we arrive at the partial differential
equation

of _ o(xf) D 02 f
ot -c~+ ox2·

This equation is not so easily solved as in the previous case. However, under the boundary
conditions

of(x, t)
xf(x, t) --+ 0 , ox --+ 0 as x --+ ±oo ,

and using the Fourier transform, the equation can be transformed into a first order,
variable coefficient hyperbolic equation. This hyperbolic equation can then be solved
using the method of characteristics. This method of solution is outlined in Problem 4

below.

Suppose the particle starts at a point Xo. Thus, the initial density of position is a

dirac-delta function centered at the point Xo. Then the solution is found to be

f(x, t) = ~ exp [_~ (X - f-l)2]
CJy 27f 2 CJ '

where f-l = xoe-ct and

CJ2 = ~ (1- e-2ct ) .

A continuous process with stationary and independent increments, and having this tran­

sitional distribution function, is called an Ornstein-Ehrenfest process.

4
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where

.....

Exercises

1. Derive the Einstein-Wiener process by noting that the position of the particle is
x = j6x, where j = Xl + X 2 + ... X n with t = n6t, and the Xi are independent
and identically distributed random variables which have value +1 with probability
p, and value -1 with probability q = 1 - p. Take p = q = 1/2.

2. (a) Use the formulation in the previous exercise to simulate the random walk for
p = q = 1/2, and a specified diffusion coefficient D. Restrict 6x and 6t so that
D = (6X)2/26t. (b) Use the simulation model to test that in the limit as 6x -+ 0
and 6t -+ 0, subject to D = (6X)2/26t, the distribution of position, for fixed time
t and given D, is normal with mean 0 and variance CJ2 = 2Dt.

3. Solve the partial differential equation

of = _(3of + D02f .
ot ox ox2

for the Einstein-Wiener process. Use the Fourier transform, and the following steps.
(a) The Fourier transform of an absolutely integrable, and piecewise continuous
function 9 on (-00, 00), is defined by

1 /00 .F[g](y) = ..j'h -00 g(x)e-~YXdx .

Multiply the differential equation through by e-iyx and integrate with respect to
x over the interval (-00, (0). Then use integration by parts twice to obtain the
equation

~~ = (-i(3y - D y2) </J(y, t) ,

</J(y, t) = ~ /00 f(x, t)e-iYXdx .
v 21f -00

In doing the integrations by parts, assume that

'() of (x, t)j x, t -+ 0 , -+ 0 as x -+ ±oo .

(b) Solve the differential equation for </J to get

</J(y, t) = </J(y, 0) exp ( -i(3ty - Dty2)

Note that </J(y,O) is the Fourier transform of f(x, 0), the density of the location of
the particle at time t = O.

5
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(c) Now make use of the following two properties of the Fourier transform:

2 1 2/(1) For f(x) = e-x , F[J](y) = .,fie-Y 4,

and

(2) For g(x) = f(ax + b), a # 0, F[g](y) = I~I eiy(b/a) F[J](y/a) .

Thus conclude that

For g(x) = e-(ax+b)2 , a # 0 , F[g](y) = _1_eiY(b/a)e-y2/4a2
.,filal

- 1 h(x, t) ,f(x, t) - .j27f

(d) Set b/a = -f3t and 1/4a2 = Dt, and use the previous results to conclude that

¢(y, t) = ¢(y, 0) exp [(-if3y - Dy2) t] = ¢(y, O)F[h(·, t)](y) ,

where

1 [1 (x - p,(t) )2]h(x, t) = a(t) exp -2 a(t) , p,(t) = f3t, a(t) = v2Dt .

(e) Finally, the Fourier transform has the property that

F[J * g] = yl2';F[J]F[g] , where f * g(x) = i: f(u)g(x - u)du .

Use this property to show that

1 rX)
f(x, t) = .j27f J-

oo
f(u, O)h(x - u, t)du .

In particular, if the particle starts that the origin, then we can view the initial

density of position, f(x, 0), as a dirac delta function and thus deduce that in this

case

which is the expression (1) above.6 Solve the partial differential equation

1~/ of _ o(xf) D 02 f
TI' v ot - c ox + ox2'

for the Ornstein-Ehrenfest process. Use the Fourier transform (see definition in
previous problem), and the following steps. (a) Multiply the differential equation

6
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through by e-iyx and integrate with respect to x over the interval (-00, (0). Then
use integration by parts three times to obtain the equation

a¢ = _cya¢ _ D y2¢,
at ay

where
,.1..( ) - 1 /00 f( ) -iyx'f' y, t - rn= x, t e dx .

v 27f -00
In doing the integrations by parts, assume that

af(x, t)
xf(x, t) -+ 0, and C\ -+ 0, as x -+ ±oo .

(b) Introduce the integrating factor

I(y) = exp (~y2)

and show that u(y, t) = I(y)¢(y, t) satisfies the hyperbolic equation

au au
at + cy ay = 0,

subject to the initial condition u(y,O) = uo(y) = I(y)¢(y, O) for -00 < Y < 00.

Note that ¢(y,O) is the Fourier transform of f(x, 0), the density of the location of
the particle at time t = O.

(c) Use the method of characteristics to solve the previous hyperbolic equation and
conclude that

u(y, t) = Uo (ye- ct ) , for - 00 < Y < 00 and t 2:: 0 .

Then, using the definitions of u(y, t) and uo(y), deduce that

¢(y, t) = exp ( _~(J2(t)y2) ¢ (ye- ct ,0) , where (J2(t) = ~ (1 _ e-2ct )

1 .
¢(y,O) = rn=e- tyXo

.
v 27f

In this case, use the previous result to conclude that

(d) To simplify the analysis, assume that the particle starts at a point Xo. Thus,
the initial density of position is a dirac-delta function centered at the point Xo. It
follows that

() 1 (1 22 . )¢ y, t = /2if exp -"2(J (t)y - ZYJ-L(t) , where J-L(t) = xoe-ct .

7
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(e) Set b/a = -/-L(t) and 1/4a2 = (1/2)a2 (t), and use the result of part (c), Problem
3, to conclude that

c/J(y, t) = F[r(o, t)](y) ,

where

[ ( )2]1 1 x - /-L(t)
r (x, t) = a (t) y'21f exp - "2 a (t)

Thus, f(x, t) = r(x, t), which is the solution given above for the Ornstein-Ehrenfest
model.

8



chapter 4. hws 231

4.4.1 Simulation
A Matlab function was written to simulate a random walk based on the Einstein-Wiener
process to verify that the distribution of the final position of the walk is normally distributed
with mean = βt and variance = 2Dt (more details in the report).

4.4.2 Purpose and design of project

Nature of the project

We are solving problem #2 as described in the following screen shot (taken from the class
handout)

Short background on the problem: In this project we are asked to verify an analytical result
derived in a handout given in the class called ’Continuos approximation to random walk’.

A random walk is formulated, by proposing that π(n)
j which is the probability that the position

of a particle at x = j∆x and at time n∆t can be expressed as f(x, t)∆x, where f(x, t)
represents a density per unit length, which gives a measure of the particle being at that
position x at time t.

Starting with this and applying a limiting argument lead to a partial differential equation
whose solution is the normal distribution function with certain mean and variance. However,
the condition for arriving at the PDE was that as we make ∆t and ∆x small, we needed to
keep the ratio (∆x)2

∆t
constant.

In this assignment, we simulate a random walk as ∆t and ∆x are made smaller and smaller
subject to this same condition to verify if the distribution of the final position of the random
walk converges to the solution of the PDE which is normal distribution and if the converged
distribution will have the same variance of 2Dt and same mean of βt as does the solution of
the PDE.

The details of the theoretical derivation is shown in the above mentioned handout. A diagram
below is made to help illustrate the overall purpose of this assignment. In this assignment,
we are working on the flow shown on the right side below.
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Figure 4.1: Random walk simulation to verify the Einstein-Wiener analytical derivation

Questions we are investigating

These are the questions we are trying to answer in this project

1. Does the distribution of the random walk final position generated by increasing the
number of steps for fixed t (total time of the random walk) while keeping the ratio
(∆x)2
∆t

constant (equal to 2D), converges to a normal distribution (which is the solution
of the Einstein-Wiener process model)?

2. Does the variance of the above distribution converges, as ∆t → 0 and ∆x → 0 under
the above mentioned condition of keeping (∆x)2

∆t
, to the analytical variance of 2Dt and

the theoretical mean of βt?
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Few words on the program

The input to the program is t,D, β where t is the total random walk time and D, β represents
the terms as shown in the diagram above.

A distribution of the final random walk position is generated by running the random walk
simulation a number of times (called the sample size). In each such run, we use a specific
number of steps. The number of steps is increased, and we generate another distribution.
We keep doing this and plot each distribution as the number of steps is increased.

At the end of the simulation, to verify that the distribution in the limit is normal. A quantile-
quantile plot is made to compare the generated histogram with the theoretical standard
normal distribution to see if the result is close to a straight line or not. Also a plot is made
showing the convergence of the variance of the current distribution as number of steps is
increased by keeping track of the relative error in the variance. In addition, the RMS error
between the standard normal and the current distribution is calculated and plotted as a
function of delta(T) as delta(T) is made smaller and smaller. The program is written in
Matlab version 2007a and uses the statistics toolbox.

The following is a description of the algorithm of the program

We simulate a random walk, where each step made is either to the left or to the right with
probability q and p respectively.

Let Yi be either 1 or −1 depending if we make a right or a left step. Hence

Yi =
{

1 probability p

−1 probability q

and now if we let Xn = Y1 + Y2 + · · ·+ Yn then the final position of the random walk can be
written as

Xn = ∆x
n∑

j=1

Yj

where ∆x is the step size. The step size is found by solving ∆x =
√
2D∆t where D is the

diffusion parameter which is an input, and ∆t is the current time step found by dividing the
total simulation fixed time t, which is an input, by the current number of steps n.

∆t = t

n

This program handles a general value for β other than zero. To be able to accomplish this,
we need to determine the correct starting step size n to avoid the problem with coming up
with a value for the probability p being larger than 1. So, this was done in the initialization
stage using this formula

starting n = round

(
tβ2

2D

)
+ 1

And the simulation was started from the above n and not from 1.
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A note about the quantile-quantile plot

To answer the first question of this simulation, which is to determine if the final position
distribution converges to normal distribution with mean βt and variance 2Dt, a quantile plot
was used. In this plot, the quantile for the standard normal distribution was plotted against
the quantile of the distribution of the final position.

The x− axis of the quantile-quantile plot was found as follows

n = sample_size
x = F−1(([1 : n]− 0.5)/n

Where F−1 is the inverse of the CDF for the standard normal distribution (the matlab
function norminv() was used for this). While the y − axis is the quantile of the actual data
(the sample data of the final distribution of the random walk position). This was found by
sorting the data from small to large and then using the resulting sorted vector as the y values.
Notice that the distribution was already standardized using

z(i) = y(i)− µ

σ

Where µ = βt and σ =
√
2Dt,

4.4.3 Summary of numerical results
A number of experiments were performed for different input parameters. The table below
lists the variance of the distribution of the final position as the number of steps is increased.
The run parameters are also shown

Experiment #1 β = 2, t = 2, D = 3, n = 100

starting step number= 2, β = 2, t = 2, D = 3, f inal p = 0.557, f inal q = 0.443

sample size 5000, number of bins 40, seed= 123456

n (number of steps) Variance True variance (2Dt) ∆t

2 3.92 12 1
7 9.73 12 0.2857
12 10.43 12 0.1667
17 10.9 12 0.1176
22 11.37 12 0.0909
27 11.19 12 0.0741
32 12.02 12 0.0625
· · · · · · · · · · · ·
67 12.05 12 0.0299
72 11.89 12 0.0278
77 12.16 12 0.0260
82 11.99 12 0.0244
87 11.78 12 0.0230
92 12.03 12 0.0217
97 11.88 12 0.0206
102 11.47 12 0.0196
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Experiment #2 β = 2, t = 2, D = 3, n = 50

Since the parameters t,D, β, then running for n = 50 will produce the same numerical values
already contained in the first experiment when looking at the table above up to n = 50 (the
program starts by seeding the random number generator, so nothing will change here and we
will just produce a subset of the result already produced in first experiment). So I will just
show the final plot, showing the convergence of the histogram and the quantile-quantile plot
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Experiment #3 β = 2, t = 2, D = 3, n = 20

Again, as described at the start of experiment 2 above, this is a subset of the first experiment.
We will show the final plot only to show how close to the standard normal the final position
histogram is.
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Experiment #4 β = 2, t = 2, D = 3, n = 7000

The following 2 experiments are not required to do, but they are extra experiments I already
done and included here.

starting step number= 400, β = 5, t = 100, D = 3, f inal p = 0.623, f inal q = .377

sample size 5000, number of bins 60, seed= 123456

final ∆x = 0.2945 final ∆t = 0.0145

Experiment number n (number of steps) Variance True variance (2Dt) ∆t

1 400 1.89 600 0.2392
2 900 340 600 0.1089
3 1400 420 600 0.0705
4 1900 464 600 0.0521
5 2400 504 600 0.0414
6 2900 514 600 0.0343
7 3400 525 600 0.0293
8 3900 546 600 0.0255
9 4400 536 600 0.0226
10 4900 533 600 0.0203
11 5400 552 600 0.0185
12 5900 558 600 0.0169
13 6400 567 600 0.0156
14 6900 583 600 0.0145
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Experiment #5 n = 160, β = 5, t = 1, D = 3

starting step number= 5, β = 5, t = 1, D = 3, f inal p = 0.579, f inal q = 0.421

sample size 5000, number of bins 50, seed= 123456

final ∆x = 0.1907, final ∆t = 0.0061

Experiment number n (number of steps) Variance True variance (2Dt) ∆t

1 5 1.019 6 0.2
2 10 3.4 6 0.1
3 15 4.09 6 0.0667
4 20 4.74 6 0.05
5 25 5 6 0.4
6 30 5.18 6 0.0333
7 35 5.43 6 0.0286
8 40 5.466 6 0.0250
9 45 5.3 6 0.0222
10 50 5.66 6 0.02
11 55 5.4 6 0.0182
12 60 5.85 6 0.0167
· · · · · · · · · · · · · · ·
31 150 5.78 6 0.0065
32 155 5.909 6 0.0063
33 160 5.75 6 0.0061
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4.4.4 Discussion of numerical results
From the above tables we observe that as ∆t becomes smaller, the variance of the sample of
the final position becomes closer to the variance predicted by the model which is 2Dt.

The mean remains the same which is βt.

We observe that if the total walk time is large (experiment #4) , then more steps are needed
to bring ∆t to be small enough so that the variance becomes close to 2Dt.. This answers the
second question we are set to solve in this project which is Does the variance of the above
distribution converges, as ∆t → 0 and ∆x → 0 under the above mentioned condition of
keeping (∆x)2

∆t
, to the analytical variance of 2Dt and the theoretical mean of βt?

Now to answer the first question of convergence of the histogram of the final position to the
normal.

Looking at the quantile plots we observe that as more steps are used (hence smaller ∆t and
smaller ∆x) then the quantile-quantile plot was tilting closer and closer to the straight line
at 450 which would be the case when we plot the quantile of 2 data sets coming from the
same distribution. This concludes that the final distribution of the random walk position
converges to normal distribution with the above parameters.
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The following diagram below shows a run where on the left side there is a plot showing the
quantile plot when the number of steps is small. The plot on the right side shows the quantile
plot at the end of the run when n was large. We see that the quantile plot line is now almost
exactly over the 450 line, confirming that the data is coming from normal distribution.

Therefore, we have answered the 2 questions this simulation was designed to answer.

4.4.5 Final observation
In doing the above experiments, it was observed that the relative error in the variance of
the final position as n increased does approach the true variance 2Dt but the convergence
is not smooth. As the relative error (around 5% to 10%), then increasing n more can cause
the error to sometimes increase and not decrease as one would expect. Meaning the relative
error is not monotonic decreasing as n increases. However, as n becomes very large, the trend
is for the relative error is to decrease. I can only contribute this behavior to some sort of
statistical error. This needs to be investigated more.
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4.4.6 Graded
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4.4.7 Source code listing
Matlab code is� �
function nmaHW4math504()
%function nmaHW4math504()
%Solve problem #2 in second handout, Math 504
%spring 2008 CSUF
%by Nasser Abbasi feb 8,2008

%Developed on MATLAB Version 7.4.0.287 (R2007a)
%Running on Win XP. Uses statistics toolbox

%
% M A I N C O N F I G U R A T I O N S E C T I O N
%
params.D = 3; % Diffusion parameter
params.T = 2; % total running time
params.beta = 2; % drift parameter

%
%
% These parameters are derived automatically from the above
%
params.trueVar = 2*params.D*params.T;
params.trueStd = sqrt(params.trueVar);
params.trueMean = params.beta*params.T;

%
% internal program C O N F I G U R A T I O N
% These are configutation parameters for displying
% and for setting sample size and number of steps
% Adjust as needed
%

config.seed = 12345;
config.nBins = 10;
config.sample_size = 5000;
config.max_number_of_steps = 20;

%
%determine the starting number of steps such that 'p' comes out to be
%less than 1. see report for derivation of this formula
%
config.starting_step = round(params.T*params.beta^2/(2*params.D)) +1;

%add the above number of steps to the starting step to
%obtain max number of steps

config.max_number_of_steps = config.starting_step+config.max_number_of_steps;

%
% set the number of steps to skip at each simulation else this
% will take too long to run
%
config.n = config.starting_step:5:config.max_number_of_steps;

%
% Rest are internal data structures to keep track of
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% simulation data during runs
%
config.varianceVector = zeros(length(config.n),1);
config.rmsVector = zeros(length(config.n),1);
config.delT = zeros(length(config.n),1);
config.standarize = 1; %set this to zero if you do not standarize

%
% Determine the theoretical quantiles for the standard normal
% distribution to use in the plots generated
%
config.qp=norminv( ((1:config.sample_size)-.5)/config.sample_size,0,1);

%
% I N I T I A L I Z A T I O N
% Create the figure and seed the random number generator
%

makeFigure();
hold on;
rand('state',config.seed);

%
% Here we go, let start the fun part
%

for i = 1:length(config.n)
config=simulate_one_walk( params, config, config.n(i), i );

end

end

%%%%%%%%%%%%%%%%%%%%%%
%
%
%%%%%%%%%%%%%%%%%%%%%%
function config=simulate_one_walk( params, config, number_of_steps, ...

current_experiement_number )

%
% generate delt(T) and del(X) and p and q from the input
%
config.delT(current_experiement_number) = params.T/number_of_steps;
delX = sqrt(2*params.D*config.delT(current_experiement_number));
p = 1/2 * (1 + params.beta*delX/(2*params.D));
q = 1-p;

[normalizedPosition,position] = generate_distribution(p,q,delX,...
number_of_steps,params,config);

config.varianceVector(current_experiement_number) = var(position);

if config.standarize
pos=normalizedPosition;

else
pos=position;

end
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%
% Now that we have a distribution generated, lets find the rms error
%
[config,truePDF,estimatedPDF,estimatedFit,xForSimulation,xForNormal]=...

getRMSerrorInCurrentPDF(pos,config,params,p,q,...
current_experiement_number);

%
%Ok, we have all the data, lets make a plot
%
updatePlots(number_of_steps,normalizedPosition,...

delX,params,config,truePDF,estimatedPDF,p,q,...
xForNormal,current_experiement_number);

end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% This function generates a sample
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [normalizedPosition,position]=generate_distribution(p,q,...

delX,number_of_steps,params,config)

%
% generate 2 arrays to hold the final positions in. One
% for standardized position and for not standarized position
% (was not sure which to use at one point, so I keep both)
%
position = zeros(config.sample_size,1);
normalizedPosition = position;

for i = 1:config.sample_size
y = makeOneRandomWalk(p,q,number_of_steps);
position(i) = sum(y)*delX;
normalizedPosition(i) = (position(i)-params.trueMean) / params.trueStd;

end

end
%%%%%%%%%%%%%%%
%
%
%%%%%%%%%%%%%%%
function y=makeOneRandomWalk(p,q,number_of_steps)

y = rand(number_of_steps,1);
y(y<=q) = -1;
y(y>q) = 1;

end
%%%%%%%%%%%%%%%
%
%
%%%%%%%%%%%%%%%
function updatePlots(current_number_of_steps,...

normalizedPosition,delX,params,config,truePDF,...
estimatedPDF,p,q,xForNormal,current_experiement_number)

subplot(3,2,1:2);
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str1='first step[$%d$] current step[$%d$] sampleSize[$%d$] $p=[%4.3f]$ $q=[%4.3f$] $\\beta t=[%4.3f]$ $D = [%d]$ $t = [%d]$';
cla;
bar(config.xout,estimatedPDF,'y'); %relative frequency

line1=sprintf(str1,config.starting_step,current_number_of_steps,...
config.sample_size,p,q,params.trueMean,params.D,params.T);

title(char(line1),'fontsize',10,'interpreter','latex');
xlabel(sprintf('y'),'fontsize',10,'interpreter','latex');
ylabel('pdf(position)');
set(gca,'FontSize',8);
hold on;
plot(xForNormal,truePDF,'--r','LineWidth',2);

ymax = max(truePDF);
ylim([0,ymax+.5*ymax]);
if config.standarize

xlim([-4,4]);
else

xlim([params.trueMean-4*params.trueStd,...
params.trueMean+4*params.trueStd]);

end
legend('current pdf','limit pdf');
drawnow;

%
% relative error in variance plot
%
subplot(3,2,3);
cla;
line([config.n(1) config.n(end)],[0 0]);
z=repmat(params.trueVar,current_experiement_number,1);
relativeErrorInVar = ...

((abs(z-config.varianceVector(1:current_experiement_number)))./z)*100;

line(config.n(1:current_experiement_number),relativeErrorInVar);
xlim([config.n(1) config.n(end)]);
ylim([0 80]);

line1 = sprintf('relative error in variance ($2DT$)');
line2 = 'true var$=%4.1f$, current var$=%4.1f$';
line2 = sprintf(line2,params.trueVar,config.varianceVector(current_experiement_number));
title(char(line1,line2),'fontsize',10,'interpreter','latex');
ylabel('relative error percentage','fontsize',10);
xlabel('number of steps (n)','fontsize',10);
%set(gca,'XTick',1:config.max_number_of_steps);
set(gca,'FontSize',8);
drawnow;

%
% RMS error plot
%
subplot(3,2,4);
cla;

plot(log2(config.delT(1:current_experiement_number)),...
log2(config.rmsError(1:current_experiement_number)),'r-');

line1=sprintf('\\ \\ \\ \\ \\ \\ RMS error in PDF as $\\bigtriangleup{T}\\rightarrow{0}$');
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line2=sprintf('$\\bigtriangleup{T}=%6.4f \\: \\bigtriangleup{X}=%6.4f \\:\\: rms=%6.5f$',...
config.delT(current_experiement_number),delX, ...
config.rmsError(current_experiement_number));

title(char(line1,line2),'fontsize',10,'interpreter','latex');

ylabel(sprintf('$log_2$(rms error)'),'fontsize',10,'interpreter','latex');
xlabel(sprintf...

('$log_2(\\bigtriangleup{T})$'),'fontsize',10,'interpreter','latex');

xlim([-6,1]);
ylim([-10,1]);
set(gca,'FontSize',8);
drawnow;

%
% quantile plot
%
subplot(3,2,5:6);
cla;
sp=sort(normalizedPosition);
plot(config.qp,sp,'r.');

xlabel('quantile of normal distribution');
ylabel('quantile of final position');
title('Quantile-Quantile plot','fontsize',10);
hold on;
line([-4 4],[-4 4]);
legend('data','normal distribution','Location','NorthWest');
set(gca,'FontSize',8);
xlim([-4,4]);
ylim([-4,4]);
drawnow;

end
%%%%%%%%%%%%%%%%%%
% Called to obtain the RMS error between the normal distibution
% and the current sample distribution
%
%%%%%%%%%%%%%%%%%%%%
function [config,truePDF,estimatedPDF,estimatedFit,...

xForSimulation,xForNormal]=getRMSerrorInCurrentPDF(position,config,...
params,p,q,current_experiement_number)

mu=mean(position);
stdd=std(position);

xForSimulation = linspace(mu-4*stdd,...
mu+4*stdd,config.nBins);

[estimatedPDF,config.xout] = hist(position,xForSimulation);
config.binWidth = abs( abs(config.xout(2))-abs(config.xout(1)));
currentArea = config.binWidth*sum(estimatedPDF);
estimatedPDF = estimatedPDF/currentArea;

if config.standarize
stdd = 1;
mu = 0;

else
stdd = params.trueStd;
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mu = params.trueMean;
end

xForNormal = linspace(mu-4*stdd, mu+4*stdd, config.nBins);
truePDF = pdf('Normal',xForNormal,mu, stdd);

diffPDF = truePDF-estimatedPDF;

config.rmsError(current_experiement_number) = ...
norm(diffPDF)/sqrt(length(diffPDF));

estimatedFit = pdf('Normal',xForSimulation,params.trueMean, ...
stdd*sqrt(4*p*q));

end
%%%%%%%%%%%%%%%%%
%
%
%%%%%%%%%%%%%%%%%%%%
function makeFigure()

figure;
set(gcf,'Position',[200 100 700 600]);
set(gcf,'Resize','off')
set(0,'DefaultTextinterpreter','none');
axpos = get(gca,'pos');
h = title({'',''});
extent = get(h,'extent');

% position is [left, bottom, width, height];
set(gca,'pos',[axpos(1) axpos(2) axpos(3) axpos(4)-.3*extent(4)]);

end� �
To run, save it to your Matlab working directory and type the command nmaHW4math504()
from the console.

4.5 Wed 2/27/2008

Grade: 2/2.

Problem 3.9 from handouts (probability distribution related to record time distribution)
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4.5.1 Problem

Figure 4.2: problem 3.9 from lecture notes

4.5.2 Solution

Part (A)

We first covert the sequence of random variables Xn to sequence of random variables Ii as
described. A diagram below will also help illustrate this conversion

We need to show that P (Ii = 1) = 1
i
. Using the hint given, we write (for i ≥ 2)

P (Ii = 1) = P (X1 < Xi, X2 < Xi, · · · , Xi−1 < Xi)

Conditioning on Xi, and assuming the pdf of X is given by f(x) we write

P (Ii = 1) =
∞∫

−∞

P (X1 < Xi, X2 < Xi, · · · , Xi−1 < Xi|Xi = x) f(x) dx
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Since the Xj random variables are independent from each others, we break the above ’and’
probabilities to products of probabilities.

P (Ii = 1) =
∞∫

−∞

P (X1 < Xi|Xi = x) P (X2 < Xi|Xi = x) · · ·P (Xi−1 < Xi|Xi = x) f(x) dx

But P (Xj < Xi|Xi = x) = F (x), hence the above becomes

P (Ii = 1) =
∞∫

−∞

[F (x)]i−1 f(x) dx (1)

But f(x) = F ′(x), hence the above becomes

P (Ii = 1) =
∞∫

−∞

[F (x)]i−1 F ′(x) dx

Now do integration by parts (let dv = F ′(x) and u = [F (x)]i−1

P (Ii = 1) = [uv]∞−∞ −
∞∫

−∞

vdu

=
[
F (x) [F (x)]i−1

]∞
−∞

−
∞∫

−∞

F (x) (i− 1) [F (x)]i−2 F ′(x) dx

=
[
F (x)i

]∞
−∞

− (i− 1)
∞∫

−∞

[F (x)]i−1 F ′(x) dx

But
[
F (x)i

]∞
−∞

= 1− (0) = 1 hence the above becomes

P (Ii = 1) = 1− (i− 1)

P (Ii=1)︷ ︸︸ ︷
∞∫

−∞

[F (x)]i−1 F ′(x) dx

But
∞∫

−∞

[F (x)]i−1 F ′(x) dx = P (Ii = 1) since it is the integral we started with (see (1)), so

move it to the left side, and the above becomes

P (Ii = 1) = 1− (i− 1)P (Ii = 1)
P (Ii = 1) + (i− 1)P (Ii = 1) = 1
P (Ii = 1)i = 1

Hence

P (Ii = 1) = 1
i
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Part(B)

Nn is number of records up to time n. We need to find E(Nn) and V ar(Nn)

Nn = I1 + I2 + · · ·+ In

E(Nn) = E(I1 + I2 + · · ·+ In)
= E(I1) + E(I2) + · · ·+ E(In)

But E(I1) = 1× P (I1 = 1) + 0× P (I1 = 0) = P (I1 = 1) and similarly, E(Ii) = P (Ii = 1)

Hence

E(Nn) = P (I1 = 1) + P (I2 = 1) + · · ·+ P (In = 1)

= 1 + 1
2 + 1

3 + · · ·+ 1
n

=
n∑

i=1

1
i

So E(Nn) is a harmonic number. In the limit, this sum is infinity . Hence number of records
is infinite. i.e. if we wait long enough, we will always obtain a new record.

To find the variance of Nn, we use the hint and assume Ii are independent of each others (i.e.
when a record occurs is independent of when previous record occurred), hence the covariance
terms drop out (since all zero) and we are left with the sum of variances

V ar(Nn) = V ar(I1 + I2 + · · ·+ In)
= V ar(I1) + V ar(I2) + · · ·+ V ar(In)

But
V ar(Ii) = E

(
I2i
)
− E(Ii)2

But E(I2i ) = 12 × P (Ii = 1) + 02 × P (I1 = 0) = P (Ii = 1) = 1
i

Hence E(I2i ) = 1
i

, therefore

V ar(Ii) =
1
i
− P (Ii = 1)2

= 1
i
−
(
1
i

)2

therefore
V ar(Nn) =

n∑
i=1

1
i
−
(
1
i

)2

Since
n∑

i=1

1
i
= ∞ as n gets very large, and

n∑
i=1

1
i2
= π2

6 as n gets very large, then

V ar(Nn) = ∞ as n gets very large.
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Part(C)

We need to find Pr (T = n) where T is the time of the first record (not counting n = 1 which
is always a record ofcourse).

Pr (T = 2) = Pr (I2 = 1) = 1
2

Now

Pr (T = 3) = Pr (no record at T=2,record at T=3)

Since having no record at T = 2 and having a record at T = 3 are indepdent events the
above becomes

Pr (T = 3) = Pr (no record at T=2) Pr (record at T=3)
= (1− Pr (I2 = 1))× Pr (I3 = 1)

=
(
1− 1

2

)(
1
3

)
= 1

2 × 1
3

Similarly,

Pr (T = 4) = Pr (no record at T=2,no record at T=3,record at T=4)
= (1− Pr (I2 = 1))× (1− Pr (I3 = 1))× Pr (I4 = 1)

=
(
1− 1

2

)(
1− 1

3

)(
1
4

)
= 1

2 × 2
3 × 1

4
= 1

3 × 1
4

Similarly,

Pr (T = 5) = Pr (no record at T=2,no record at T=3,no record at T=4,record at T=5)
= (1− Pr (I2 = 1))× (1− Pr (I3 = 1))× (1− Pr (I4 = 1))× Pr (I5 = 1)

=
(
1− 1

2

)(
1− 1

3

)(
1− 1

4

)(
1
5

)
= 1

2 × 2
3 × 3

4 × 1
4

= 1
4 × 1

5

Hence continuing this way, we see that

Pr (T = n) = 1
n (n− 1)
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Hence

Pr (T < ∞) = lim
k→∞

k∑
n=2

1
n (n− 1)

= lim
k→∞

(
k − 1
k

)
= 1

and

E(T ) = 2× Pr (T = 2) + 3× Pr (T = 3) + 4× Pr (T = 4) + · · ·

= 2
(
1
2

)
+ 3
(
1
2 × 1

3

)
+ 4
(
1
3 × 1

4

)
+ · · ·

= 1 + 1
2 + 1

3 + 1
4 + · · ·

=
∞∑
i=1

1
n

= ∞

Hence
E(T ) = ∞

4.6 Computing Assignment #3. Monday 3/3/2008
Craps game and inventory problem. Markov chain Problem description is
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4.6.1 Problem description

4.6.2 craps game

Summary of numerical results

The state probability transition matrix was entered and then raised to higher powers. This
is the numerical result
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To answer part (b) below, we need to run the system from different initial state vector (i.e.
different π(0)) and observe if the system probability state vector after a long time (i.e. π(∞))
will depend on the initial state vector or not. Here is the result for 3 different initial state
vectors. In diagram below we show the π(0) and to its right π(∞).
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Analysis of numerical results

part (a)

Yes. The powers of P n converges as n → ∞. This is seen by looking at the above sequence
of the P matrix where we see that the matrix P converges to the following limiting matrix
at around n = 81

We can say the following about the limiting matrix: As n → ∞ the matrix P converges to a
fixed value shown above. The entries P n

ij where j is a transient state goes to zero as n gets
large.

part (b)

From the above numerical result, we see that depending on the initial system probability
state vector π(0) we obtain a different system probability state vector π(n) as n gets very large.
This is because some states are transient (states {4, 5, 6, 8, 9, 10}). In the inventory problem
below, we see that we obtained a different result for this part since the inventory problem
has no transient states.

part (c) Let I be the set of all the possible states the system can be in. Hence from definition,
we write

π
(n)
j =

∑
i∈I

π
(0)
i P n

ij

Where π
(n)
j means the probability that the system will be in state j after n steps and P n

ij is
the n steps transition probability. Now take the limit of the above as n → ∞ we have

lim
n→∞

π
(n)
j = lim

n→∞

∑
i∈I

π
(0)
i P n

ij

=
∑
i∈I

lim
n→∞

(
π
(0)
i P n

ij

)
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Assume there are k states, we can expand

lim
n→∞

(
π
(0)
1 P n

1j + π
(0)
2 P n

2j + · · ·+ π
(0)
k P n

kj

)
But from part(a) we observed that in the limit, entries of each columns are not equal. Hence
P n
1j 6= P n

2j 6= · · · 6= P n
kj this means the above sum will produce a different value depending on

the initial state probability vector π(0). (Compare this to the inventory problem below, where
each entry in a column is the same, and we could factor it out of the sum and we reached a
different conclusion than here).

Hence we showed depending on the initial π(0) then limn→∞ π
(n)
j goes to different value as

confirmed by the numerical result shown above in part(a). Hence part(a) results could be
used to deduce part(b) conclusion.

4.6.3 Inventory problem

Summary of numerical results

An inventory program was written in Mathematica (please see appendix for full source code)
which generated the P matrix for an increasing values of n. The specification of the inventory
model is described in the question shown above. The value s = 3 and S = 5 was used.

The following are few results of the P matrix for an increasing values of n and the histogram
of the demand distribution used.

To answer part (b) below, we need to run the system from different initial state vector (i.e.
different π(0)) and observe if the system probability state after a long time (i.e. π(∞)) will
depend on the initial state vector or not. Since we know that

π(1) = π(0)P

π(2) = π(1)P = π(0)P (2)

π(3) = π(2)P = π(0)P (3)

· · ·
π(n) = π(0)P (n)
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And since P (n) = P n, then all what we have do is pick few π(0) vectors, and post multiply
them by P (n) for large n and see if we obtain the same π(n). Below is the numerical result
for this part showing the initial π(0) and the final π(n). I used n = 30 in all cases as this
showed it is large enough from the above numerical results. Here are the results. Below we
show result of 6 tests. In each one, π(0) is shown and to its right π(n).

Analysis of numerical results

Part (a)

Yes. The powers of P n converges as n → ∞. This is seen by looking at the above sequence
of the P matrix where we see that the matrix P converges to the following limiting matrix
at around n = 20

We can say the following about the limiting matrix: As n → ∞ the matrix P converges to
a fixed value shown above. Each column has the same entries in its rows. In addition, all
entries are non-zero. This implies that the chain contains no transient states. And since all
the values on the converged P matrix are positive, then we have only one closed set in the
chain, which contains all the states.

part (b)

Yes. There is a limiting state probability distribution in all cases. This is show by looking at
the numerical result above that shows for different initial probability state vector π(0) we ob-
tain the same probability state vector π(n) when n is large. So the final π(∞) does not depend
on which state the system starts from.

part (c)

In this part, we need to show given that P∞ converges to limiting fixed value, then the π
(∞)
k

is the same for all states k.

Let I be the set of all the possible states the system can be in. Hence from definition, we
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write
π
(n)
j =

∑
i∈I

π
(0)
i P n

ij

Where π
(n)
j means the probability that the system will be in state j after n steps and P n

ij is
the n steps transition probability. Now take the limit of the above as n → ∞ we have

lim
n→∞

π
(n)
j = lim

n→∞

∑
i∈I

π
(0)
i P n

ij

=
∑
i∈I

lim
n→∞

(
π
(0)
i P n

ij

)
Assume there are k states, we can expand

lim
n→∞

(
π
(0)
1 P n

1j + π
(0)
2 P n

2j + · · ·+ π
(0)
k P n

kj

)
But from part(a) we observed that limn→∞ P n

ij is a fixed value, which is the limit the transition
matrix converged to. In other words, P n

1j = P n
2j = · · · = P n

kj since all entries in the j column
are the same. Call this entry in jth column as k say. So k is a single number which represents
the one step transition probability from state i to state j when the system has run for a long
time. So we write the above as

lim
n→∞

π
(n)
j = k

(
π
(0)
1 + π

(0)
2 + · · ·+ π

(0)
k

)
now,

∑
i∈I

π
(0)
i is the sum of the probabilities of the system being in all its states at time zero,

which must be 1 hence
lim
n→∞

π
(n)
j = k

Hence we showed that regardless of the initial π(0) then limn→∞ π
(n)
j goes to some fixed values.

This shows that for any state j the probability that the system will be in that state after a long
time converges to a fixed value regardless of the initial state if the system transition matrix
converges in the limit. Hence part(a) results could be used to deduce part(b) conclusion.
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4.6.4 Graded assignment
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4.6.5 Appendix

Source code for craps problem

Mathematica notebook

source code for inventory problem

Mathematica notebook

4.7 Practice problems

Grade: 2/2.

These are 5 problems to practice using method of characteristics to solve first order liner pde.
The problems are listed in the handout

HWs/computing_assignment_3_craps_and_inventory/code/craps.nb
HWs/computing_assignment_3_craps_and_inventory/code/inventory.nb
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4.7.1 Problem 2
Solve

ut + (xt)ux = 0 (1)

u(x, 0) = 2x

Solution

Seek solution where u(s) = u(t(s) , x(s)) = constant,hence

du

ds
= ∂u

∂t

dt

ds
+ ∂u

∂x

dx

ds
= 0

Compare to (1) we see that dt
ds

= 1 or t = s and dx
ds

= xt, but since t = s then dx
ds

= xs, and
this has solution x = x0 exp

(
s2

2

)
but s = t , hence

x = x0 exp
(
t2

2

)
(2)

Now at t = 0, the solution is 2x0, but this solution is valid any where on this characteristic
line and not just when t = 0. hence

u(x, t) = 2x0

But x0 = x exp
(

−t2

2

)
from (2), hence

u(x, t) = 2x exp
(
−t2

2

)
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4.8 Problem 3
Solve

ut + (x sin t)ux = 0

u(x, 0) = 1
1+x2

Solution

Seek solution where u(s) = u(t(s) , x(s)) = constant,hence

du

ds
= ∂u

∂t

dt

ds
+ ∂u

∂x

dx

ds
= 0

Compare to (1) we see that dt
ds

= 1 or t = s and dx
ds

= x sin t, but since t = s then dx
ds

= x sin s,
and this has solution

ln x =
∫

sin (s) ds

x = x0 exp(− cos (s))

but s = t hence
x = x0 exp(− cos (t)) (1)

Hence
x0 = x exp(cos (t)) (2)

At t = 0 ,
x = x0 exp (−1)

Now we are told the solution at t = 0 is 1
1+x2 , or 1

1+[x0 exp(−1)]2but this solution is valid any
where on this characteristic line and not just when t = 0. hence

u(x, t) = 1
1 + [x0 exp (−1)]2

Replace the value of x0 obtained in (2) we obtain

u(x, t) = 1
1 + [x exp(cos (t)) exp (−1)]2

= 1
1 + x2 exp(2 cos (t)) exp (−2)

Hence

u(x, t) = exp (2)
exp (2) + x2 exp(2 cos (t))
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4.8.1 Problem 4
Solve

ut − (tx2)ux = 0

u(x, 0) = 1 + x

Solution

Seek solution where u(s) = u(t(s) , x(s)) = constant,hence

du

ds
= ∂u

∂t

dt

ds
+ ∂u

∂x

dx

ds
= 0

Compare to (1) we see that dt
ds

= 1 or t = s and dx
ds

= −tx2, but since t = s then dx
ds

= −sx2

hence we need to solve

dx

x2 = −sds

−1
x
= −s2

2 + x0

but s = t hence
−1
x
= −t2

2 + x0 (1)

Hence
x0 = −

(
1
x
− t2

2

)
(2)

At t = 0 ,
x0 = −1

x

Now we are told the solution at t = 0 is 1 + x, or 1− 1
x0
but this solution is valid any where

on this characteristic line and not just when t = 0. hence

u(x, t) = 1− 1
x0

Replace the value of x0 obtained in (2) we obtain

u(x, t) = 1− 1
−
( 1
x
− t2

2

)
= 1 + 2x

2− xt2

Hence
u(x, t) = 2− xt2 + 2x

2− xt2

To avoid a solution u which blow up, we need 2−xt2 6= 0, hence xt2 6= 2 , for example, x = 2
and t = 1 will not give a valid solution. so all region in x− t plane in which xt2 = 2 is not a
valid region to apply this solution at.

The solution breaks down along this line in the x− t plane
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To see it in 3D, here is the u(x, t) solution that includes the above line, and we see that the
solution below the line and the above the line are not continuous across it. ( I think there
is a name to this phenomena that I remember reading about sometime, may be related to
shockwaves but do not now know how this would happen in reality)
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4.8.2 Problem 5
ut − ux = xu

u(x, 0) = 2x

Solution

Nonhomogeneous pde first order.

(TO DO)
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4.9 Monday 3/10/2008

Grade: 2/2.

Problem 5.7 from lecture notes (Irreducible matrix, analytical problem)

4.9.1 Problem

4.9.2 Answer
Part (A) First note that Q0 = 0 and Q1 = 1.

Let us define β as the event {visit state m before state 0}, then we write

Qi = Pr (β|X0 = i)

But by conditioning on state of the chain at time 1 instead of time 0, we write1

Pr (β|X0 = i) =
k=m∑
k=0

Pr (β|X1 = k) Pr (X1 = k|X0 = i)

But Pr (β|X1 = k) = Qk by definition, and Pr (X1 = k|X0 = i) = Pik,Therefore the above
becomes

Qi =
k=m∑
k=0

QkPik

Since Qk = 0 and Qm = 1, we can rewrite the above as follows

Qi = 0 + Pim +
k=m−1∑
k=1

QkPik

= Pim +
k=m−1∑
k=1

QkPik

If we examine the sum more closely, we see it is a product of a vector and a matrix. Since if
we expand for few terms we see that

Q1 = P1,m + (Q1P1,1 +Q2P1,2 + · · ·+Qm−1P1,m−1)
Q2 = P2,m + (Q1P2,1 +Q2P2,2 + · · ·+Qm−1P2,m−1)

· · ·
Qm−1 = Pm−1,m + (Q1Pm−1,1 +Q2Pm−1,2 + · · ·+Qm−1Pm−1,m−1)

1Given an event β it is clear we can say

Pr (β|X0 = i) =
∑

k∈all states

Pr (β|X1 = k)Pik

since Pik is the probability of going from state i to state k in one step. This works since we assume the
Markov property which says the probability of transition to next state depends only on current state and
not on any earlier state (for an order 1 Markov chain).
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Which can be written as


Q1

Q2
...

Qm−1

 =


P1,m

P2,m
...

Pm−1,m

+


P1,1 P1,2 · · · P1,m−1

P2,1 P2,2 · · · P2,m−1

· · · ... ... · · ·
Pm−1,m Pm−1,2 · · · Pm−1,m−1




Q1

Q2
...

Qm−1



Let x =


Q1

Q2
...

Qm−1

 and let B =


P1,1 P1,2 · · · P1,m−1

P2,1 P2,2 · · · P2,m−1

· · · ... . . . · · ·
Pm−1,m Pm−1,2 · · · Pm−1,m−1

, and let b =


P1,m

P2,m
...

Pm−1,m

,
then the above can be written as

x = b+Bx

x−Bx = b

(I −B)x = b

Where I is the identity matrix of order m− 1. Now let A = (I −B). hence

Ax = b

Therefore we can find x (which is the Q′s) if we can solve the above. i.e. if we can invert the
matrix A.(i.e. A is non-singular)

Part(B)

Now we need to show that (I −B) is invertible. Recall that a Matrix A is not invertible if
we can find a vector v 6= 0 such that Av = 0.

Let us assume that (I −B) is not invertible. Hence there exist a vector v 6= 0 such that

(I −B)v = 0

In other words
v =Bv (1)

Now we show that it is not possible to find such a vector v, showing that (I −B) must
therefore has an inverse.

We can always normalized the vector v in (1) without changing this relation, hence we assume
v is normalized such that its largest component vi has length 1 (we do this by dividing the
vector by the largest component it had). Now (1) can be written in component form as follows
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vi =
m−1∑
j=1

pijvj (2)

Since v is normalized, it will have at least one component which is 1 in value, and it can
have components which are less than 1 in value (we proof this part below). Let the set of the
indices of those components of v which are 1 be the set J and let the set of the indices of
those components which are less than 1 be the set S. In other words

J = {i : vi = 1}
S = {i : vi < 1}

First, we show that the set S can not be empty: Proof by contradiction. Assume S is empty.
Hence every element in the vector v is 1. Let us pick one of these elements vi = 1 such that
i corresponds to a row number in the matrix B where this row happens to sum to a value
less than one2. Then we write

1 =
m−1∑
j=1

pijvi =
m−1∑
j=1

pij(1) =
m−1∑
j=1

pij

But since this row sums to less than one, then the RHS above is less than 1. Hence this is a
contradiction, hence the set S can not be empty .

Now that we showed the set S is not empty, we can write (2) as a sum over the set J and
the set S of indices. (We know the set J is not empty by definition, since the vector v is
normalized, so it will have at least one element in the set J). Hence (2) becomes

vi =
∑
j∈K

pijvj +
∑
j∈S

pijvj (3)

Let us again pick one of those vi components which has value 1 (we know there is at least
one of these), and try to see if this equality holds for this row i. So (3) becomes

1 =
∑
j∈J

pijvj +
∑
j∈S

pijvj

2We know that we can find such a row in B using the following argument: Assume that there is no row
in B which sums to less than 1. This means B is an irreducable transitional probability matrix. However
this is a submatrix of an original probability transition matrix which is irreducable, meaning it has no closed
subsets. Hence B can not be irreduacble (closed). Therefore, we can find at least one row in B which sums
to less than 1. (Matrix B is similar to a Q matrix, it has at least one row which sums to less than 1).
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But all the vj in the set J have value 1, so the above can be simplified

1 =
∑
j∈J

pij +

Y︷ ︸︸ ︷∑
j∈S

pijvj (4)

Now each vj in the term labeled Y above is less than 1 (since it is the set S), so this means∑
j∈S

pijvj <
∑
j∈S

pij, therefore the sum in (4) could never add to 1 if there are values pij that are

non-zero when j is in the set S. (since the sum
∑

j∈{J∪S}

pij is being reduced from its original

row sum). So for (4) to be satisfied, we need to have all the pij = 0 when j is in the set S.
Hence the sum labeled Y is zero .

What this means is that if vi = 1, then the ithrow in the matrix B must have zero entries in
the columns which correspond to the indices in the set S . As shown in this diagram as an
example

In the above diagram, I showed one example of the conclusion of above argument. Of course
the set J the way I drawn it does not have to be ’contiguous’, it could be in any pattern, as
say the following

Therefore, we see that pjs = 0 when j correspond to a state whose number is the same as the
index value in the set J , and s is a state whose number correspond to a state whose number
is the same as the index value in the set S.

What this means is that it is not possible to reach states that correspond to indices in the
set J from states which correspond to indices in the set S.

Hence, once the chain is in a state in the set J it is not possible to leave this set.
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But this is the same as saying the matrix B contains a closed subset. In other words, B is
reducible. However, this is not possible, since the matrix B is taken from a subset of a chain
which is irreducible, i.e. it contains no closed subsets, but we found at least one such subset.

Therefore, we conclude that our assumption which lead to this is invalid. Therefore, there
exist no vector v 6= 0 such that (I −B)v =0. Hence (I −B) does have an inverse. QED

4.9.3 Key solution

Chapter 5: Some Solutions

5.7 Consider an irreducible Markov chain with a finite number of states
{O, 1, 2, ... ,m}. Let E denote the event that the process reaches state
m before it reaches state O. Set Qi = P(E IX o = i). Then Qo = 0 and
Qm = 1. (a) Find a system of m - 1 linear equations that is satisfied
by Q1, Q2,"', Qm-1. (b) Show that the matrix in this linear system of
equations is nonsingular.

Solution (a) Conditioning on the next state gives us

m m-1

Qi = L P(E IXl = j)Pij = L QjPij + Pim ,
j=O j=l

for i E I = {I, 2, ... ,m -I}. Note that the Markov property was used to get
the second equation. (b) If the matrix in this linear system of equations is
singular, then there is a nonzero vector v E Rm-1 such that

m-1

Vi = L VjPij ,
j=l

for i E I. Normalize v so that each component is less than or equal to one,
and at least one component is equal to one. Set J = {i E I IVi = I} and
S = {i E I IVi < I}.

Suppose first that S I- 0. Assume there is a nonzero Pir for some i E J
and some rES. It then follows that

m-1

1 = Vi = L VjPij + L VjPij < L Pij ::; 1 ,
jEJ jES j=l

which is impossible. Therefore, for any i E J, and any rES, we must have
Pir = O. But then, for each i E J,

1 = Vi = L VjPij = L Pij .
jEJ jEJ

1
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This result tells us that once the process enters a state i E J, it must travel
to another state in J. Thus, in the original chain, the set of states J, which
is not empty, must be a closed set. However, this result is impossible, since
the original chain is irreducible. Therefore, S = 0.

It now follows that J = {1, 2, ... , m - 1}. But then, for each i E J,

1 = Vi = L VjPij = L Pij ,
jEJ jEJ

since Vj = 1 for each j E J. Thus, as before, the set J is seen to be a closed
set, which is a contradiction.

2
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4.10 Monday 3/17/08

Grade: 2/2.

Problems 6.3 and 6.5 from the handout

4.10.1 Problems

4.10.2 Problem 6.3
Part(A)

Let In be an indicator variable defined as

In =
{

1 when (Xn = j|X0 = i)
0 otherwise

Hence
E(In) = P (Xn = j|X0 = i)

Now we see that

E(Vij) = E

(
∞∑
n=0

In

)
=

∞∑
n=0

E(In) =
∞∑
n=0

P (Xn = j|X0 = i)

Now, let bij be entry in matrix B where bij = E(Vij), then the above can be written as

bij = P (X0 = j|X0 = i) + P (X1 = j|X0 = i) + P (X2 = j|X0 = i) + P (X3 = j|X0 = i) +· · ·
(1)

Which is the same as writing

bij = P
(0)
ij + P

(1)
ij + P

(2)
ij + P

(3)
ij + · · ·

When i = j, then P
(0)
ij = 1 otherwise it is 0. Hence

bij = δij + P
(1)
ij + P

(2)
ij + P

(3)
ij + P

(4)
ij + · · · (2)
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Let the set of transient states be T , and using chapman-kolmogorov, the above can be
written as

bij = δij + P
(1)
ij +

P
(2)
ij︷ ︸︸ ︷∑

k∈T

P
(1)
ik P

(1)
kj +

P
(3)
ij︷ ︸︸ ︷∑

k∈T

P
(2)
ik P

(1)
kj +

P
(4)
ij︷ ︸︸ ︷∑

k∈T

P
(3)
ik P

(1)
kj + · · · (2)

But

P
(2)
ij︷ ︸︸ ︷∑

k∈T

P
(1)
ik P

(1)
kj is multiplying the ith row of the Q matrix by the jth column of the Q matrix.

which is the (i, j) entry of the matrix Q2, and

P
(3)
ij︷ ︸︸ ︷∑

k∈T

P
(2)
ik P

(1)
kj is multiplying the ith row of the

Q2 matrix we just obtained, by the jth column of the Q matrix, which is the (i, j) entry of
the matrix Q3. Continue this way, we obtain that P (4)

ij is the entry i, j in matrix Q4 and so
on.

Hence we see that bij is the (i, j) entry of a matrix resulting from I + Q + Q2 + Q3 + · · ·
QED.

Part(B) From part(A), we obtained that E(Vij) is the (i, j) entry in the matrix resulting
from the sum I +Q+Q2+Q3+ · · · . Since this is a Q matrix, then we know its elements will
all go to zero an n gets very large, so this is a convergent sum, hence I+Q+Q2+Q3+ · · · .→
(I −Q)−1 . Therefore

E(Vij) is the (i, j) entry in the matrix (I −Q)−1 .
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Problem 6.5
Part(A) I solve this part in 2 ways, first by conditioning on next state, as required, and
then by the counting method explained in the lecture.

by conditioning on next state. Let I be the set of all states. Then

E(Tij) =
∑
k∈I

E(Tij|X1 = k,X0 = i)P (X1 = k|X0 = i) (1)

But by Markov property, chain state on next step depends only on current state. Hence
E(Tij|X1 = k,X0 = i) = E(Tij|X1 = k) and also since P (X1 = k|X0 = i) = Pki then (1) can
be written as

E(Tij) =
∑
k∈I

E(Tkj)Pki (2)

Now, when X1 = j, then E(Tij) = 1 since chain already in state j after one step. Therefore
(2) can be rewritten as

E(Tij) = 1 +
∑
k∈I
k 6=j

E(Tij|X1 = k)Pki

But E(Tij|X1 = k) is the same as writing E(Tkj) , so the above becomes

E(Tij) = 1 +
∑
k∈I
k 6=j

E(Tkj)Pki

Using the notation shown in the problem, the above becomes

mij = 1 +
∑
k∈I
k 6=j

mkjPki

QED.

Now solve part(a) using first a counting argument, and using the following diagram as a
guide

Then we write (letting E(Tij) = mij and E(Tkj) = mkj)

mij =

N(Pij) +
∑
k 6=j

NPik(mkj + 1)

N

= Pij +
∑
k 6=j

Pik(mkj + 1)

= Pij +
∑
k 6=j

Pikmkj +
∑
k 6=j

Pik
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But Pij +
∑
k 6=j

Pik = 1 hence the above becomes

mij = 1 +
∑
k 6=j

Pikmkj (1)

Part(B) We start from the result of part (A) which is

mij = 1 +
∑
k 6=j

Pikmkj

Multiply both sides by wi and obtain

wi mij = wi + wi

∑
k 6=j

Pikmkj

Sum over all possible states i and obtain

r∑
i=1

wi mij =
r∑

i=1

wi +
r∑

i=1

(
wi

∑
k 6=j

Pikmkj

)
(2)

But
r∑

i=1

wi = 1 and
r∑

i=1

(
wi

∑
k 6=j

Pikmkj

)
=

r∑
i=1

(∑
k 6=j

wiPikmkj

)
=
∑
k 6=j

mkj

(
r∑

i=1

wiPik

)
, hence

(2) becomes
r∑

i=1

wi mij = 1 +
∑
k 6=j

mkj

(
r∑

i=1

wiPik

)
(3)

Now, since w = {w1, w2, · · · , wr} is the stationary state vector, then it satisfies the following
relation

w = wP

Where P is the one step probability transition matrix. The solution to the above is given by

wk =
r∑

i=1

wiPik (4)

Where k is any state. Using (4) into RHS of (3), we can rewrite (3) as
r∑

i=1

wi mij = 1 +
r∑

k=1
k 6=j

mkjwk

A︷ ︸︸ ︷
r∑

i=1

wi mij −

B︷ ︸︸ ︷
r∑

k=1
k 6=j

mkjwk = 1 (5)

Now looking at the LHS, we see that the first sum labeled A counts for all the w′s and the
second sum labeled B also counts for all the w′s except for the j term. Hence if we subtract
B from A, only the term mjjwj will survive. Hence (5) becomes

mjjwj = 1

or
mjj = 1

wj

QED.

Part (C)

If we wait for the chain to arrive at its steady state (i.e. we the chain probability state vector
does not change, or w = wP ), then we observe the chain from that point on, for a long
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period of time, say T . The number of times the chain will be in state j during this time T is
then given by wjT , since wj is the probability of the chain being in state j. So, to find the
average number of time units (steps) it took for the chain for go from state j back to state j
we need to divide T by the number of times the chain was in state j during this time, which
we just found as wjT

Hence
mjj =

T

wjT
= 1

wj

Intuitively this makes sense. Since the smaller the probability that the chain will be in state
j we would expect the time between the events that the chain is in state j to become larger,
So the relation should be an inverse one, as was found. QED

4.10.3 Key solution

Chapter 6 Some Solutions

6.3 For an absorbing Markov chain, let Vij denote the number of visits
to transient state j before absorption, given that the process starts
in transient state i. Let B denote the matrix whose (i, j)-th entry is
bij = E(Vij). (a) Show that B = N = (I - Q)-l. (b) Given that
the process starts in state i, give a formula for the expected number of
steps until absorption.

Solution (a) Condition on the next state to get

E(Vij) = L E(Vij IXl = k)Pik + L E(Vij IXl = k)Pik
kEA kET

where A denotes the set of absorbing states, and T denotes the set of transient
states. Let 6ij be the Kronecker delta, which equals one when i = j , and
equals zero otherwise. Then, in the first sum, E (Vij IXl = k) = 6ij , since k is
an absorbing state. For the second sum, making use of the Markov property,
E(Vij IXl = k) = 6ij + E(Vkj ) , since here k is a transient state. Thus,

E(Vij) = L 6ijPik + L [6ij + E(Vkj)]Pik = 6ij + L PikE(Vkj ) .
kEA kET kET

Therefore, for each pair of states i and j in T,

bij - L Pikbkj = 6ij .
kET

In matrix form, these equations are expressed as B - QB = I, where I is
the identity matrix. Note that this result shows that I - Q is invertible, and
that B = (I - Q)-l.

Here is another proof. Note first that

•
where In = 1 tf X n = j and In = 0 otherwise. Thus,

1

4(Jt1/It .-.r
prod6f1'LIVr

lI-Q) ~
/11~dh '6lt .
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where qr;) is the (i,j)-th element of the matrix Qn. Therefore, E(Vij) is the
(i, j)-th element of the matrix

00

1 + L Qn = (1 _ Q)-l .
n=l

(b) The sum of the elements in the i- th row of B is the expected value of
the random variable

li = L Vij ,
JET

which is the number of visits to transient states before absorption, given that
the process started in transient state i.

6.5 Consider a regular Markov chain, with state space 1 = {I, 2, ... ,r}.
Denote by Tij the first entrance time into state j, given that the process
starts in state i. Set mij = E(Tij). (a) Show that

mij = 1 + LPikmkj .
ki-j

(b) Let (WI, W2,"', wr ) be the stationary probability state vector for
the process. Show that mjj = l/wj, for each state j. (c) Give a
heuristic argument to justify the result of part (b).

Solution (a) Conditioning on the next state yields

E(Tij) = L E(Tij IXl = k)Pik = E(Tij IXl = j)Pij + L E(Tij IXl = k)Pik .
kEf ki-j

This equation then becomes

E(Tij) = 1· Pij + L(l + E(Tkj))Pik = 1 + LPikE(Tkj ) ,
ki-j ki-j

which is the result to be shown. (b) In the last equation above, for a fixed
j, multiply the i-th equation by Wi, and sum over i to get

r r r

L WiE(Tij) = L Wi + L L WiPikE(Tkj ) .
i=l i=l i=l ki-j

2
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We have that W = wP, and the sum of the components of w is one. Therefore,
interchanging the order of summation, we get

r

L Wi E (1ij) = 1 + L WkE(Tkj ) .
i=l k-tj

Cancelling like terms on each side of this equation yields wjE(Tjj ) = 1, as
required. (c) Over a long number of time steps T, the average number
of times the process is in state j is wjT. But the average duration between
these times that the process is in state j is mij. Hence, in the long-run,
(wjT)mij = T. Thus, dividing by T, yields mjj = l/wj.

3
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4.11 Wed 4/16/2008

Grade: 2/2.

These problem related to Hastings-Meropolis algorithm. And Proofing a Markov chain is
irreducible, regular and time inverse. Implemented the simulation using Mathematica

4.11.1 Problem 8.4

Part(i)

M.C. is irreducible if there exist no proper closed subset in the state space. Since we are
given that the graph G is connected, then this means it is possible to visit each vertex from
any other vertex in the graph. But does a connected graph implies no proper closed subset
of the corresponding M.C.? The answer is YES. If we view each vertex as state, we just need
to show that for each edge in G between 2 vertices x, y, there corresponds a probability of
transition from state x to y which is not zero, and also a probability of transition from state
y to x which is also not zero. By showing this, we conclude that the M.C. will switch (in
some number of steps) to any state from any other state, which implies there is no closed
subset, hence P is irreducible.

But from the definition of p(x, y) we see that if there is an edge (x, y) then p(x, y) exist and
is not zero, and p(y, x) exist and is not zero (since r is finite). This completes the proof.
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Part(ii)

A finite M.C. is regular when, for some integer m, Pm contains only positive elements.

This implies that the one step transition matrix P must have at least one entry along the
diagonal Pii that is none-zero (If all elements along the diagonal are zero, then Pm will always
contain at least one zero element no matter how large m is). But a diagonal element not
being zero is the same as saying that at least one state must be aperiodic (if Pii > 0 then
the period is one).

Hence the condition for the M.C. to be regular is that at least one state must be aperiodic 3.

To proof that the above chain is regular, we then need to show that at least one state is
aperiodic.

This is the proof :

Since at most a vertex can have r edges, then we can find a vertex x with r edges con-
necting it to vertices y1, y2, · · · , yr with corresponding one step probability transitions of
p(x, y1) , p(x, y2) , · · · , p(x, yr). (If we can’t find such a vertex, the argument will apply to any
other vertex, just replace r with the number of edges on that vertex and the argument will
still apply).

Now let us consider f(x) and compare it to each of the f(yi) where the yi is the vertex with
direct edge from x. There are 2 cases to consider:

1. f(x) > at least one of the f(yi), i = 1· · · r

2. f(x) < all of f(yi), i = 1· · · r

3. f(x) = all of f(yi), i = 1· · · r

Consider case (1): Since f(x) > f(yi) for some i, then for this specific yi, p(x, yi) =
1
r
min

{
1, f(y)

f(x)

}
= 1

r
k where k < 1, hence p(x, yi) = a where a < 1

r
. Lets assume there was

only one yi such that the above is true. I.e. at least one of the vertices connected to x

had f(yi) < f(x) (if more if found, it will not change the argument). Now we add all the

probabilities p(x, yi) and we found that this sum is

(r−1) vertices︷ ︸︸ ︷
1
r
+ 1

r
+ · · ·+ 1

r
+ a where the a is for

that vertex which had f(yi) < f(x). Now since a < 1
r
then this sum will be LESS THAN

ONE. But the sum of the one step probability transition from each state must be 1, hence
to compensate, we must then have p(x, x) added to make up for the difference. Hence we
showed that under case (1) we can find pii which is not zero. This diagram illustrate this case

3In addition, since we showed in part (i) that this chain is an irreducible chain, hence each state com-
municate with each other state, hence all states must be of the same type since all states are in the same
communication class (Theorem 5.3.2). Then if one state is aperiodic, then the all states that communicate
with it must also be aperiod (to be of the same type). Hence in an irreduible chain, if one state is aperiodic,
then all states are aperiodic as well.
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Now we consider case (2).

In this case since f(x) < f(yi) for each i, then p(x, yi) = 1
r
min

{
1, f(yi)

f(x)

}
= 1

r
., then the

sum of the probabilities of transitions from x is

r vertices︷ ︸︸ ︷
1
r
+ 1

r
+ · · ·+ 1

r
= 1and we do not need to

compensate by adding p(x, x) to make up for the deficit. However since now f(yi) > f(x)
then if we view yi as the x vertex and the x vertex as the y, and consider the probability
transitions out of yi, then we are back to case (1) above. Hence in case (2) as well ,we can
find a state in which p(x, x) > 0, Hence the chain is aperiodic, and since it is irreducible,
then it is regular in this case as well.

Now consider case (3):

In this case f(x) = f(yi) for i = 1· · · r. In other words, f(x) is CONSTANT. In this case
p(x, yi) = 1

r
min

{
1, f(yi)

f(x)

}
= 1

r
,then the sum of the probabilities of transitions from x is

r vertices︷ ︸︸ ︷
1
r
+ 1

r
+ · · ·+ 1

r
= 1and we do not need to compensate by adding p(x, x) to make up for the

deficit. This will be true for any node. Therefore, it is not possible to find at least one node
with the probabilities attached to edges leaving it is less than one. Hence there are no state
with p(x, x) > 0, hence in this case, the chain is not aperiodic, and hence the chain is NOT
regular.

Conclusion: Condition for chain not to be regular is that f(x) be constant.

Part(iii)

Since the chain is irreducible, then there is a reverse Markov chain (proof is on page 8.1 and
8.2 of lecture notes). Hence for an irreducible chain the balance equations hold

r(x, y) = π(y) p(y, x)
π (x) (1)

This diagram helps me remember these formulas
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Now if the chain the time reversible as well, then r(x, y) = p(x, y),
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Then the balance equation (1) becomes

π(x) p(x, y) = π(y) p(y, x) (2)

Hence we need to show that the equation above holds to show the chain is time reversible.

Let the LHS of (2) be π(x) p(x, y) and let RHS of (2) be π(y) p(y, x). Then we will show that
LHS=RHS for the following 3 cases:

1. f(x) = f(y)

2. f(x) < f(y)

3. f(x) > f(y)

Case(1): Since f(x) = f(y) let these be some value, say z

LHS = π(x) p(x, y)

= f(x)∑
v∈V

f (v)

(
1
r
min

{
1, f(y)

f (x)

})

= z∑
v∈V

f (v)
1
r

(3)
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and

RHS = π(y) p(y, x)

= f(y)∑
v∈V

f (v)

(
1
r
min

{
1, f(x)

f (y)

})

= z∑
v∈V

f (v)
1
r

(4)

We see that (3) is the same as (4), hence LHS=RHS for case (1) .

case(2): f(x) < f(y)

LHS = π(x) p(x, y)

= f(x)∑
v∈V

f (v)

(
1
r
min

{
1, f(y)

f (x)

})

= f(x)∑
v∈V

f (v)
1
r

(5)

and

RHS = π(y) p(y, x)

= f(y)∑
v∈V

f (v)

(
1
r
min

{
1, f(x)

f (y)

})

= f(y)∑
v∈V

f (v)
1
r

f(x)
f (y)

= f(x)∑
v∈V

f (v)
1
r

(6)

Hence we see that (5) is the same as (6). Hence RHS=LHS for case(2) .

case (3):f(x) > f(y)

LHS = π(x) p(x, y)

= f(x)∑
v∈V

f (v)

(
1
r
min

{
1, f(y)

f (x)

})

= f(x)∑
v∈V

f (v)
1
r

f(y)
f (x)

= f(y)∑
v∈V

f (v)
1
r

(7)

and

RHS = π(y) p(y, x)

= f(y)∑
v∈V

f (v)

(
1
r
min

{
1, f(x)

f (y)

})

= f(y)∑
v∈V

f (v)
1
r

(8)
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We see that (7) is the same as (8), hence LHS=RHS for case (3) as well .

Hence we showed the balance equation for the time reversible condition is satisfied. QED.

4.11.2 Problem 8.5

Part(a)

The following is the Hastings-Metrpolois algorithm implementation.

This algorithm generates a time-reversible M.C. (referred to as p in the lecture notes) given
an irreducible M.C. (called q or the original chain) and given a stationary distribution π for
that chain.

Input: f(x) defined over the states x, and edge(x) which represents the number of edges
connected to x

1. For each state x calculate π(x) = f(x)∑
v∈V

f(v)
and for each state x calculate edge(x)

2. compute q(x, y) = 1
edge(x) whenever edge(x) 6= 0 else set q(x, y) = 0

3. Select a state x by random to start from.

4. Let n = 1 and let X1 = x

5. Let S be the set of all states that can be reached in one step from x. These will be the
states y in which q(x, y) 6= 0
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6. Select a state y from S by random (using a uniform U [0, 1] random number generator)

7. Calculate β(x, y) = min
{
1, π(y)q(y,x)

π(x)q(x,y)

}
8. Generate a random number u from U [0, 1]

9. Let n = n+ 1

10. Compare u to β(x, y).

11. IF u < β(x, y) THEN Xn = y (select the new state) ELSE Xn = Xn−1 (stay in same
state) ENDIF

12. Let x = Xn

13. If n > some Max number of iterations or if we reached some convergence limit Then
go to 15

14. GOTO 5

15. Algorithm is complete. Now generate the time reversible MC as follows

(a) Scan the state path generate Xn and count how many times state x switches to
state y in one step

(b) Do the above for all the states x

(c) Divide the above number by the total number of steps made to generate p(x, y)

Since the problem now asks to implement Hastings-Metropolis, then I used the data given
at the end of the problem and implemented the above simulation using that data4. Please
see appendix for code and final P matrix generated.

Part (a1)

This is similar the problem 8.4 part(I). To show that the p (final M.C.) is irreducible, we need
to show that there exist no closed proper subsets. Since the graph G is connected, then we
just need to show whenever there is an edge between vertex x and y then there corresponds
in the chain representation of the final p matrix a non-zero p(x, y) and also a non-zero p(y, x).
This will insure that the each state can transition to each other state, just as each vertex
can be visited from each other vertex (since it is a connected graph).

Let us consider any 2 vertices say x, y with a direct edge between them (this is the only case
we need to consider due to the argument above). We need to show the resulting p(x, y) and
p(y, x) are non-zero

Consider p(x, y) first. Since

p(x, y) = q(x, y) β(x, y)

= 1
edge (x) min

{
1, π(y) q(y, x)

π (x) q (x, y)

}

= 1
edge (x) min


1,

f(y)∑
v∈V

f(v)

1
edge(y)

f(x)∑
v∈V

f(v)

1
edge(x)


Hence

p(x, y) = 1
edge(x) min

{
1, f(y)edge(x)

f(x)edge(y)

}
(1)

4I allready had the code for the simulation written, just needed to feed the new data for this problem.
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Then it is clear that whenever there is an edge between x, y then p(x, y) 6= 0 since both f(x)
and f(y) are positive (not zero) and also edge(x) and edge(y) are non-zero as well. Hence we
see that p(x, y) 6= 0. Similar argument shows that p(y, x) 6= 0.

This shows that M.C. represented by P is irreducible.

Part (a2)

The condition for regular chain P is that there exist at least one state x such that p(x, x) >
0.From (1) above we can decide under what conditions this will occur.

Consider a vertex x with edge(x) edges from it connected to vertices y1, y2, · · · , yr. Then
from (1) we see that

p(x, yi) =
1

edge (x) min
{
1, f(yi) edge(x)

f (x) edge (yi)

}
= 1

edge (x) min
{
1,

f(yi)
edge(yi)
f(x)

edge(x)

}

The condition for having p(x, x) > 0 is that min
{
1,

f
(
yi

)
edge

(
yi

)
f(x)

edge(x)

}
< 1, since this will cause

p(x, yi) to be some quantity less than 1
r
and so when summing over all r there will be a

deficit in the sum and we have to compensate for it to make it 1 by adding p(x, x). But for

min
{
1,

f
(
yi

)
edge

(
yi

)
f(x)

edge(x)

}
to be less than ONE means that f(yi)

edge(yi) <
f(x)

edge(x)

Hence the condition for finding an Aperiodic state is finding a vertex x such that the above
holds for one of the vertices yi this vertex is directly connected to. For example, if yi had the
same number of edges from it as does x, then the condition will be that f(yi) < f(x). And
if yi has less or more edges from it than x has, then we need the ratio f(yi)

edge(yi) to be less than
f(x)

edge(x) .

The above is the same as saying f(x)
edge(x) must be constant for the p not to be regular.

Part(A3)

Since the chain is irreducible, then there is a reverse Markov chain (proof is on page 8.1 and
8.2 of lecture notes). Hence for an irreducible chain the balance equations hold

r(x, y) = π(y) p(y, x)
π (x) (2)

Now if the chain the time reversible as well, then r(x, y) = p(x, y), Then the balance equation
(1) becomes

π(x) p(x, y) = π(y) p(y, x)
f(x)∑

v∈V

f (v)
q(x, y) β(x, y) = f(y)∑

v∈V

f (v)
q(y, x) β(y, x)

f(x)∑
v∈V

f (v)
1

edge (x)

(
min

{
1, f(y) edge(x)

f (x) edge (y)

})
= f(y)∑

v∈V

f (v)
1

edge (y)

(
min

{
1, f(x) edge(y)

f (y) edge (x)

})

f(x)∑
v∈V

f (v)
1

edge (x)

(
min

{
1,

f(y)
edge(y)
f(x)

edge(x)

})
= f(y)∑

v∈V

f (v)
1

edge (y)

(
min

{
1,

f(x)
edge(x)
f(y)

edge(y)

})
(3)

Hence we need to show that the equation (3) above holds to show the chain is time reversible.

There are 3 cases to consider:
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1. f(y)
edge(y) =

f(x)
edge(x)

2. f(y)
edge(y) <

f(x)
edge(x)

3. f(y)
edge(y) >

f(x)
edge(x)

For case (1), LHS of equation (3) simplifies to f(x)∑
v∈V

f(v)

1
edge(x) and the RHS of (3) simplifies to

f(y)∑
v∈V

f(v)

1
edge(y) , but since

f(y)
edge(y) =

f(x)
edge(x) , then LHS=RHS.

Hence balance equation (3) is satisfied for case (1).

For case(2), LHS of (3) simplifies f(x)∑
v∈V

f(v)

1
edge(x)

(
f(y)

edge(y)
f(x)

edge(x)

)
= f(y)∑

v∈V

f(v)

1
edge(y) and RHS of (3)

simplifies to f(y)∑
v∈V

f(v)

1
edge(y) ,then LHS=RHS.

Hence balance equation (3) is satisfied for case (2) .

For case (3), LHS of (3) simplifies f(x)∑
v∈V

f(v)

1
edge(x) and RHS of (3) simplifies to f(y)∑

v∈V

f(v)

1
edge(y)

(
f(x)

edge(x)
f(y)

edge(y)

)
=

f(x)∑
v∈V

f(v)

1
edge(x) ,then LHS=RHS.

Hence balance equation (3) is satisfied for case (3) .

Hence in all 3 cases we showed the balance equation is satisfied.

Hence M.C. is time reversible.

Part(b)

A small program written to construct the P matrix directly following instructions on page
8.4 of lecture notes. The following is the resulting P matrix

Now to check that the final chain P is regular, it was raised to some high power to check
that all entries in the Pm > 0. This is the result
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The above verifies that the final matrix p is regular.

Using the Hastings-Metropolis simulation algorithm, the convergence to the above matrix
was slow. Had to make 2 million observation to be within 3 decimal points from the above.
Here is the P matrix generated from Hastings algorithm for N = 2, 000, 000

4.11.3 Appendix (Implementation of part(a) and part(b))
The graph for part(a) and part(b) is the following
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4.11.4 code
Mathematica notebook

Mathematica notebook

4.11.5 Key solution

l<e~
S6lvtt-t"an ~~ <p"-~b'~ 8.5'J 8,1

Chapter 8: Markov Chain Monte Carlo Methods - Solutions to
Selected problems

8.4 Let G = (V, E) be an undirected, connected graph with the property that each
vertex is connected to at most r vertices. Let f be a positive function defined on
V and let 7f denote the probability distribution

7f(X) = f(x)
L,VEV f(v)

If (x, y) E E, define the transition probability

1 . { f(y) }
p(x, y) = ;:mm 1, f(x)

with p(x, y) = °otherwise, except that p(x, x) is determined so that the rows
sum to one. (i) Show that the Markov chain determined by p is irreducible. (ii)
Determine conditions under which the chain is regular. (iii) Show the chain is time
reversible with respect to 7f.

Solution (i) To show that the chain is irreducible, note first that G is connected. In
other words, in G there is a path from anyone node to any other; that is, given any two
nodes, say a and b in V, there is a sequence of nodes, say Xl, X2, .•. ,xn , in V such that
(a, xd E E, (Xi, Xi+d E E, for each i = 1,2, ... ,n, and (xn , b) E E. While the graph Gis
undirected, the graph of the Markov chain is directed. However, corresponding to each
arc in G there are two arcs in the graph of the Markov chain, one in each direction, and
each with nonzero probability. Indeed, if (x, y) E E, then there is an arc in the graph
of the Markov chain that points from x to y with associated probability p(x,y) > 0,
determined by the formula above, and there is another arc that points from y to x with
associated probability p(y, x) > 0, again determined by the formula above. It follows that
in the graph of the Markov chain, between any two nodes (now states of the chain), there
is a path between these states that can be traversed following the arcs in the required
directions. In other words, any two states of the Markov chain communicate. Hence, the
chain is irreducible.

(ii) Although the Markov chain is irreducible, it may be periodic, and hence not
regular. As a simple example, consider the graph G = (V, E) with vertex set V = {I, 2}
and edge set E = {(1, 2)}. Then r = 1. Suppose that f is the constant function. Then
the associated Markov chain has one-step probability transition matrix

p=[~ ~]

1

HWs/HW6_MCMC_problem_8_4_and_8_5/code/problem_8_5_part_b.nb
HWs/HW6_MCMC_problem_8_4_and_8_5/code/nma_hastings_problem_8_5_part_a.nb
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This chain is periodic with period 2. Suppose however that 1 is not constant. For
example, let 1(1) = 1 and f(2) = 3. Then the associated Markov chain has one-step
probability transition matrix

p = [1~3 2)3] .
This chain is aperiodic. However, more generally, whenever f is not the constant function,
the associated Markov chain will be aperiodic, and hence regular. To see this result, note
that there must be some vertex x such that (x, y) E E, and f (y) < f (x). For this state
x, the sum of the off-diagonal elements will be less than one, since there are at most T

nonzero off diagonal entries. Hence, for this row, p(x, x) i=- O. Thus, state x is aperiodic,
and since the chain is irreducible, all states are aperiodic, and so the chain is aperiodic.

, As another condition which implies regularity, suppose that at least one node of the
graph G is connected directly to fewer than T nodes. Then, whether f is the constant
function or not, that node will become a state in the chain that is aperiodic. Indeed, in
the one-step transition matrix, the row corresponding to this state will be such that the
sum of the off-diagonal elements will be less than one, and hence the diagonal element
will be nonzero. Thus, since the chain is irreducible, and one state is aperiodic, all states
are aperiodic.

(iii) To show that the balance equations hold, we need to show that 7r(x)p(x, y) =
7r(y)p(y, x) for each pair of states x and y. First, if p(x, y) = 0, then p(y, x) = 0 also,
since p(x, y) = 0 only when there is no edge of the graph G that connects x and y. Next,
when (x, y) E E,

f(x) . { f(y)} 1 .
7r(x)p(x, y) = TC mm 1, f(x) = TC mm {f(x), f(y)} ,

where C is the sum appearing in the denominator of 7r. Similarly, we have

f (y) . { f (x) } 1 .
7r(y)p(y, x) = TC mm 1, f(y) = TC mm {f(y), f(x)} ,

These two expressions are the same, which is the desired conclusion.

7r(x) =
L:vEv f(v)

(a) Implement the Hastings-Metropolis method to find a regular Markov chain
whose limiting distribution is 7r. Start with the initial irreducible chain clefined by

1
q(x, y) = d ()' whenever (x, y) E E .

e ge x

~Suppose G = (V, E) is an undirected connected graph. For each vertex v E V, let
edge(v) denote the number of edges that are connected to v. Let f be a positive
function defined on V, and let7r denote the probability distribution

f(x)

2
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------------------

Note that the Markov chain with this one-step transition matrix is traversed by se­
lecting at random one of the edges connected to x, and then making the transition
to the corresponding node. (al) Show that the Markov chain determined by this
method is irreducible. (a2) Determine conditions under which the chain is regular.

(a3) Show the chain is time reversible with respect to 'Jr. (b) Write a MATLAB pro­
gram that determines the one-step probability matrix resulting from this method.
The input to this program is the function .I and the graph, represented by an ad­
jacency matrix. An adjacency matrix is an n x n matrix, where n is the number

of nodes in the graph, and where entry (i, j) is one if there is an edge connecting
nodes i and j, and is zero ot~lerwise. Use this adjacency matrix to compute the
function edge(v) at each node. Apply your program to the graph G = (V, E) where

V = {l,2,3,4}, and E = {(1,2),(1,3),(2,3),(2,4),(3,4)}, and where .1(1) = 2,

.1(2) = 8, .1(3) = 6, and .1(4) = 4. Verify (using MATLAB) that the resulting chain
is regular and has the required limiting state probability distribution.

Solution (a) The one-step transition probabilities are

1
p(x, y) = d () (3(x, y)

e ge x

where (3(x, y) is given by

for, (x, y) E E, with p(x, x) = 1 - L p(x, y) ,
yo/x

. { f(y)edge(X)}.
(3(x, y) = mm 1, f(x)edge(y)

Otherwise p(x, y) = O.

(al) These formulas show that for each arc (x, y) E E, we have p(x, y) > 0 and
p(y, x) > O. Thus, between any two nodes that are connected by an arc in G, the re­
sulting Markov chain has two corresponding states, x and y, and there are two arcs
connecting these states which point in opposite directions. Hence, since the original
graph is connected, it is therefore possible, in the Markov chain, to travel from anyone
state to any other. Thus, the chain is irreducible.

(a2) For the setting of this problem, the Markov chain produced by the Hasting­
Metropolis algorithm may be periodic, and hence not regular. For example, consider the

graph G = (V, E) with vertex set 11 = {1,2} and edge set E = {(1,2)}. Suppose that
.I is the constant function. Then the resulting Markov chain has one-step probability

transition matrix

p=[O 1]
1 0 '

and the chain is periodic with period 2.

3
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However, when j(x)/edge(x) is not the constant function on V, the chain is aperiodic.
To see this result, note first that since the graph is connected, there must be two vertices
x and y such that (x, y) E E, and j(y)/edge(y) < j(x)/edge(x). For these states x and
y we will have (3 (x, y) < 1. Therefore, in the one step transition matrix for the Markov
chain, the sum of the off-diagonal elements in the row for state x is less than one. Hence,
state x is aperiodic. Since the chain is irreducible, the chain is therefore also aperiodic.
Thus, in this case when j(x)/edge(x) is not the constant function on V, the chain is
irreducible and aperiodic, and hence regular.

(a3) To show that the balance equations hold, the same argument used for the
previous problem carries over. we need to show that 7r(x)p(x,y) = 7r(y)p(y,x) for each
pair of states x and y. First, if p(x, y) = 0, then p(y, x) = °also, since p(x, y) = °only
when there is no edge of the graph G that connects x and y. Next, when (x, y) E E,

. _ j(x) . {I j(y)edge(x)} _ 2- . {j(x) j(y)}
7r(x)p(x, y) - edge(x)C mzn 'j(x)edge(y) - C mzn edge(x) ' edge(y) ,

where C is the sum appearing in the denominator of 7r. Similarly, we have

j(y) . { j(X)edge(y)} 1 . {j(y) j(X)}
7r(Y)p(y, x) = edge(y)C mzn 1, j(y)edge(x) = C mzn edge(y) ' edge(x) ,

These two expressions are the same, which is the desired conclusion.

4
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4.11.6 my graded solution

HW problems 8.4 and 8.5, Mathematics 504

CSUF, spring 2008
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by Nasser Abbasi

April 16, 2008
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1 Problem 8.4

mph. with the property that c41ch "crtc,
tive function ddincd on \'. and let i

ii(X) =-

'{I. J(y}}
. J(x'p(X!.Y' =

If cr. y) E E. define II

Wllh Pi' J'. Yi - ') othcrwi.........,
I) Show that the '\-larko\ chain

ns under \\ hich the chain is r
,..

1.1 Part(i)

vertex x vertex Y

o ~~Mlv .. \ 0

Undirected Graph
representation

P(x,y)

State,0 State,

P(y,x)

Markov Chain
representation

/
M.e. is irreducible if there exist no proper closed subset in the state space. Since we are
given that the graph G is connected, then this means it is possible to visit each vertex from
any other vertex in the graph. But does a connected graph implies no proper closed subset
of the corresponding M.e.? The answer is YES. If we view each vertex as state, we just need
to show that for each edge in G between 2 vertices x, y, there corresponds a probability of
transition from state x to y which is not zero, and also a probability of transition from state y
to x which is also not zero. By showing this, we conclude that the M.e. will switch (in some
number of steps) to any state from any other state, which implies there is no closed subset,
hence P is irreducible.

But from the definition of p(x, y) we see that if there is an edge (x, y) then p(x, y) exist and
is not zero, and p(y, x) exist and is not zero (since r is finite). This completes the proof.

2
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r- l"l X l/ 1I V '1.. J... 2

1.2 Part(ii) p~ ~J- 0 Yl P ? 0l 11 \/1 0 '7

A finite-M.C. is regular when, for some integer m, pm contains only positive elements.
\

(fhid implles that the one step transition...matrix.-Lmust have~east one entry along !he
diagenaI Pii that Is-none-zero ill all elements along the diagonal are zero, then pm will always
contain at least one zero element no matter how large m is).~ a di~,gonal element not bei~ ~
ero is the same as saying that at least one state must be aperiodic (if Pti > 0 then the period 4

is one). -,---
IHence the condition for the M.C. to be regular is that at least one state must be aperiodic 11.

To ~ro~f that the above chain is regular, we then need to show that at least one state is~
apenodic. '" ? / /'
~This is the proofl: - ~t J~~ ~u..rtuY\;1 ~
Since at most a vertex can have r edges, then we can find a vertex x with r edges con­
necting it to vertices Yl, Y2,' .. , Yr with corresponding one step probability transitions of
p (x, Yl) ,p (x, Y2) , . .. ,p (x, Yr) . (If we can't find such a vertex, the argument will apply to
any other vertex, just replace r with the number of edges on that vertex and the argument
will still apply).

Now let us consider f (x) and compare it to each of the f (Yi) where the Yi is the vertex with
direct edge from x. There are 2 cases to consider:

1. f (x) > at least one of the f (Yi), i = 1··· r

2. f(x) < all of f(Yi), i = 1···r

3. f (x) = all of f (Yi), i = 1 ... r

IConsider case (1) I: Since f (x) > f (Yi) for some i, then for this specific Yi, p (x, Yi) =

~ min { 1, ~?;~} = ~k where k < 1, hence p (x, Yi) = a where a < ~. Lets assume there was
only one Yi such that the above is true. I.e. at least one of the vertices connected to x
had f (Yi) < f (x) (if more if found, it will not change the argument). Now we add all the

(r-l) ve,·tices
--'"

1In addition, since we showed in part (i) that this chain is an irreducible chain, hence each state communicate
with each other state, hence all states must be of the same type since all states are in the same communication
class (Theorem 5.3.2). Then if one state is aperiodic, then the all states that communicate with it must also
be aperiod (to be of the same type). Hence in an irreduible chain, if one state is aperiodic, then all states are
aperiodic as well.

3
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State x

state 0101

o

staterr

state 0101

o
stateyz

.1..
r

stateYi

~ stateolor

Sum of
probabilities < 1

INow we consider case (2) I· In this case since f (x) < f (Yi) for each i, then p (x, Yi)
r vertices
---"

1.3 Part(iii)

Since the chain is irreducible, then there is a reverse Markov chain (proof is on page 8.1 and
8.2 of lecture notes). Hence for an irreducible chain the balance equations hold

r(x,y) = 7f(Y)p(y,X)
11" (x)

This diagram helps me remember these formulas

4

(1)
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r:(r)
y

/. r:(.1')
~~;i).~/I x

/::;i
~

N ----<.~ time N+1

If(X )1"(.1' •.1') = If (r)p(L.1' )

BALANCE EQUATION FOR AN IRREDUCIBLE CHAIN

Now if the chain the time reversible as well, then r (x, y) = P (x, y),

J)~ /. /1 xX 1_- _ _Y~.Y) ~~j)~-- ~
~ -

~~

y

N ----... time

y

N+1

,-(x..1') = p(x,y)

Condition for a time reversible irreducible chain

Then the balance equation (1) becomes

7r (x) P(x, y) = 7r (y) P(y, x) (2)

Hence we need to show that the equation above holds to show the chain is time reversible.

Let the LHS of (2) be 7r(x)p(x,y) and let RHS of (2) be 7r(Y)p(y,x). Then we will show
that LHS=RHS for the following 3 cases:

1. f(x) = f(y)

2. f (x) < f (y)

3. f(x) > f(y)
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Case(l): Since f (x) = f (y) let these be some value, say z

LHS = 7f(x)p(x,y)

= f(x) (!min{1 f(y)})
2:f (v) r ' f (x)
vEV

z 1

-2:f (v) ~
vEV

and

RHS = 7f (y) P(y, x)

= f(y) (!min{1 f(X)})
2:f (v) r ' f (y)
vEV

z 1

2:f (v) r
vEV

We see that (3) is the same as (4), hence ILHS=RHS for case (1) I·

case(2): f (x) < f (y)

(3)

(4)

LHS = 7f (x) P(x, y)

= f(x) (!min{1 f(y)})
2:f (v) r ' f (x)
vEV

-
f (x) 1

2:f (v) r
(5)

vEV

and

RHS=7f(Y)p(y,x)

= f(y) (!min{1 f(X)})
2:f(v) r 'f(y)
vEV

_ f(y) 1f(x)

-2:f(v)~f(Y)
vEV

_ f (x) 1

- 2:f (v) ~
(6)

-.
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Hence we see that (5) is the same as (6). Hence IRHS=LHS for case(2) I.
case (3):1 (x) > 1 (y)

LHS = 7r (x) P (x, y)

= 1(x) (!min{l 1(Y)})L1 (v) r ' 1 (x)
vEV

1(x) 11 (y)
- --L1 (v) r 1 (x)

vEV

f (y) 1
- -
Lf (v) r
vEV

and

RHS = 7r (y) P (y, x)

= f(y) (!min{l 1(x)})
L1(v) r ' 1(y)
vEV

f (y) 1

- Lf(v)r
vEV

We see that (7) is the same as (8), hence ILHS=RHS for case (3) as wen I.

(7)

/'"

/(8)

(6~ J

IHence we showed the balance equation for the time reversible condition is satisfied I. QED.

'lJ-

7
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2 Problem 8.5

/' \'. let

a PO~JlI\"

[.;,.", ~UPPoS(,; (;

11[9(', "j denote the number of cd
function defined on F. and let

~(x) = ~ ., ,

regular \t:uko\' chain wh",r.•

chain defined by

whenever (x, y) ( I ...

and where f( 1)
the rcsultinQ. cham IS r

fl'
r ana has thc rCQUlr

TLAB) tha
istribution.

2.1 Part(a)

The following is the Hastings-Metrpolois algorithm implementation.

This algorithm generates a time-reversible M.e. (referred to as p in the lecture notes) given
an irreducible M.e. (called q or the original chain) and given a stationary distribution 7r for
that chain.

,./"

Time reversibleDesired stationary
Irreducible Markovprobability distribution

Hastings-Metropolis Chain (P) whose
algorithm stationary distributionOriginal Irreducible

is the suppliedMarkov Chain (q)
distribution.

./

8
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Input: f (x) defined over the states x, and edge (x) which represents the number of edges
connected to x

1. For each state x calculate 7r (x) = .j..S,x) and for each state x calculate edge(x)
f(v)

..J

vEV

2. compute q (x, y) = edg~(x) whenever edge (x) =1= 0 else set q (x, y) = 0

3. Select a state x by random to start from.

4. Let n = 1 and let Xl = X

5. Let S be the set of all states that can be reached in one step from x. These will be the
states y in which q (x, y) =1= 0

6. Select a state y from S by random (using a uniform U [0,1] random number generator)

7. Calculate (3 (x y) = min {I 7f(y)q(y,X)}
, , 7f(x)q(x,y)

8. Generate a random number u from U [0, 1]

9. Let n = n+ 1

10. Compare u to (3 (x, y).

11. IF u < (3 (x, y) THEN X n = y (select the new state) ELSE X n = X n - 1 (stay in same
state) ENDIF

12. Let x = X n

13. If n > some Max number of iterations or if we reached some convergence limit Then go
to 15

14. GOTO 5

15. Algorithm is complete. Now generate the time reversible MC as follows

/o.? ~~• rt ,

(a) Scan the state path generate X n and count how many times state x switches to
state y in one step

(b) Do the above for all the states x

(c) Divide the above number by the total number of steps made to generate p (x, y)

nl~ Since the problem now as
-- the end of the problem an the above siqlulation using that data2

• Please see
~appendix for code anal P matrix generated.

21 allreadv: the code for the simulation written, just needed to~ed the new data for this problem.
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2.1.1 Part (a1)

This is similar the problem 8.4 part(I). To show that the p (final M.C.) is irreducible, we need
to show that there exist no closed proper subsets. Since the graph G is connected, then we
just need to show whenever there is an edge between vertex x and Y then there corresponds in
the chain representation of the final p matrix a non-zero p (x, y) and also a non-zero p (y, x).
This will insure that the each state can transition to each other state, just as each vertex can
be visited from each other vertex (since it is a connected graph).

Let us consider any 2 vertices say x, y with a direct edge between them (this is the only case
we need to consider due to the argument above). We need to show the resulting p (x, y) and
p (y, x) are non-zero

Consider p (x, y) first. Since

Hence

p(x,y) =q(x,y)/3(x,y)

= 1 min{l 1r(y)q(y,x)}
edge (x) , 1r (x) q (x, y)

fey) 1

Lf(V) edge(y)

1 . J1 vEV
= edge (x) mm) '-----:-f(;-;x),----1-

Lf(v) edge(x)

vEV

) 1 . {I f(y)edge(X)}p(x,y = ~mm , f(x)edge(y)

~tA
'JAft-~

lA ~W~.(
Lv- ~lly'f- ~&) - -

(1)

Then it is clear that whenever there is an edge between x, y then p (x, y) =I- 0 since both! (x)
and! (y) are positive (not zero) and also edge(x) and edge(y) are non-zero as well. Hence we
see that p (x, y) =I- O. Similar argument shows that p (y, x) =I- o.
IThis shows that M.C. represented by P is irreducible I·

2.1.2 Part (a2)

~e condition for regular chain P is that there exist at least one state x such that p (x, x) >~
O/om (1) above we can decide under what conditions this will occur. /' /

onsider a vertex x with edge (x) edges from it connected to vertices Y1, Y2,··· ,Yr. Then from
(1) we see that

( .) _ 1 . {I !(Yi)edge(x)}p x, Y~ - IDln,
edge (x) !(x)edge(~)

{~}= 1 min 1 edge(Yi)

edge (x) , ..J.S!EL
edge(x)

10
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I t/I ?, 1
/ <-

{
f(Y;)}

The condition for having p (x, x) > 0 is that min 1, ed~(~)i) < 1, :ynce this will cause p (x, Yi)
edge(x)

to be some quantity less th,an ~ and so when summi~r~"Fth9'e will be a deficit in the

\ {~}sum and we have to compensate for it to make it 1 by adding p (x, x). But for min 1,~
edge x)

to be less than ONE means that I .JJJ!.iL <~edge(Yi) edge(x)

Hence the condition for finding an Aperiodic state is finding a vertex x such that the above holds
'or one of the vertices Yi this vertex is directly connected to. For example, if Yi had the same
number of edges from it as does x, then the condition will be that f (Yi) < f (x). And if Yi has
less or more edges from it than x has, then we need the ratio dgl(Y(i» to be less than dl(x(».

e e Yi e ge x

d The above is th sam:::;;ng J,,;x) must be constant for the p not to be regwitr . Q1
- ~- - - __ -- LY I L-

2.1.3 Part (A3) ~

Since the chain is irreducible, then there is a reverse Markov chain (proof is on page 8.1 and
8.2 of lecture notes). Hence for an irreducible chain the balance equations hold

r(x,y) = 7r(Y)p(y,x)
7r (x)

(2)

Now if the chain the time reversible as well, then r (x, y) = p (x, y), Then the balance equation
(1) becomes

7r (x) p (x, y) = 7r (y) P (y, x)

f(x) fey)
""' q(x,y)(3(x,y) = ""' q(y,x)(3(y,x)
~f(v) ~f(v)

vEV vEV

\

f (x) 1 (. {1 f (y) edge (x) }) _ f (y) 1 (. {1 f (x) edge (y) })
Lf (v) edge (x) mm 'f (x) edge (y) - Lf (v) edge (y) mm 'f (y) edge (x)
vEV vEV

( {
---.l.SJ!L }) ( { I(X)})f (x) 1 min 1 edge(y) = f (y) 1 min 1 edge(x)

Lf (v) edge (x) , elgWx) Lf (v) edge (y) , eL~(y)
vEV vEV

(3)

Hence we need to show that the equation (3) above holds to show the chain is time reversible.

There are 3 cases to consider:

1 ---.l.SJ!L = ~
. edge(y) edge(x)

2 ---.l.SJ!L <~
. edge(y) edge(x)

11

\

\

\
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3....l.iJ!L ..1i&-
. edge(y) > edge(x)

For case (1), LHS of equation (3) simplifies to ~x) -d1( ) and the RHS of (3) simplifies to
f(v) e ge x

oJ

vEV

!JJ!L 1 b t' ....l.iJ!L -..1i&- th LHS-RHS~ edge(y) ' U Slllce edge(y) - edge(x) ' en - .
LJf(v)

vEV

1 Hence balance equation (3) is satisfied for case (1).1

For case(2) LHS of (3) simplifies f(x) 1 (e!l!(y»)
, ~ edge(x) ~

LJf(v) ~

vEV

. l"fi fey) 1 h LHS-RHSSImp 1 es to Lf(v) edge(y) ,t en - .

vEV

!JJ!L _1- and RHS of (3)
""'" edge(y)

f(v)
oJ

vEV

IHence balance equation (3) is satisfied for case (2) I.

For case (3) LHS of (3) simplifies f(x) 1 and RHS of (3) simplifies to fey) 1 (e!g<:(x») =
, ~ ( ) edge(x) ~ edge(y) ~

LJf v LJf(v) ~

vEV vEV
f(x) 1

Lf(V) edge(x) ,then LHS=RHS.

vEV

IHence balance equation (3) is satisfied for case (3) I.
Hence in all 3 cases we showed the balance equation is satisfied.

IHence M.e. is time reversible I.

2.2 Part(b)

A small program written to construct the P matrix directly following instructions on page 8.4
of lecture notes. The following is the resulting P matrix

~

/

/( C)1
\ 7?

,/
/

?
~

/

Now to check that the final chain P is regular, it was raised to some high power to check that
all entries in the pm > O. This is the result

12
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In[17]:= MatrixPower [p, 50] / / N / / MatrixForm

Out(17]//MatrixForm=

~ ·0.0526316 0.421053 0.315789 0.210526]
0.05263160.4210530.3157890.210526

( L7 0.05263160.421053 0.3157890.210526
,/Y .0.05263160.421053 0.3157890.210526

)

The above verifies that the final matrix p is regular.

Using the Hastings-Metr<V0lis simul~tion algorithm, the convergence to the above matrix was
slow. Had to make 2 million observation to be within 3 decimal points from the above. Here
is the P matrix generated from Hastings algorithm for N = 2, 000, 000

1~v
{)

-<\
. O. 0.5001140.499886 O.
0.0625897 0.4371790.249784 0.250448
0.0831875 0.333962 0.248524 0.334326

.. 0. 0.4992970.500703 O.I
L

i~
~ 1v-oJ;(j
~ ~:

./ /' ('

./

r
~

1r-=

~--
~ .(~) ~ ( <:) Lr )
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-

3 Appendix (Implementation of part(a) and part(b»

The graph for part(a) and part(b) is the following

Graph for problem 8.5

14
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Hastings - Metropolis Algorithm implementation For Problem 8.5
part(a)
This below is an implementation of the Hastings - Metropolis algorithm. A simple GUI interface allows the user to specify the
number of steps to run the algorithm for. At each step, the current P matrix and the current calculated stationary distribution for
this P matrix are shown to help observe the convergence.

The input to this run below is that of problem 8.5 part(b)

Few seed the random number generator and display the q and the 1r distribution used

ISeedRandom[121212];

Define the data given in the problem

v={l,2,3,4};

ed,es,,,\{{l, 2}. {1, 3}. {2, 3}, {2, 4}, {3, 4}};

f 'F ~ S, 6, 4};

Define the functions 1r(x) and q(x,y) to use in the implementation

f[x]

pi[x_, f_] := Z:~9th[fJ f[i]

q[x_, y_] := Modu1e[{r},

r=Count[edges, {x, any_}] + Count [edges, {any_, x}];

If[(Count[edges, {x, y}] >0 II Count[edges, {y, x}] >0), l/r. 0]

]

Find the stationary distribution

w=Tab1e[pi[x, f], {x, 1, v[-l]}]

1 8

{19' 19
6

19

4

19 }

Printed by Mathematica for Students
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21 nma_hastings_problem_B_S_parca.nb

Generate the original q matrix

(originalMatrix = Table[q[x, y], {x, 1, v[-l:D}, {y, 1, v[-l:D}]) II MatrixForm

0 1 1 0
2 2

1 0 1 1

3 3 3

1 1 0 1

3 3 3

0 1 1 0
2 2

Bring up the user interface

m=Manipulate[First@{x=hastings[maxN]; Grid[{{"stationary distribution w=", N[w]},

{ "current stationary distribution=D, MatrixPower [N[x] , 100] [1, All:D} ,

{, }, {·Current P Matrix=", N[MatrixForm [x]]}}, Alignment .... Left] },

{{maxN, 1, "number of stepsD}, 1, 2000000, 100, ContinuousAction .... False,

Appearance ..... Labeled·} ,

AutorunSequencing .... {{1, 300}}

number of steps =01============= 273401

{0.0526316, 0.421053, 0.315789, 0.210526)

{0.053453, 0.420567, 0.316001, 0.209979)

stationary distribution w=

current stationary distribution=

Current P Matrix=

Define a function for cummulative sum

cumSum[list_] := Module[{i, sum, s, k},

sum = 0;

k = Length [list] ;

s = Table[O, {k}];

For[i = 1, i ~ k, i++,

{

sum = sum + list[i:D;

s[i:D = sum;

}

] ;

s

O.

0.0637317

0.0843336

O.

0.502771 0.497229 O.

0.435999 0.251526 0.248743

0.331767 0.250466 0.333434

0.502369 0.497631 O.

Printed by Mathematica for Students
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nma_hastings_problem_B_5_parca.nb 13

Function to calculate p (x, y)

beta[x_, y_. pi_. lL] := Module [ O.

[
pi[y] q[y. x] ]

Min 1.
pi [x] q[x. y]

Function called at the end of the run to generate P from the path of states travelled

generatePMatrixFromStatepath [nStates_. x_] : = Module [{i. j. p. a11Pairs. n. m}.

n = Length [x] ;

(*Print[-X=-.x];*)

p = Tab1e[0. {nStates}. {nStates}];

a11Pairs = Partition[x. 2. 1];

For[i = 1. is nStates. i++.

m = Count [a11Pairs. {i. y_}];

For[j = I, j S nStates. j ++.

If[m j! O. p[i. j] = Count [allPairs. {i. j}] 1m. p[i. j] = 0]

]

}

] ;

p

]

Function to sample from q using uniform distribution

samp1eFromQConditiona1 [lL. x_] : = Module [{s. found. j. k. sample. y}.

s = F1atten[Position[q[x. All]. Except [0] • 1. Heads -+ False] ];

sample = q[ x. s];

sample = cumSum[samp1e];

y = RandomRea1 [] ;

found = False;

For[j = 1. j S Length [sample] • j ++.

If [ Not [found]. If [y S samp1e[j]. {k = j; found = True}] 1
1;

y = s[k]

]
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41 nma_hastings_problem_8_5_parCa.nb

The Hastings algorithm main loop

hastings[maxN_] := Module[{i, j, nStates, n, s, y, a, u, x, sample, pts, sum, k, found},

nStates =Length [originalMatrix] ;

n =1;

x =Table[O, {maxN}];

x[n] =1; (*pick any state to start from*)

i =1;

While[i < maxN,

y =sampleFromQConditional [originalMatrix, x[n]];

a =beta [x[n], y, w, originalMatrix];

u =RandomReal [] ;

n++;

If [u:s a, x[n] =y, x[n] =x[n - 1]]; (*acceptance step*)

i ++;

}

] ;

generatePMatrixFromStatePath[nStates, x]

~
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Problem 8.5 part(b)
by Naser Abbasi. Mathematics 504, Spring 2008. CSUF

This below construct the P matrix using direct computation of the Hasting-Meropolis method

Define the data given in the problem

v={l,2,3,4};

edges = {{ I, 2}, {I, 3}, {2, 3}, {2, 4}, {3, 4}};

f={l,8,6,4};

Define the functions n(x) to use in the implementation

f[x]

pi[x_, f_] := Z~9th(fJ f[i]

Define the functions q(x,y) to use in the implementation. This does something similar to the
adjcancy matrix normally used. I used the Count£] function in Mathematica which automatically
counts the edges from the edges list above, so there is really no need to construct an adjancy
matrix as SUCh.

q[x_, y_] := Module [{r}.

r = Count [edges, {x, any_}] + Count [edges, {any_, x}];

If[(Count[edges, {x, y}] > 0 II Count [edges, {y, x}] > 0), l/r, 0]

]

Find the stationary distribution

w =Table [pi [x, f], {x, I, v[-I]}]

1 8

{i9' 19
6

19

4

i9}

Printed by Mathematica for Students
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2 Iproblem_B_S_parCb.nb

Generate the original q matrix

(origina1Matrix=Tab1e[q[x, y], {x, 1, v[-l]}, {y, 1, v[-l]}]) //MatrixForm

0 1 1 0
2 2

1
0

1 1

3 3 3

1 1
0

1

3 3 3

0
1 1

0
2 2

define Beta function

beta[x_, y_, pi_, CL] := Module [ 0,

[
pi[YD q[y, xD ]

Min 1,
pi [xD q[x, yD

define a function to calculate a non· diagonal entry in the P matrix

makeEntrylnPMatrix[x_, y_, pi_, CL] :=Modu1e[0,

If[q[x, yD :: 0, 0, q[x, yD beta[x, y, pi, q]]

]

Construct the P matrix for the off-diagonal elements only

nStates = Length [origina1Matrix] ;

p=Tab1e[0, {nStates}, {nStates}];

For[i = 1, i:!: nStates, i++,

For[j = 1, j:!: nStates, j ++,

If[i i- j, p[i, jD =makeEntrylnPMatrix[i, j, w, origina1Matrix]]

]

] ;

Now calculate the diagonal elements of the P matrix

For[i = 1, i:!: nStates, i++,

For[j =1, j :!:nStates, j++,

If[i:: j, p[i, jD = 1-Total[p[i, AllD]]

]

] ;

Printed by Mathematica for Students
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Print the P matrix

Ip / / N / / MatrixForm

problem_8_5_parCb.nb 13

./

O. 0.5 0.5 O.

0.0625 0.4375 0.25 0.25

0.0833333 0.333333 0.25 0.333333

O. 0.5 0.5 O.

()
'-

Raise the final p matrix to some large power to verify it is regular

IMatrixPower [p, 50] / / N / / MatrixForm

0.0526316 0.421053 0.315789 0.210526

0.0526316 0.421053 0.315789 0.210526

0.0526316 0.421053 0.315789 0.210526

0.0526316 0.421053 0.315789 0.210526
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HW problems 8.4 and 8.5, Mathematics 504

CSUF, spring 2008

by Nasser Abbasi

May 8, 2008
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1 Problem 8.4

1.1 Part(i)

M.C. is irreducible if there exist no proper closed subset in the state space. Since we are
given that the graph G is connected, then this means it is possible to visit each vertex from
any other vertex in the graph. But does a connected graph implies no proper closed subset
of the corresponding M.C.? The answer is YES. If we view each vertex as state, we just need
to show that for each edge in G between 2 vertices x; y, there corresponds a probability of
transition from state x to y which is not zero, and also a probability of transition from state y
to x which is also not zero. By showing this, we conclude that the M.C. will switch (in some
number of steps) to any state from any other state, which implies there is no closed subset,
hence P is irreducible.

But from the de�nition of p(x; y) we see that if there is an edge (x; y) then p(x; y) exist and
is not zero, and p(y; x) exist and is not zero (since r is �nite). This completes the proof.

2
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1.2 Part(ii)

A �nite M.C. is regular when, for some integer m, Pm contains only positive elements.

This implies that the one step transition matrix P must have at least one entry along the
diagonal Pii that is none-zero (If all elements along the diagonal are zero, then Pm will always
contain at least one zero element no matter how large m is). But a diagonal element not being
zero is the same as saying that at least one state must be aperiodic (if Pii > 0 then the period
is one).

Hence the condition for the M.C. to be regular is that at least one state must be aperiodic 1.

To proof that the above chain is regular, we then need to show that at least one state is
aperiodic.

This is the proof :

Since at most a vertex can have r edges, then we can �nd a vertex x with r edges con-
necting it to vertices y1; y2; � � � ; yr with corresponding one step probability transitions of
p (x; y1) ; p (x; y2) ; � � � ; p (x; yr). (If we can�t �nd such a vertex, the argument will apply to
any other vertex, just replace r with the number of edges on that vertex and the argument
will still apply).

Now let us consider f (x) and compare it to each of the f (yi) where the yi is the vertex with
direct edge from x. There are 2 cases to consider:

1. f (x) > at least one of the f (yi), i = 1 � � � r

2. f (x) < all of f (yi), i = 1 � � � r

3. f (x) = all of f (yi), i = 1 � � � r

Consider case (1) : Since f (x) > f (yi) for some i, then for this speci�c yi, p (x; yi) =

1
r
min

n
1; f(y)

f(x)

o
= 1

r
k where k < 1, hence p (x; yi) = a where a < 1

r
. Lets assume there was

only one yi such that the above is true. I.e. at least one of the vertices connected to x
had f (yi) < f (x) (if more if found, it will not change the argument). Now we add all the

probabilities p (x; yi) and we found that this sum is

(r�1) verticesz }| {
1

r
+
1

r
+ � � �+ 1

r
+ a where the a is for

that vertex which had f (yi) < f (x). Now since a < 1
r
then this sum will be LESS THAN

ONE. But the sum of the one step probability transition from each state must be 1, hence
to compensate, we must then have p (x; x) added to make up for the di¤erence. Hence we
showed that under case (1) we can �nd pii which is not zero. This diagram illustrate this case

1In addition, since we showed in part (i) that this chain is an irreducible chain, hence each state communicate
with each other state, hence all states must be of the same type since all states are in the same communication
class (Theorem 5.3.2). Then if one state is aperiodic, then the all states that communicate with it must also
be aperiod (to be of the same type). Hence in an irreduible chain, if one state is aperiodic, then all states are
aperiodic as well.

3
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Now we consider case (2) . In this case since f (x) < f (yi) for each i, then p (x; yi) =

1
r
min

n
1; f(yi)

f(x)

o
= 1

r
., then the sum of the probabilities of transitions from x is

r verticesz }| {
1

r
+
1

r
+ � � �+ 1

r
=

1and we do not need to compensate by adding p (x; x) to make up for the de�cit. However
since now f (yi) > f (x) then if we view yi as the x vertex and the x vertex as the y, and
consider the probability transitions out of yi, then we are back to case (1) above. Hence in
case (2) as well ,we can �nd a state in which p (x; x) > 0, Hence the chain is aperiodic, and
since it is irreducible, then it is regular in this case as well.

Now consider case (3): In this case f (x) = f (yi) for i = 1 � � � r: In other words, f (x) is

CONSTANT. In this case p (x; yi) = 1
r
min

n
1; f(yi)

f(x)

o
= 1

r
;then the sum of the probabilities of

transitions from x is

r verticesz }| {
1

r
+
1

r
+ � � �+ 1

r
= 1and we do not need to compensate by adding p (x; x)

to make up for the de�cit. This will be true for any node. Therefore, it is not possible to �nd
at least one node with the probabilities attached to edges leaving it is less than one. Hence
there are no state with p (x; x) > 0, hence in this case, the chain is not aperiodic, and hence
the chain is NOT regular.

Conclusion: Condition for chain not to be regular is that f (x) be constant.

1.3 Part(iii)

Since the chain is irreducible, then there is a reverse Markov chain (proof is on page 8.1 and
8.2 of lecture notes). Hence for an irreducible chain the balance equations hold

r (x; y) =
� (y) p (y; x)

� (x)
(1)

This diagram helps me remember these formulas

4
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Now if the chain the time reversible as well, then r (x; y) = p (x; y),

Then the balance equation (1) becomes

� (x) p (x; y) = � (y) p (y; x) (2)

Hence we need to show that the equation above holds to show the chain is time reversible.

Let the LHS of (2) be � (x) p (x; y) and let RHS of (2) be � (y) p (y; x). Then we will show
that LHS=RHS for the following 3 cases:

1. f (x) = f (y)

2. f (x) < f (y)

3. f (x) > f (y)

5
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Case(1): Since f (x) = f (y) let these be some value, say z

LHS = � (x) p (x; y)

=
f (x)X

v2V
f (v)

�
1

r
min

�
1;
f (y)

f (x)

��

=
zX

v2V
f (v)

1

r
(3)

and

RHS = � (y) p (y; x)

=
f (y)X

v2V
f (v)

�
1

r
min

�
1;
f (x)

f (y)

��

=
zX

v2V
f (v)

1

r
(4)

We see that (3) is the same as (4), hence LHS=RHS for case (1) .

case(2): f (x) < f (y)

LHS = � (x) p (x; y)

=
f (x)X

v2V
f (v)

�
1

r
min

�
1;
f (y)

f (x)

��

=
f (x)X

v2V
f (v)

1

r
(5)

and

RHS = � (y) p (y; x)

=
f (y)X

v2V
f (v)

�
1

r
min

�
1;
f (x)

f (y)

��

=
f (y)X

v2V
f (v)

1

r

f (x)

f (y)

=
f (x)X

v2V
f (v)

1

r
(6)

6
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Hence we see that (5) is the same as (6). Hence RHS=LHS for case(2) .

case (3):f (x) > f (y)

LHS = � (x) p (x; y)

=
f (x)X

v2V
f (v)

�
1

r
min

�
1;
f (y)

f (x)

��

=
f (x)X

v2V
f (v)

1

r

f (y)

f (x)

=
f (y)X

v2V
f (v)

1

r
(7)

and

RHS = � (y) p (y; x)

=
f (y)X

v2V
f (v)

�
1

r
min

�
1;
f (x)

f (y)

��

=
f (y)X

v2V
f (v)

1

r
(8)

We see that (7) is the same as (8), hence LHS=RHS for case (3) as well .

Hence we showed the balance equation for the time reversible condition is satis�ed . QED.

7
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2 Problem 8.5

2.1 Part(a)

The following is the Hastings-Metrpolois algorithm implementation.

This algorithm generates a time-reversible M.C. (referred to as p in the lecture notes) given
an irreducible M.C. (called q or the original chain) and given a stationary distribution � for
that chain.

8
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Input: f (x) de�ned over the states x; and edge (x) which represents the number of edges
connected to x

1. For each state x calculate � (x) = f(x)X
v2V

f(v)

and for each state x calculate edge(x)

2. compute q (x; y) = 1
edge(x)

whenever edge (x) 6= 0 else set q (x; y) = 0

3. Select a state x by random to start from.

4. Let n = 1 and let X1 = x

5. Let S be the set of all states that can be reached in one step from x. These will be the
states y in which q (x; y) 6= 0

6. Select a state y from S by random (using a uniform U [0; 1] random number generator)

7. Calculate � (x; y) = min
n
1; �(y)q(y;x)

�(x)q(x;y)

o
8. Generate a random number u from U [0; 1]

9. Let n = n+ 1

10. Compare u to � (x; y).

11. IF u < � (x; y) THEN Xn = y (select the new state) ELSE Xn = Xn�1 (stay in same
state) ENDIF

12. Let x = Xn

13. If n > some Max number of iterations or if we reached some convergence limit Then go
to 15

14. GOTO 5

15. Algorithm is complete. Now generate the time reversible MC as follows

(a) Scan the state path generate Xn and count how many times state x switches to
state y in one step

(b) Do the above for all the states x

(c) Divide the above number by the total number of steps made to generate p (x; y)

Since the problem now asks to implement Hastings-Metropolis, then I used the data given at
the end of the problem and implemented the above simulation using that data2. Please see
appendix for code and �nal P matrix generated.

2I allready had the code for the simulation written, just needed to feed the new data for this problem.

9
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2.1.1 Part (a1)

This is similar the problem 8.4 part(I). To show that the p (�nal M.C.) is irreducible, we need
to show that there exist no closed proper subsets. Since the graph G is connected, then we
just need to show whenever there is an edge between vertex x and y then there corresponds in
the chain representation of the �nal p matrix a non-zero p (x; y) and also a non-zero p (y; x).
This will insure that the each state can transition to each other state, just as each vertex can
be visited from each other vertex (since it is a connected graph).

Let us consider any 2 vertices say x; y with a direct edge between them (this is the only case
we need to consider due to the argument above). We need to show the resulting p (x; y) and
p (y; x) are non-zero

Consider p (x; y) �rst. Since

p (x; y) = q (x; y) � (x; y)

=
1

edge (x)
min

�
1;
� (y) q (y; x)

� (x) q (x; y)

�

=
1

edge (x)
min

8>>>>><>>>>>:
1;

f(y)X
v2V

f(v)

1
edge(y)

f(x)X
v2V

f(v)

1
edge(x)

9>>>>>=>>>>>;
Hence

p (x; y) = 1
edge(x)

min
n
1; f(y)edge(x)

f(x)edge(y)

o
(1)

Then it is clear that whenever there is an edge between x; y then p (x; y) 6= 0 since both f (x)
and f (y) are positive (not zero) and also edge(x) and edge(y) are non-zero as well. Hence we
see that p (x; y) 6= 0. Similar argument shows that p (y; x) 6= 0.

This shows that M.C. represented by P is irreducible .

2.1.2 Part (a2)

The condition for regular chain P is that there exist at least one state x such that p (x; x) >
0:From (1) above we can decide under what conditions this will occur.

Consider a vertex x with edge (x) edges from it connected to vertices y1; y2; � � � ; yr. Then from
(1) we see that

p (x; yi) =
1

edge (x)
min

�
1;
f (yi) edge (x)

f (x) edge (yi)

�
=

1

edge (x)
min

(
1;

f(yi)
edge(yi)

f(x)
edge(x)

)

10
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The condition for having p (x; x) > 0 is thatmin

(
1;

f(yi)
edge(yi)
f(x)

edge(x)

)
< 1, since this will cause p (x; yi)

to be some quantity less than 1
r
and so when summing over all r there will be a de�cit in the

sum and we have to compensate for it to make it 1 by adding p (x; x). But formin

(
1;

f(yi)
edge(yi)
f(x)

edge(x)

)
to be less than ONE means that f(yi)

edge(yi)
< f(x)

edge(x)

Hence the condition for �nding an Aperiodic state is �nding a vertex x such that the above holds
for one of the vertices yi this vertex is directly connected to. For example, if yi had the same
number of edges from it as does x, then the condition will be that f (yi) < f (x). And if yi has
less or more edges from it than x has, then we need the ratio f(yi)

edge(yi)
to be less than f(x)

edge(x)
.

The above is the same as saying f(x)
edge(x)

must be constant for the p not to be regular .

2.1.3 Part(A3)

Since the chain is irreducible, then there is a reverse Markov chain (proof is on page 8.1 and
8.2 of lecture notes). Hence for an irreducible chain the balance equations hold

r (x; y) =
� (y) p (y; x)

� (x)
(2)

Now if the chain the time reversible as well, then r (x; y) = p (x; y), Then the balance equation
(1) becomes

� (x) p (x; y) = � (y) p (y; x)

f (x)X
v2V
f (v)

q (x; y) � (x; y) =
f (y)X

v2V
f (v)

q (y; x) � (y; x)

f (x)X
v2V
f (v)

1

edge (x)

�
min

�
1;
f (y) edge (x)

f (x) edge (y)

��
=

f (y)X
v2V
f (v)

1

edge (y)

�
min

�
1;
f (x) edge (y)

f (y) edge (x)

��

f (x)X
v2V
f (v)

1

edge (x)

 
min

(
1;

f(y)
edge(y)

f(x)
edge(x)

)!
=

f (y)X
v2V
f (v)

1

edge (y)

 
min

(
1;

f(x)
edge(x)

f(y)
edge(y)

)!
(3)

Hence we need to show that the equation (3) above holds to show the chain is time reversible.

There are 3 cases to consider:

1. f(y)
edge(y)

= f(x)
edge(x)

2. f(y)
edge(y)

< f(x)
edge(x)

11
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3. f(y)
edge(y)

> f(x)
edge(x)

For case (1), LHS of equation (3) simpli�es to f(x)X
v2V

f(v)

1
edge(x)

and the RHS of (3) simpli�es to

f(y)X
v2V

f(v)

1
edge(y)

, but since f(y)
edge(y)

= f(x)
edge(x)

, then LHS=RHS.

Hence balance equation (3) is satis�ed for case (1).

For case(2), LHS of (3) simpli�es f(x)X
v2V

f(v)

1
edge(x)

�
f(y)

edge(y)
f(x)

edge(x)

�
= f(y)X

v2V
f(v)

1
edge(y)

and RHS of (3)

simpli�es to f(y)X
v2V

f(v)

1
edge(y)

;then LHS=RHS.

Hence balance equation (3) is satis�ed for case (2) .

For case (3), LHS of (3) simpli�es f(x)X
v2V

f(v)

1
edge(x)

and RHS of (3) simpli�es to f(y)X
v2V

f(v)

1
edge(y)

�
f(x)

edge(x)
f(y)

edge(y)

�
=

f(x)X
v2V

f(v)

1
edge(x)

;then LHS=RHS.

Hence balance equation (3) is satis�ed for case (3) .

Hence in all 3 cases we showed the balance equation is satis�ed.

Hence M.C. is time reversible .

2.2 Part(b)

A small program written to construct the P matrix directly following instructions on page 8.4
of lecture notes. The following is the resulting P matrix

Now to check that the �nal chain P is regular, it was raised to some high power to check that
all entries in the Pm > 0. This is the result

12
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The above veri�es that the �nal matrix p is regular.

Using the Hastings-Metropolis simulation algorithm, the convergence to the above matrix was
slow. Had to make 2 million observation to be within 3 decimal points from the above. Here
is the P matrix generated from Hastings algorithm for N = 2; 000; 000

13
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3 Appendix (Implementation of part(a) and part(b))

The graph for part(a) and part(b) is the following

14
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Hastings - Metropolis Algorithm implementation For Problem 8.5 
part(a)
This below is an implementation of the Hastings - Metropolis algorithm. A simple GUI interface allows the user to specify the
number of steps to run the algorithm for. At each step, the current P matrix and the current calculated stationary distribution for
this P matrix are shown to help observe the convergence.

The input to this run below is that of problem 8.5 part(b) 

Few seed the random number generator and display the q and the Π distribution used

SeedRandom@121 212D;

Define the data given in the problem

v = 81, 2, 3, 4<;
edges = 881, 2<, 81, 3<, 82, 3<, 82, 4<, 83, 4<<;
f = 81, 8, 6, 4<;

Define the functions Π(x) and q(x,y) to use in the implementation

pi@x_, f_D :=
fPxT

Úi=1
Length@fD

fPiT
q@x_, y_D := Module@8r<,

r = Count@edges, 8x, any_<D + Count@edges, 8any_, x<D;
If@HCount@edges, 8x, y<D > 0 ÈÈ Count@edges, 8y, x<D > 0L, 1 �r, 0D

D

Find the stationary distribution

w = Table@pi@x, fD, 8x, 1, vP-1T<D

:
1

19
,

8

19
,

6

19
,

4

19
>

Printed by Mathematica for Students
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Generate the original q matrix

HoriginalMatrix = Table@q@x, yD, 8x, 1, vP-1T<, 8y, 1, vP-1T<DL �� MatrixForm

0 1

2

1

2
0

1

3
0 1

3

1

3

1

3

1

3
0 1

3

0 1

2

1

2
0

Bring up the user interface

m = Manipulate@First�8x = hastings@maxND; Grid@88"stationary distribution w=", N@wD<,
8 "current stationary distribution=", MatrixPower@N@xD, 100DP1, AllT<,
8, <, 8"Current P Matrix=", N@MatrixForm@xDD<<, Alignment ® LeftD<,

88maxN, 1, "number of steps"<, 1, 2 000 000, 100, ContinuousAction ® False,

Appearance ® "Labeled"<,
AutorunSequencing ® 881, 300<<

D

number of steps 273401

stationary distribution w= 80.0526316, 0.421053, 0.315789, 0.210526<
current stationary distribution= 80.053453, 0.420567, 0.316001, 0.209979<

Current P Matrix=

0. 0.502771 0.497229 0.

0.0637317 0.435999 0.251526 0.248743

0.0843336 0.331767 0.250466 0.333434

0. 0.502369 0.497631 0.

Define a function for cummulative sum

cumSum@list_D := Module@8i, sum, s, k<,
sum = 0;

k = Length@listD;
s = Table@0, 8k<D;
For@i = 1, i £ k, i++,

8
sum = sum + listPiT;
sPiT = sum;

<
D;
s

D

Function to calculate Β (x, y)

2  nma_hastings_problem_8_5_part_a.nb

Printed by Mathematica for Students
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Function to calculate Β (x, y)

beta@x_, y_, pi_, q_D := ModuleB8<,
MinB1, piPyT qPy, xT

piPxT qPx, yT F
F

Function called at the end of the run to generate P from the path of states travelled

generatePMatrixFromStatePath@nStates_, x_D := Module@8i, j, p, allPairs, n, m<,
n = Length@xD;
H*Print@"X=",xD;*L
p = Table@0, 8nStates<, 8nStates<D;
allPairs = Partition@x, 2, 1D;
For@i = 1, i £ nStates, i++,

8
m = Count@allPairs, 8i, y_<D;
For@j = 1, j £ nStates, j++,

If@m ¹ 0, pPi, jT = Count@allPairs, 8i, j<D �m, pPi, jT = 0D
D

<
D;
p

D

Function to sample from q using uniform distribution

sampleFromQConditional@q_, x_D := Module@8s, found, j, k, sample, y<,
s = Flatten@Position@qP x, AllT, Except@0D, 1, Heads ® FalseD D;
sample = qP x, sT;
sample = cumSum@sampleD;
y = RandomReal@D;
found = False;

For@j = 1, j £ Length@sampleD, j++,

If@ Not@foundD, If@y £ samplePjT, 8k = j; found = True<DD
D;
y = sPkT

D

nma_hastings_problem_8_5_part_a.nb  3

Printed by Mathematica for Students
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The Hastings algorithm main loop

hastings@maxN_D := Module@8i, j, nStates, n, s, y, Α, u, x, sample, pts, sum, k, found<,
nStates = Length@originalMatrixD;
n = 1;

x = Table@0, 8maxN<D;
xPnT = 1; H*pick any state to start from*L
i = 1;

While@i < maxN,

8
y = sampleFromQConditional@originalMatrix, xPnTD;
Α = beta@xPnT, y, w, originalMatrixD;
u = RandomReal@D;
n++;

If@u £ Α, xPnT = y, xPnT = xPn - 1TD; H*acceptance step*L
i++;

<
D;
generatePMatrixFromStatePath@nStates, xD

D

4  nma_hastings_problem_8_5_part_a.nb

Printed by Mathematica for Students
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Problem 8.5 part(b)
by Naser Abbasi. Mathematics 504, Spring 2008. CSUF

This below construct the P matrix using direct computation of the Hasting-Meropolis method

Define the data given in the problem

v = 81, 2, 3, 4<;
edges = 881, 2<, 81, 3<, 82, 3<, 82, 4<, 83, 4<<;
f = 81, 8, 6, 4<;

Define the functions Π(x)  to use in the implementation

pi@x_, f_D :=
fPxT

Úi=1
Length@fD

fPiT

Define the functions q(x,y)  to use in the implementation. This does something similar to the 
adjcancy matrix normally used. I used the Count[] function in Mathematica which automatically 
counts the edges from the edges list above, so there is really no need to construct an adjancy 
matrix as such.

q@x_, y_D := Module@8r<,
r = Count@edges, 8x, any_<D + Count@edges, 8any_, x<D;
If@HCount@edges, 8x, y<D > 0 ÈÈ Count@edges, 8y, x<D > 0L, 1 �r, 0D

D

Find the stationary distribution

w = Table@pi@x, fD, 8x, 1, vP-1T<D

:
1

19
,

8

19
,

6

19
,

4

19
>

Printed by Mathematica for Students
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Generate the original q matrix

HoriginalMatrix = Table@q@x, yD, 8x, 1, vP-1T<, 8y, 1, vP-1T<DL �� MatrixForm

0 1

2

1

2
0

1

3
0 1

3

1

3

1

3

1

3
0 1

3

0 1

2

1

2
0

define Beta function

beta@x_, y_, pi_, q_D := ModuleB8<,
MinB1, piPyT qPy, xT

piPxT qPx, yT F
F

define a function to calculate a non - diagonal entry in the P matrix

makeEntryInPMatrix@x_, y_, pi_, q_D := Module@8<,
If@qPx, yT � 0, 0, qPx, yT beta@x, y, pi, qDD

D

Construct the P matrix for the off-diagonal elements only

nStates = Length@originalMatrixD;
p = Table@0, 8nStates<, 8nStates<D;
For@i = 1, i £ nStates, i++,

For@j = 1, j £ nStates , j++,

If@i ¹ j, pPi, jT = makeEntryInPMatrix@i, j, w, originalMatrixDD
D

D;

Now calculate the diagonal elements of the P matrix

For@i = 1, i £ nStates, i++,

For@j = 1, j £ nStates , j++,

If@i � j, pPi, jT = 1 - Total@pPi, AllTDD
D

D;

Print the P matrix

2  problem_8_5_part_b.nb

Printed by Mathematica for Students
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Print the P matrix

p �� N �� MatrixForm

0. 0.5 0.5 0.

0.0625 0.4375 0.25 0.25

0.0833333 0.333333 0.25 0.333333

0. 0.5 0.5 0.

Raise the final p matrix to some large power to verify it is regular

MatrixPower@p, 50D �� N �� MatrixForm

0.0526316 0.421053 0.315789 0.210526

0.0526316 0.421053 0.315789 0.210526

0.0526316 0.421053 0.315789 0.210526

0.0526316 0.421053 0.315789 0.210526

problem_8_5_part_b.nb  3

Printed by Mathematica for Students
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4.12 Wed 4/16/2008

Grade: 4/4.

4.12.1 Problem 8.4

Part(i)

M.C. is irreducible if there exist no proper closed subset in the state space. Since we are
given that the graph G is connected, then this means it is possible to visit each vertex from
any other vertex in the graph. But does a connected graph implies no proper closed subset
of the corresponding M.C.? The answer is YES. If we view each vertex as state, we just need
to show that for each edge in G between 2 vertices x, y, there corresponds a probability of
transition from state x to y which is not zero, and also a probability of transition from state
y to x which is also not zero. By showing this, we conclude that the M.C. will switch (in
some number of steps) to any state from any other state, which implies there is no closed
subset, hence P is irreducible.

But from the definition of p(x, y) we see that if there is an edge (x, y) then p(x, y) exist and
is not zero, and p(y, x) exist and is not zero (since r is finite). This completes the proof.
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Part(ii)

A finite M.C. is regular when, for some integer m, Pm contains only positive elements.

This implies that the one step transition matrix P must have at least one entry along the
diagonal Pii that is none-zero (If all elements along the diagonal are zero, then Pm will always
contain at least one zero element no matter how large m is). But a diagonal element not
being zero is the same as saying that at least one state must be aperiodic (if Pii > 0 then
the period is one).

Hence the condition for the M.C. to be regular is that at least one state must be aperiodic 5.

To proof that the above chain is regular, we then need to show that at least one state is
aperiodic.

This is the proof :

Since at most a vertex can have r edges, then we can find a vertex x with r edges con-
necting it to vertices y1, y2, · · · , yr with corresponding one step probability transitions of
p(x, y1) , p(x, y2) , · · · , p(x, yr). (If we can’t find such a vertex, the argument will apply to any
other vertex, just replace r with the number of edges on that vertex and the argument will
still apply).

Now let us consider f(x) and compare it to each of the f(yi) where the yi is the vertex with
direct edge from x. There are 2 cases to consider:

1. f(x) > at least one of the f(yi), i = 1· · · r

2. f(x) < all of f(yi), i = 1· · · r

3. f(x) = all of f(yi), i = 1· · · r

Consider case (1): Since f(x) > f(yi) for some i, then for this specific yi, p(x, yi) =
1
r
min

{
1, f(y)

f(x)

}
= 1

r
k where k < 1, hence p(x, yi) = a where a < 1

r
. Lets assume there was

only one yi such that the above is true. I.e. at least one of the vertices connected to x

had f(yi) < f(x) (if more if found, it will not change the argument). Now we add all the

probabilities p(x, yi) and we found that this sum is

(r−1) vertices︷ ︸︸ ︷
1
r
+ 1

r
+ · · ·+ 1

r
+ a where the a is for

that vertex which had f(yi) < f(x). Now since a < 1
r
then this sum will be LESS THAN

ONE. But the sum of the one step probability transition from each state must be 1, hence
to compensate, we must then have p(x, x) added to make up for the difference. Hence we
showed that under case (1) we can find pii which is not zero. This diagram illustrate this case

5In addition, since we showed in part (i) that this chain is an irreducible chain, hence each state com-
municate with each other state, hence all states must be of the same type since all states are in the same
communication class (Theorem 5.3.2). Then if one state is aperiodic, then the all states that communicate
with it must also be aperiod (to be of the same type). Hence in an irreduible chain, if one state is aperiodic,
then all states are aperiodic as well.
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Now we consider case (2).

In this case since f(x) < f(yi) for each i, then p(x, yi) = 1
r
min

{
1, f(yi)

f(x)

}
= 1

r
., then the

sum of the probabilities of transitions from x is

r vertices︷ ︸︸ ︷
1
r
+ 1

r
+ · · ·+ 1

r
= 1and we do not need to

compensate by adding p(x, x) to make up for the deficit. However since now f(yi) > f(x)
then if we view yi as the x vertex and the x vertex as the y, and consider the probability
transitions out of yi, then we are back to case (1) above. Hence in case (2) as well ,we can
find a state in which p(x, x) > 0, Hence the chain is aperiodic, and since it is irreducible,
then it is regular in this case as well.

Now consider case (3):

In this case f(x) = f(yi) for i = 1· · · r. In other words, f(x) is CONSTANT. In this case
p(x, yi) = 1

r
min

{
1, f(yi)

f(x)

}
= 1

r
,then the sum of the probabilities of transitions from x is

r vertices︷ ︸︸ ︷
1
r
+ 1

r
+ · · ·+ 1

r
= 1and we do not need to compensate by adding p(x, x) to make up for the

deficit. This will be true for any node. Therefore, it is not possible to find at least one node
with the probabilities attached to edges leaving it is less than one. Hence there are no state
with p(x, x) > 0, hence in this case, the chain is not aperiodic, and hence the chain is NOT
regular.

Conclusion: Condition for chain not to be regular is that f(x) be constant.

Part(iii)

Since the chain is irreducible, then there is a reverse Markov chain (proof is on page 8.1 and
8.2 of lecture notes). Hence for an irreducible chain the balance equations hold

r(x, y) = π(y) p(y, x)
π (x) (1)

This diagram helps me remember these formulas
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Now if the chain the time reversible as well, then r(x, y) = p(x, y),
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Then the balance equation (1) becomes

π(x) p(x, y) = π(y) p(y, x) (2)

Hence we need to show that the equation above holds to show the chain is time reversible.

Let the LHS of (2) be π(x) p(x, y) and let RHS of (2) be π(y) p(y, x). Then we will show that
LHS=RHS for the following 3 cases:

1. f(x) = f(y)

2. f(x) < f(y)

3. f(x) > f(y)

Case(1): Since f(x) = f(y) let these be some value, say z

LHS = π(x) p(x, y)

= f(x)∑
v∈V

f (v)

(
1
r
min

{
1, f(y)

f (x)

})

= z∑
v∈V

f (v)
1
r

(3)
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and

RHS = π(y) p(y, x)

= f(y)∑
v∈V

f (v)

(
1
r
min

{
1, f(x)

f (y)

})

= z∑
v∈V

f (v)
1
r

(4)

We see that (3) is the same as (4), hence LHS=RHS for case (1) .

case(2): f(x) < f(y)

LHS = π(x) p(x, y)

= f(x)∑
v∈V

f (v)

(
1
r
min

{
1, f(y)

f (x)

})

= f(x)∑
v∈V

f (v)
1
r

(5)

and

RHS = π(y) p(y, x)

= f(y)∑
v∈V

f (v)

(
1
r
min

{
1, f(x)

f (y)

})

= f(y)∑
v∈V

f (v)
1
r

f(x)
f (y)

= f(x)∑
v∈V

f (v)
1
r

(6)

Hence we see that (5) is the same as (6). Hence RHS=LHS for case(2) .

case (3):f(x) > f(y)

LHS = π(x) p(x, y)

= f(x)∑
v∈V

f (v)

(
1
r
min

{
1, f(y)

f (x)

})

= f(x)∑
v∈V

f (v)
1
r

f(y)
f (x)

= f(y)∑
v∈V

f (v)
1
r

(7)

and

RHS = π(y) p(y, x)

= f(y)∑
v∈V

f (v)

(
1
r
min

{
1, f(x)

f (y)

})

= f(y)∑
v∈V

f (v)
1
r

(8)
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We see that (7) is the same as (8), hence LHS=RHS for case (3) as well .

Hence we showed the balance equation for the time reversible condition is satisfied. QED.

4.12.2 Problem 8.5

Part(a)

The following is the Hastings-Metrpolois algorithm implementation.

This algorithm generates a time-reversible M.C. (referred to as p in the lecture notes) given
an irreducible M.C. (called q or the original chain) and given a stationary distribution π for
that chain.

Input: f(x) defined over the states x, and edge(x) which represents the number of edges
connected to x

1. For each state x calculate π(x) = f(x)∑
v∈V

f(v)
and for each state x calculate edge(x)

2. compute q(x, y) = 1
edge(x) whenever edge(x) 6= 0 else set q(x, y) = 0

3. Select a state x by random to start from.

4. Let n = 1 and let X1 = x

5. Let S be the set of all states that can be reached in one step from x. These will be the
states y in which q(x, y) 6= 0
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6. Select a state y from S by random (using a uniform U [0, 1] random number generator)

7. Calculate β(x, y) = min
{
1, π(y)q(y,x)

π(x)q(x,y)

}
8. Generate a random number u from U [0, 1]

9. Let n = n+ 1

10. Compare u to β(x, y).

11. IF u < β(x, y) THEN Xn = y (select the new state) ELSE Xn = Xn−1 (stay in same
state) ENDIF

12. Let x = Xn

13. If n > some Max number of iterations or if we reached some convergence limit Then
go to 15

14. GOTO 5

15. Algorithm is complete. Now generate the time reversible MC as follows

(a) Scan the state path generate Xn and count how many times state x switches to
state y in one step

(b) Do the above for all the states x

(c) Divide the above number by the total number of steps made to generate p(x, y)

Since the problem now asks to implement Hastings-Metropolis, then I used the data given
at the end of the problem and implemented the above simulation using that data6. Please
see appendix for code and final P matrix generated.

Part (a1)

This is similar the problem 8.4 part(I). To show that the p (final M.C.) is irreducible, we need
to show that there exist no closed proper subsets. Since the graph G is connected, then we
just need to show whenever there is an edge between vertex x and y then there corresponds
in the chain representation of the final p matrix a non-zero p(x, y) and also a non-zero p(y, x).
This will insure that the each state can transition to each other state, just as each vertex
can be visited from each other vertex (since it is a connected graph).

Let us consider any 2 vertices say x, y with a direct edge between them (this is the only case
we need to consider due to the argument above). We need to show the resulting p(x, y) and
p(y, x) are non-zero

Consider p(x, y) first. Since

p(x, y) = q(x, y) β(x, y)

= 1
edge (x) min

{
1, π(y) q(y, x)

π (x) q (x, y)

}

= 1
edge (x) min


1,

f(y)∑
v∈V

f(v)

1
edge(y)

f(x)∑
v∈V

f(v)

1
edge(x)


Hence

p(x, y) = 1
edge(x) min

{
1, f(y)edge(x)

f(x)edge(y)

}
(1)

6I allready had the code for the simulation written, just needed to feed the new data for this problem.
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Then it is clear that whenever there is an edge between x, y then p(x, y) 6= 0 since both f(x)
and f(y) are positive (not zero) and also edge(x) and edge(y) are non-zero as well. Hence we
see that p(x, y) 6= 0. Similar argument shows that p(y, x) 6= 0.

This shows that M.C. represented by P is irreducible.

Part (a2)

The condition for regular chain P is that there exist at least one state x such that p(x, x) >
0.From (1) above we can decide under what conditions this will occur.

Consider a vertex x with edge(x) edges from it connected to vertices y1, y2, · · · , yr. Then
from (1) we see that

p(x, yi) =
1

edge (x) min
{
1, f(yi) edge(x)

f (x) edge (yi)

}
= 1

edge (x) min
{
1,

f(yi)
edge(yi)
f(x)

edge(x)

}

The condition for having p(x, x) > 0 is that min
{
1,

f
(
yi

)
edge

(
yi

)
f(x)

edge(x)

}
< 1, since this will cause

p(x, yi) to be some quantity less than 1
r
and so when summing over all r there will be a

deficit in the sum and we have to compensate for it to make it 1 by adding p(x, x). But for

min
{
1,

f
(
yi

)
edge

(
yi

)
f(x)

edge(x)

}
to be less than ONE means that f(yi)

edge(yi) <
f(x)

edge(x)

Hence the condition for finding an Aperiodic state is finding a vertex x such that the above
holds for one of the vertices yi this vertex is directly connected to. For example, if yi had the
same number of edges from it as does x, then the condition will be that f(yi) < f(x). And
if yi has less or more edges from it than x has, then we need the ratio f(yi)

edge(yi) to be less than
f(x)

edge(x) .

The above is the same as saying f(x)
edge(x) must be constant for the p not to be regular.

Part(A3)

Since the chain is irreducible, then there is a reverse Markov chain (proof is on page 8.1 and
8.2 of lecture notes). Hence for an irreducible chain the balance equations hold

r(x, y) = π(y) p(y, x)
π (x) (2)

Now if the chain the time reversible as well, then r(x, y) = p(x, y), Then the balance equation
(1) becomes

π(x) p(x, y) = π(y) p(y, x)
f(x)∑

v∈V

f (v)
q(x, y) β(x, y) = f(y)∑

v∈V

f (v)
q(y, x) β(y, x)

f(x)∑
v∈V

f (v)
1

edge (x)

(
min

{
1, f(y) edge(x)

f (x) edge (y)

})
= f(y)∑

v∈V

f (v)
1

edge (y)

(
min

{
1, f(x) edge(y)

f (y) edge (x)

})

f(x)∑
v∈V

f (v)
1

edge (x)

(
min

{
1,

f(y)
edge(y)
f(x)

edge(x)

})
= f(y)∑

v∈V

f (v)
1

edge (y)

(
min

{
1,

f(x)
edge(x)
f(y)

edge(y)

})
(3)

Hence we need to show that the equation (3) above holds to show the chain is time reversible.

There are 3 cases to consider:
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1. f(y)
edge(y) =

f(x)
edge(x)

2. f(y)
edge(y) <

f(x)
edge(x)

3. f(y)
edge(y) >

f(x)
edge(x)

For case (1), LHS of equation (3) simplifies to f(x)∑
v∈V

f(v)

1
edge(x) and the RHS of (3) simplifies to

f(y)∑
v∈V

f(v)

1
edge(y) , but since

f(y)
edge(y) =

f(x)
edge(x) , then LHS=RHS.

Hence balance equation (3) is satisfied for case (1).

For case(2), LHS of (3) simplifies f(x)∑
v∈V

f(v)

1
edge(x)

(
f(y)

edge(y)
f(x)

edge(x)

)
= f(y)∑

v∈V

f(v)

1
edge(y) and RHS of (3)

simplifies to f(y)∑
v∈V

f(v)

1
edge(y) ,then LHS=RHS.

Hence balance equation (3) is satisfied for case (2) .

For case (3), LHS of (3) simplifies f(x)∑
v∈V

f(v)

1
edge(x) and RHS of (3) simplifies to f(y)∑

v∈V

f(v)

1
edge(y)

(
f(x)

edge(x)
f(y)

edge(y)

)
=

f(x)∑
v∈V

f(v)

1
edge(x) ,then LHS=RHS.

Hence balance equation (3) is satisfied for case (3) .

Hence in all 3 cases we showed the balance equation is satisfied.

Hence M.C. is time reversible.

Part(b)

A small program written to construct the P matrix directly following instructions on page
8.4 of lecture notes. The following is the resulting P matrix

Now to check that the final chain P is regular, it was raised to some high power to check
that all entries in the Pm > 0. This is the result
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The above verifies that the final matrix p is regular.

Using the Hastings-Metropolis simulation algorithm, the convergence to the above matrix
was slow. Had to make 2 million observation to be within 3 decimal points from the above.
Here is the P matrix generated from Hastings algorithm for N = 2, 000, 000

4.12.3 Appendix (Implementation of part(a) and part(b))
The graph for part(a) and part(b) is the following
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4.12.4 code
Mathematica notebook

Mathematica notebook

4.12.5 Key solution

l<e~
S6lvtt-t"an ~~ <p"-~b'~ 8.5'J 8,1

Chapter 8: Markov Chain Monte Carlo Methods - Solutions to
Selected problems

8.4 Let G = (V, E) be an undirected, connected graph with the property that each
vertex is connected to at most r vertices. Let f be a positive function defined on
V and let 7f denote the probability distribution

7f(X) = f(x)
L,VEV f(v)

If (x, y) E E, define the transition probability

1 . { f(y) }
p(x, y) = ;:mm 1, f(x)

with p(x, y) = °otherwise, except that p(x, x) is determined so that the rows
sum to one. (i) Show that the Markov chain determined by p is irreducible. (ii)
Determine conditions under which the chain is regular. (iii) Show the chain is time
reversible with respect to 7f.

Solution (i) To show that the chain is irreducible, note first that G is connected. In
other words, in G there is a path from anyone node to any other; that is, given any two
nodes, say a and b in V, there is a sequence of nodes, say Xl, X2, .•. ,xn , in V such that
(a, xd E E, (Xi, Xi+d E E, for each i = 1,2, ... ,n, and (xn , b) E E. While the graph Gis
undirected, the graph of the Markov chain is directed. However, corresponding to each
arc in G there are two arcs in the graph of the Markov chain, one in each direction, and
each with nonzero probability. Indeed, if (x, y) E E, then there is an arc in the graph
of the Markov chain that points from x to y with associated probability p(x,y) > 0,
determined by the formula above, and there is another arc that points from y to x with
associated probability p(y, x) > 0, again determined by the formula above. It follows that
in the graph of the Markov chain, between any two nodes (now states of the chain), there
is a path between these states that can be traversed following the arcs in the required
directions. In other words, any two states of the Markov chain communicate. Hence, the
chain is irreducible.

(ii) Although the Markov chain is irreducible, it may be periodic, and hence not
regular. As a simple example, consider the graph G = (V, E) with vertex set V = {I, 2}
and edge set E = {(1, 2)}. Then r = 1. Suppose that f is the constant function. Then
the associated Markov chain has one-step probability transition matrix

p=[~ ~]

1

HWs/HW6_MCMC_problem_8_4_and_8_5/code/problem_8_5_part_b.nb
HWs/HW6_MCMC_problem_8_4_and_8_5/code/nma_hastings_problem_8_5_part_a.nb
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This chain is periodic with period 2. Suppose however that 1 is not constant. For
example, let 1(1) = 1 and f(2) = 3. Then the associated Markov chain has one-step
probability transition matrix

p = [1~3 2)3] .
This chain is aperiodic. However, more generally, whenever f is not the constant function,
the associated Markov chain will be aperiodic, and hence regular. To see this result, note
that there must be some vertex x such that (x, y) E E, and f (y) < f (x). For this state
x, the sum of the off-diagonal elements will be less than one, since there are at most T

nonzero off diagonal entries. Hence, for this row, p(x, x) i=- O. Thus, state x is aperiodic,
and since the chain is irreducible, all states are aperiodic, and so the chain is aperiodic.

, As another condition which implies regularity, suppose that at least one node of the
graph G is connected directly to fewer than T nodes. Then, whether f is the constant
function or not, that node will become a state in the chain that is aperiodic. Indeed, in
the one-step transition matrix, the row corresponding to this state will be such that the
sum of the off-diagonal elements will be less than one, and hence the diagonal element
will be nonzero. Thus, since the chain is irreducible, and one state is aperiodic, all states
are aperiodic.

(iii) To show that the balance equations hold, we need to show that 7r(x)p(x, y) =
7r(y)p(y, x) for each pair of states x and y. First, if p(x, y) = 0, then p(y, x) = 0 also,
since p(x, y) = 0 only when there is no edge of the graph G that connects x and y. Next,
when (x, y) E E,

f(x) . { f(y)} 1 .
7r(x)p(x, y) = TC mm 1, f(x) = TC mm {f(x), f(y)} ,

where C is the sum appearing in the denominator of 7r. Similarly, we have

f (y) . { f (x) } 1 .
7r(y)p(y, x) = TC mm 1, f(y) = TC mm {f(y), f(x)} ,

These two expressions are the same, which is the desired conclusion.

7r(x) =
L:vEv f(v)

(a) Implement the Hastings-Metropolis method to find a regular Markov chain
whose limiting distribution is 7r. Start with the initial irreducible chain clefined by

1
q(x, y) = d ()' whenever (x, y) E E .

e ge x

~Suppose G = (V, E) is an undirected connected graph. For each vertex v E V, let
edge(v) denote the number of edges that are connected to v. Let f be a positive
function defined on V, and let7r denote the probability distribution

f(x)

2
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------------------

Note that the Markov chain with this one-step transition matrix is traversed by se­
lecting at random one of the edges connected to x, and then making the transition
to the corresponding node. (al) Show that the Markov chain determined by this
method is irreducible. (a2) Determine conditions under which the chain is regular.

(a3) Show the chain is time reversible with respect to 'Jr. (b) Write a MATLAB pro­
gram that determines the one-step probability matrix resulting from this method.
The input to this program is the function .I and the graph, represented by an ad­
jacency matrix. An adjacency matrix is an n x n matrix, where n is the number

of nodes in the graph, and where entry (i, j) is one if there is an edge connecting
nodes i and j, and is zero ot~lerwise. Use this adjacency matrix to compute the
function edge(v) at each node. Apply your program to the graph G = (V, E) where

V = {l,2,3,4}, and E = {(1,2),(1,3),(2,3),(2,4),(3,4)}, and where .1(1) = 2,

.1(2) = 8, .1(3) = 6, and .1(4) = 4. Verify (using MATLAB) that the resulting chain
is regular and has the required limiting state probability distribution.

Solution (a) The one-step transition probabilities are

1
p(x, y) = d () (3(x, y)

e ge x

where (3(x, y) is given by

for, (x, y) E E, with p(x, x) = 1 - L p(x, y) ,
yo/x

. { f(y)edge(X)}.
(3(x, y) = mm 1, f(x)edge(y)

Otherwise p(x, y) = O.

(al) These formulas show that for each arc (x, y) E E, we have p(x, y) > 0 and
p(y, x) > O. Thus, between any two nodes that are connected by an arc in G, the re­
sulting Markov chain has two corresponding states, x and y, and there are two arcs
connecting these states which point in opposite directions. Hence, since the original
graph is connected, it is therefore possible, in the Markov chain, to travel from anyone
state to any other. Thus, the chain is irreducible.

(a2) For the setting of this problem, the Markov chain produced by the Hasting­
Metropolis algorithm may be periodic, and hence not regular. For example, consider the

graph G = (V, E) with vertex set 11 = {1,2} and edge set E = {(1,2)}. Suppose that
.I is the constant function. Then the resulting Markov chain has one-step probability

transition matrix

p=[O 1]
1 0 '

and the chain is periodic with period 2.

3
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However, when j(x)/edge(x) is not the constant function on V, the chain is aperiodic.
To see this result, note first that since the graph is connected, there must be two vertices
x and y such that (x, y) E E, and j(y)/edge(y) < j(x)/edge(x). For these states x and
y we will have (3 (x, y) < 1. Therefore, in the one step transition matrix for the Markov
chain, the sum of the off-diagonal elements in the row for state x is less than one. Hence,
state x is aperiodic. Since the chain is irreducible, the chain is therefore also aperiodic.
Thus, in this case when j(x)/edge(x) is not the constant function on V, the chain is
irreducible and aperiodic, and hence regular.

(a3) To show that the balance equations hold, the same argument used for the
previous problem carries over. we need to show that 7r(x)p(x,y) = 7r(y)p(y,x) for each
pair of states x and y. First, if p(x, y) = 0, then p(y, x) = °also, since p(x, y) = °only
when there is no edge of the graph G that connects x and y. Next, when (x, y) E E,

. _ j(x) . {I j(y)edge(x)} _ 2- . {j(x) j(y)}
7r(x)p(x, y) - edge(x)C mzn 'j(x)edge(y) - C mzn edge(x) ' edge(y) ,

where C is the sum appearing in the denominator of 7r. Similarly, we have

j(y) . { j(X)edge(y)} 1 . {j(y) j(X)}
7r(Y)p(y, x) = edge(y)C mzn 1, j(y)edge(x) = C mzn edge(y) ' edge(x) ,

These two expressions are the same, which is the desired conclusion.

4
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4.12.6 my graded solution

HW problems 8.4 and 8.5, Mathematics 504

CSUF, spring 2008

Contents

by Nasser Abbasi

April 16, 2008
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1 Problem 8.4

mph. with the property that c41ch "crtc,
tive function ddincd on \'. and let i

ii(X) =-

'{I. J(y}}
. J(x'p(X!.Y' =

If cr. y) E E. define II

Wllh Pi' J'. Yi - ') othcrwi.........,
I) Show that the '\-larko\ chain

ns under \\ hich the chain is r
,..

1.1 Part(i)

vertex x vertex Y

o ~~Mlv .. \ 0

Undirected Graph
representation

P(x,y)

State,0 State,

P(y,x)

Markov Chain
representation

/
M.e. is irreducible if there exist no proper closed subset in the state space. Since we are
given that the graph G is connected, then this means it is possible to visit each vertex from
any other vertex in the graph. But does a connected graph implies no proper closed subset
of the corresponding M.e.? The answer is YES. If we view each vertex as state, we just need
to show that for each edge in G between 2 vertices x, y, there corresponds a probability of
transition from state x to y which is not zero, and also a probability of transition from state y
to x which is also not zero. By showing this, we conclude that the M.e. will switch (in some
number of steps) to any state from any other state, which implies there is no closed subset,
hence P is irreducible.

But from the definition of p(x, y) we see that if there is an edge (x, y) then p(x, y) exist and
is not zero, and p(y, x) exist and is not zero (since r is finite). This completes the proof.

2
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r- l"l X l/ 1I V '1.. J... 2

1.2 Part(ii) p~ ~J- 0 Yl P ? 0l 11 \/1 0 '7

A finite-M.C. is regular when, for some integer m, pm contains only positive elements.
\

(fhid implles that the one step transition...matrix.-Lmust have~east one entry along !he
diagenaI Pii that Is-none-zero ill all elements along the diagonal are zero, then pm will always
contain at least one zero element no matter how large m is).~ a di~,gonal element not bei~ ~
ero is the same as saying that at least one state must be aperiodic (if Pti > 0 then the period 4

is one). -,---
IHence the condition for the M.C. to be regular is that at least one state must be aperiodic 11.

To ~ro~f that the above chain is regular, we then need to show that at least one state is~
apenodic. '" ? / /'
~This is the proofl: - ~t J~~ ~u..rtuY\;1 ~
Since at most a vertex can have r edges, then we can find a vertex x with r edges con­
necting it to vertices Yl, Y2,' .. , Yr with corresponding one step probability transitions of
p (x, Yl) ,p (x, Y2) , . .. ,p (x, Yr) . (If we can't find such a vertex, the argument will apply to
any other vertex, just replace r with the number of edges on that vertex and the argument
will still apply).

Now let us consider f (x) and compare it to each of the f (Yi) where the Yi is the vertex with
direct edge from x. There are 2 cases to consider:

1. f (x) > at least one of the f (Yi), i = 1··· r

2. f(x) < all of f(Yi), i = 1···r

3. f (x) = all of f (Yi), i = 1 ... r

IConsider case (1) I: Since f (x) > f (Yi) for some i, then for this specific Yi, p (x, Yi) =

~ min { 1, ~?;~} = ~k where k < 1, hence p (x, Yi) = a where a < ~. Lets assume there was
only one Yi such that the above is true. I.e. at least one of the vertices connected to x
had f (Yi) < f (x) (if more if found, it will not change the argument). Now we add all the

(r-l) ve,·tices
--'"

1In addition, since we showed in part (i) that this chain is an irreducible chain, hence each state communicate
with each other state, hence all states must be of the same type since all states are in the same communication
class (Theorem 5.3.2). Then if one state is aperiodic, then the all states that communicate with it must also
be aperiod (to be of the same type). Hence in an irreduible chain, if one state is aperiodic, then all states are
aperiodic as well.

3
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State x

state 0101

o

staterr

state 0101

o
stateyz

.1..
r

stateYi

~ stateolor

Sum of
probabilities < 1

INow we consider case (2) I· In this case since f (x) < f (Yi) for each i, then p (x, Yi)
r vertices
---"

1.3 Part(iii)

Since the chain is irreducible, then there is a reverse Markov chain (proof is on page 8.1 and
8.2 of lecture notes). Hence for an irreducible chain the balance equations hold

r(x,y) = 7f(Y)p(y,X)
11" (x)

This diagram helps me remember these formulas

4

(1)
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r:(r)
y

/. r:(.1')
~~;i).~/I x

/::;i
~

N ----<.~ time N+1

If(X )1"(.1' •.1') = If (r)p(L.1' )

BALANCE EQUATION FOR AN IRREDUCIBLE CHAIN

Now if the chain the time reversible as well, then r (x, y) = P (x, y),

J)~ /. /1 xX 1_- _ _Y~.Y) ~~j)~-- ~
~ -

~~

y

N ----... time

y

N+1

,-(x..1') = p(x,y)

Condition for a time reversible irreducible chain

Then the balance equation (1) becomes

7r (x) P(x, y) = 7r (y) P(y, x) (2)

Hence we need to show that the equation above holds to show the chain is time reversible.

Let the LHS of (2) be 7r(x)p(x,y) and let RHS of (2) be 7r(Y)p(y,x). Then we will show
that LHS=RHS for the following 3 cases:

1. f(x) = f(y)

2. f (x) < f (y)

3. f(x) > f(y)
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Case(l): Since f (x) = f (y) let these be some value, say z

LHS = 7f(x)p(x,y)

= f(x) (!min{1 f(y)})
2:f (v) r ' f (x)
vEV

z 1

-2:f (v) ~
vEV

and

RHS = 7f (y) P(y, x)

= f(y) (!min{1 f(X)})
2:f (v) r ' f (y)
vEV

z 1

2:f (v) r
vEV

We see that (3) is the same as (4), hence ILHS=RHS for case (1) I·

case(2): f (x) < f (y)

(3)

(4)

LHS = 7f (x) P(x, y)

= f(x) (!min{1 f(y)})
2:f (v) r ' f (x)
vEV

-
f (x) 1

2:f (v) r
(5)

vEV

and

RHS=7f(Y)p(y,x)

= f(y) (!min{1 f(X)})
2:f(v) r 'f(y)
vEV

_ f(y) 1f(x)

-2:f(v)~f(Y)
vEV

_ f (x) 1

- 2:f (v) ~
(6)

-.
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Hence we see that (5) is the same as (6). Hence IRHS=LHS for case(2) I.
case (3):1 (x) > 1 (y)

LHS = 7r (x) P (x, y)

= 1(x) (!min{l 1(Y)})L1 (v) r ' 1 (x)
vEV

1(x) 11 (y)
- --L1 (v) r 1 (x)

vEV

f (y) 1
- -
Lf (v) r
vEV

and

RHS = 7r (y) P (y, x)

= f(y) (!min{l 1(x)})
L1(v) r ' 1(y)
vEV

f (y) 1

- Lf(v)r
vEV

We see that (7) is the same as (8), hence ILHS=RHS for case (3) as wen I.

(7)

/'"

/(8)

(6~ J

IHence we showed the balance equation for the time reversible condition is satisfied I. QED.

'lJ-

7
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2 Problem 8.5

/' \'. let

a PO~JlI\"

[.;,.", ~UPPoS(,; (;

11[9(', "j denote the number of cd
function defined on F. and let

~(x) = ~ ., ,

regular \t:uko\' chain wh",r.•

chain defined by

whenever (x, y) ( I ...

and where f( 1)
the rcsultinQ. cham IS r

fl'
r ana has thc rCQUlr

TLAB) tha
istribution.

2.1 Part(a)

The following is the Hastings-Metrpolois algorithm implementation.

This algorithm generates a time-reversible M.e. (referred to as p in the lecture notes) given
an irreducible M.e. (called q or the original chain) and given a stationary distribution 7r for
that chain.

,./"

Time reversibleDesired stationary
Irreducible Markovprobability distribution

Hastings-Metropolis Chain (P) whose
algorithm stationary distributionOriginal Irreducible

is the suppliedMarkov Chain (q)
distribution.

./

8
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Input: f (x) defined over the states x, and edge (x) which represents the number of edges
connected to x

1. For each state x calculate 7r (x) = .j..S,x) and for each state x calculate edge(x)
f(v)

..J

vEV

2. compute q (x, y) = edg~(x) whenever edge (x) =1= 0 else set q (x, y) = 0

3. Select a state x by random to start from.

4. Let n = 1 and let Xl = X

5. Let S be the set of all states that can be reached in one step from x. These will be the
states y in which q (x, y) =1= 0

6. Select a state y from S by random (using a uniform U [0,1] random number generator)

7. Calculate (3 (x y) = min {I 7f(y)q(y,X)}
, , 7f(x)q(x,y)

8. Generate a random number u from U [0, 1]

9. Let n = n+ 1

10. Compare u to (3 (x, y).

11. IF u < (3 (x, y) THEN X n = y (select the new state) ELSE X n = X n - 1 (stay in same
state) ENDIF

12. Let x = X n

13. If n > some Max number of iterations or if we reached some convergence limit Then go
to 15

14. GOTO 5

15. Algorithm is complete. Now generate the time reversible MC as follows

/o.? ~~• rt ,

(a) Scan the state path generate X n and count how many times state x switches to
state y in one step

(b) Do the above for all the states x

(c) Divide the above number by the total number of steps made to generate p (x, y)

nl~ Since the problem now as
-- the end of the problem an the above siqlulation using that data2

• Please see
~appendix for code anal P matrix generated.

21 allreadv: the code for the simulation written, just needed to~ed the new data for this problem.
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2.1.1 Part (a1)

This is similar the problem 8.4 part(I). To show that the p (final M.C.) is irreducible, we need
to show that there exist no closed proper subsets. Since the graph G is connected, then we
just need to show whenever there is an edge between vertex x and Y then there corresponds in
the chain representation of the final p matrix a non-zero p (x, y) and also a non-zero p (y, x).
This will insure that the each state can transition to each other state, just as each vertex can
be visited from each other vertex (since it is a connected graph).

Let us consider any 2 vertices say x, y with a direct edge between them (this is the only case
we need to consider due to the argument above). We need to show the resulting p (x, y) and
p (y, x) are non-zero

Consider p (x, y) first. Since

Hence

p(x,y) =q(x,y)/3(x,y)

= 1 min{l 1r(y)q(y,x)}
edge (x) , 1r (x) q (x, y)

fey) 1

Lf(V) edge(y)

1 . J1 vEV
= edge (x) mm) '-----:-f(;-;x),----1-

Lf(v) edge(x)

vEV

) 1 . {I f(y)edge(X)}p(x,y = ~mm , f(x)edge(y)

~tA
'JAft-~

lA ~W~.(
Lv- ~lly'f- ~&) - -

(1)

Then it is clear that whenever there is an edge between x, y then p (x, y) =I- 0 since both! (x)
and! (y) are positive (not zero) and also edge(x) and edge(y) are non-zero as well. Hence we
see that p (x, y) =I- O. Similar argument shows that p (y, x) =I- o.
IThis shows that M.C. represented by P is irreducible I·

2.1.2 Part (a2)

~e condition for regular chain P is that there exist at least one state x such that p (x, x) >~
O/om (1) above we can decide under what conditions this will occur. /' /

onsider a vertex x with edge (x) edges from it connected to vertices Y1, Y2,··· ,Yr. Then from
(1) we see that

( .) _ 1 . {I !(Yi)edge(x)}p x, Y~ - IDln,
edge (x) !(x)edge(~)

{~}= 1 min 1 edge(Yi)

edge (x) , ..J.S!EL
edge(x)

10
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I t/I ?, 1
/ <-

{
f(Y;)}

The condition for having p (x, x) > 0 is that min 1, ed~(~)i) < 1, :ynce this will cause p (x, Yi)
edge(x)

to be some quantity less th,an ~ and so when summi~r~"Fth9'e will be a deficit in the

\ {~}sum and we have to compensate for it to make it 1 by adding p (x, x). But for min 1,~
edge x)

to be less than ONE means that I .JJJ!.iL <~edge(Yi) edge(x)

Hence the condition for finding an Aperiodic state is finding a vertex x such that the above holds
'or one of the vertices Yi this vertex is directly connected to. For example, if Yi had the same
number of edges from it as does x, then the condition will be that f (Yi) < f (x). And if Yi has
less or more edges from it than x has, then we need the ratio dgl(Y(i» to be less than dl(x(».

e e Yi e ge x

d The above is th sam:::;;ng J,,;x) must be constant for the p not to be regwitr . Q1
- ~- - - __ -- LY I L-

2.1.3 Part (A3) ~

Since the chain is irreducible, then there is a reverse Markov chain (proof is on page 8.1 and
8.2 of lecture notes). Hence for an irreducible chain the balance equations hold

r(x,y) = 7r(Y)p(y,x)
7r (x)

(2)

Now if the chain the time reversible as well, then r (x, y) = p (x, y), Then the balance equation
(1) becomes

7r (x) p (x, y) = 7r (y) P (y, x)

f(x) fey)
""' q(x,y)(3(x,y) = ""' q(y,x)(3(y,x)
~f(v) ~f(v)

vEV vEV

\

f (x) 1 (. {1 f (y) edge (x) }) _ f (y) 1 (. {1 f (x) edge (y) })
Lf (v) edge (x) mm 'f (x) edge (y) - Lf (v) edge (y) mm 'f (y) edge (x)
vEV vEV

( {
---.l.SJ!L }) ( { I(X)})f (x) 1 min 1 edge(y) = f (y) 1 min 1 edge(x)

Lf (v) edge (x) , elgWx) Lf (v) edge (y) , eL~(y)
vEV vEV

(3)

Hence we need to show that the equation (3) above holds to show the chain is time reversible.

There are 3 cases to consider:

1 ---.l.SJ!L = ~
. edge(y) edge(x)

2 ---.l.SJ!L <~
. edge(y) edge(x)

11

\

\

\
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3....l.iJ!L ..1i&-
. edge(y) > edge(x)

For case (1), LHS of equation (3) simplifies to ~x) -d1( ) and the RHS of (3) simplifies to
f(v) e ge x

oJ

vEV

!JJ!L 1 b t' ....l.iJ!L -..1i&- th LHS-RHS~ edge(y) ' U Slllce edge(y) - edge(x) ' en - .
LJf(v)

vEV

1 Hence balance equation (3) is satisfied for case (1).1

For case(2) LHS of (3) simplifies f(x) 1 (e!l!(y»)
, ~ edge(x) ~

LJf(v) ~

vEV

. l"fi fey) 1 h LHS-RHSSImp 1 es to Lf(v) edge(y) ,t en - .

vEV

!JJ!L _1- and RHS of (3)
""'" edge(y)

f(v)
oJ

vEV

IHence balance equation (3) is satisfied for case (2) I.

For case (3) LHS of (3) simplifies f(x) 1 and RHS of (3) simplifies to fey) 1 (e!g<:(x») =
, ~ ( ) edge(x) ~ edge(y) ~

LJf v LJf(v) ~

vEV vEV
f(x) 1

Lf(V) edge(x) ,then LHS=RHS.

vEV

IHence balance equation (3) is satisfied for case (3) I.
Hence in all 3 cases we showed the balance equation is satisfied.

IHence M.e. is time reversible I.

2.2 Part(b)

A small program written to construct the P matrix directly following instructions on page 8.4
of lecture notes. The following is the resulting P matrix

~

/

/( C)1
\ 7?

,/
/

?
~

/

Now to check that the final chain P is regular, it was raised to some high power to check that
all entries in the pm > O. This is the result

12
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In[17]:= MatrixPower [p, 50] / / N / / MatrixForm

Out(17]//MatrixForm=

~ ·0.0526316 0.421053 0.315789 0.210526]
0.05263160.4210530.3157890.210526

( L7 0.05263160.421053 0.3157890.210526
,/Y .0.05263160.421053 0.3157890.210526

)

The above verifies that the final matrix p is regular.

Using the Hastings-Metr<V0lis simul~tion algorithm, the convergence to the above matrix was
slow. Had to make 2 million observation to be within 3 decimal points from the above. Here
is the P matrix generated from Hastings algorithm for N = 2, 000, 000

1~v
{)

-<\
. O. 0.5001140.499886 O.
0.0625897 0.4371790.249784 0.250448
0.0831875 0.333962 0.248524 0.334326

.. 0. 0.4992970.500703 O.I
L

i~
~ 1v-oJ;(j
~ ~:

./ /' ('

./

r
~

1r-=

~--
~ .(~) ~ ( <:) Lr )
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-

3 Appendix (Implementation of part(a) and part(b»

The graph for part(a) and part(b) is the following

Graph for problem 8.5

14
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Hastings - Metropolis Algorithm implementation For Problem 8.5
part(a)
This below is an implementation of the Hastings - Metropolis algorithm. A simple GUI interface allows the user to specify the
number of steps to run the algorithm for. At each step, the current P matrix and the current calculated stationary distribution for
this P matrix are shown to help observe the convergence.

The input to this run below is that of problem 8.5 part(b)

Few seed the random number generator and display the q and the 1r distribution used

ISeedRandom[121212];

Define the data given in the problem

v={l,2,3,4};

ed,es,,,\{{l, 2}. {1, 3}. {2, 3}, {2, 4}, {3, 4}};

f 'F ~ S, 6, 4};

Define the functions 1r(x) and q(x,y) to use in the implementation

f[x]

pi[x_, f_] := Z:~9th[fJ f[i]

q[x_, y_] := Modu1e[{r},

r=Count[edges, {x, any_}] + Count [edges, {any_, x}];

If[(Count[edges, {x, y}] >0 II Count[edges, {y, x}] >0), l/r. 0]

]

Find the stationary distribution

w=Tab1e[pi[x, f], {x, 1, v[-l]}]

1 8

{19' 19
6

19

4

19 }

Printed by Mathematica for Students
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21 nma_hastings_problem_B_S_parca.nb

Generate the original q matrix

(originalMatrix = Table[q[x, y], {x, 1, v[-l:D}, {y, 1, v[-l:D}]) II MatrixForm

0 1 1 0
2 2

1 0 1 1

3 3 3

1 1 0 1

3 3 3

0 1 1 0
2 2

Bring up the user interface

m=Manipulate[First@{x=hastings[maxN]; Grid[{{"stationary distribution w=", N[w]},

{ "current stationary distribution=D, MatrixPower [N[x] , 100] [1, All:D} ,

{, }, {·Current P Matrix=", N[MatrixForm [x]]}}, Alignment .... Left] },

{{maxN, 1, "number of stepsD}, 1, 2000000, 100, ContinuousAction .... False,

Appearance ..... Labeled·} ,

AutorunSequencing .... {{1, 300}}

number of steps =01============= 273401

{0.0526316, 0.421053, 0.315789, 0.210526)

{0.053453, 0.420567, 0.316001, 0.209979)

stationary distribution w=

current stationary distribution=

Current P Matrix=

Define a function for cummulative sum

cumSum[list_] := Module[{i, sum, s, k},

sum = 0;

k = Length [list] ;

s = Table[O, {k}];

For[i = 1, i ~ k, i++,

{

sum = sum + list[i:D;

s[i:D = sum;

}

] ;

s

O.

0.0637317

0.0843336

O.

0.502771 0.497229 O.

0.435999 0.251526 0.248743

0.331767 0.250466 0.333434

0.502369 0.497631 O.

Printed by Mathematica for Students
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nma_hastings_problem_B_5_parca.nb 13

Function to calculate p (x, y)

beta[x_, y_. pi_. lL] := Module [ O.

[
pi[y] q[y. x] ]

Min 1.
pi [x] q[x. y]

Function called at the end of the run to generate P from the path of states travelled

generatePMatrixFromStatepath [nStates_. x_] : = Module [{i. j. p. a11Pairs. n. m}.

n = Length [x] ;

(*Print[-X=-.x];*)

p = Tab1e[0. {nStates}. {nStates}];

a11Pairs = Partition[x. 2. 1];

For[i = 1. is nStates. i++.

m = Count [a11Pairs. {i. y_}];

For[j = I, j S nStates. j ++.

If[m j! O. p[i. j] = Count [allPairs. {i. j}] 1m. p[i. j] = 0]

]

}

] ;

p

]

Function to sample from q using uniform distribution

samp1eFromQConditiona1 [lL. x_] : = Module [{s. found. j. k. sample. y}.

s = F1atten[Position[q[x. All]. Except [0] • 1. Heads -+ False] ];

sample = q[ x. s];

sample = cumSum[samp1e];

y = RandomRea1 [] ;

found = False;

For[j = 1. j S Length [sample] • j ++.

If [ Not [found]. If [y S samp1e[j]. {k = j; found = True}] 1
1;

y = s[k]

]
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41 nma_hastings_problem_8_5_parCa.nb

The Hastings algorithm main loop

hastings[maxN_] := Module[{i, j, nStates, n, s, y, a, u, x, sample, pts, sum, k, found},

nStates =Length [originalMatrix] ;

n =1;

x =Table[O, {maxN}];

x[n] =1; (*pick any state to start from*)

i =1;

While[i < maxN,

y =sampleFromQConditional [originalMatrix, x[n]];

a =beta [x[n], y, w, originalMatrix];

u =RandomReal [] ;

n++;

If [u:s a, x[n] =y, x[n] =x[n - 1]]; (*acceptance step*)

i ++;

}

] ;

generatePMatrixFromStatePath[nStates, x]

~
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Problem 8.5 part(b)
by Naser Abbasi. Mathematics 504, Spring 2008. CSUF

This below construct the P matrix using direct computation of the Hasting-Meropolis method

Define the data given in the problem

v={l,2,3,4};

edges = {{ I, 2}, {I, 3}, {2, 3}, {2, 4}, {3, 4}};

f={l,8,6,4};

Define the functions n(x) to use in the implementation

f[x]

pi[x_, f_] := Z~9th(fJ f[i]

Define the functions q(x,y) to use in the implementation. This does something similar to the
adjcancy matrix normally used. I used the Count£] function in Mathematica which automatically
counts the edges from the edges list above, so there is really no need to construct an adjancy
matrix as SUCh.

q[x_, y_] := Module [{r}.

r = Count [edges, {x, any_}] + Count [edges, {any_, x}];

If[(Count[edges, {x, y}] > 0 II Count [edges, {y, x}] > 0), l/r, 0]

]

Find the stationary distribution

w =Table [pi [x, f], {x, I, v[-I]}]

1 8

{i9' 19
6

19

4

i9}

Printed by Mathematica for Students
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2 Iproblem_B_S_parCb.nb

Generate the original q matrix

(origina1Matrix=Tab1e[q[x, y], {x, 1, v[-l]}, {y, 1, v[-l]}]) //MatrixForm

0 1 1 0
2 2

1
0

1 1

3 3 3

1 1
0

1

3 3 3

0
1 1

0
2 2

define Beta function

beta[x_, y_, pi_, CL] := Module [ 0,

[
pi[YD q[y, xD ]

Min 1,
pi [xD q[x, yD

define a function to calculate a non· diagonal entry in the P matrix

makeEntrylnPMatrix[x_, y_, pi_, CL] :=Modu1e[0,

If[q[x, yD :: 0, 0, q[x, yD beta[x, y, pi, q]]

]

Construct the P matrix for the off-diagonal elements only

nStates = Length [origina1Matrix] ;

p=Tab1e[0, {nStates}, {nStates}];

For[i = 1, i:!: nStates, i++,

For[j = 1, j:!: nStates, j ++,

If[i i- j, p[i, jD =makeEntrylnPMatrix[i, j, w, origina1Matrix]]

]

] ;

Now calculate the diagonal elements of the P matrix

For[i = 1, i:!: nStates, i++,

For[j =1, j :!:nStates, j++,

If[i:: j, p[i, jD = 1-Total[p[i, AllD]]

]

] ;

Printed by Mathematica for Students
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Print the P matrix

Ip / / N / / MatrixForm

problem_8_5_parCb.nb 13

./

O. 0.5 0.5 O.

0.0625 0.4375 0.25 0.25

0.0833333 0.333333 0.25 0.333333

O. 0.5 0.5 O.

()
'-

Raise the final p matrix to some large power to verify it is regular

IMatrixPower [p, 50] / / N / / MatrixForm

0.0526316 0.421053 0.315789 0.210526

0.0526316 0.421053 0.315789 0.210526

0.0526316 0.421053 0.315789 0.210526

0.0526316 0.421053 0.315789 0.210526
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4.13 Wed 5/7/2008

Grade: 4/4.

Problems 10.5 and 10.6 These deal with continues time markov chains. To determine rate of
arrival and departure for birth/death process

4.13.1 Problem 10.5

Solution

Figure 4.3: Illustrating model diagram for problem 10.5

In the above, i is the number of broken machines in the queue. m is maximum capacity of
the operating room. The goal is to keep this room filled to its capacity. In other words, to
keep m machines in operations. n is the capacity of the spare room.

Calculating arrival rates:

Need to determine pi,i+1(h) . This can happen when one machine fails, but no server completes
its service meanwhile. Hence we do not need to consider the servers part in this analysis.
There are 2 cases to consider:
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1. i ≤ n (there are m machines in operations)

pi,i+1(h) =
(
m

1

)
(λh+ o(h)) (1− λh+ o(h))m−1 + o(h)

In the above, the last term o(h) accounts for other possible conditions under which i

can increase by one but which is considered to be less likely, such as 2 machines break
down and one server completes its service. In the above, (1− λh+ o(h))m−1 simplifies
to zero when h is very small, hence the above equation becomes

pi,i+1(h) = mλh+ o(h)

Comparing the above with the Hence we see pij(h) = qijh+o(h) we see that qi,i+1 = mλ

or in other words,
λi = mλ i ≤ n

2. n < i ≤ n+m (there are less than m machines in operations)

pi,i+1(h) =
(
m− (i− n)

1

)
(λh+ o(h)) (1− λh+ o(h))m−(i−n)−1 + o(h)

= (m+ n− i)λh+ o(h)

Hence we see that qi,i+1 = (m+ n− i) or in other words,

λi = (m+ n− i) n < i ≤ n+m

Calculating departure rates:

Need to determine pi,i−1, this can happen when a server completes its job but no machine
fails meanwhile, Hence we only need to consider the servers. There are 2 cases to consider:

1. 1 ≤ i < s (Queue is empty and not all servers at working on fixing machines at hand)

pi,i−1(h) =
(
i

1

)
(µh+ o(h)) (1− µh+ o(h))i−1 + o(h)

= iµh+ o(h)

Hence qi,i−1 = iµ, or since this is a birth/death process, we write

µi = iµ 1 ≤ i < s

2. s ≤ i (All servers at busy)

pi,i−1(h) =
(
s

1

)
(µh+ o(h)) (1− µh+ o(h))s−1 (1− λh+ o(h))m−(i−n) + o(h)

= sµh+ o(h)

Hence qi,i−1 = sµ, Hence
µi = sµ s ≤ i

Therefore, we summarize all the above as follows

Arrival rate λi = mλ for i ≤ n and λi = (m+ n− i) λ for n < i ≤ n+m .

Departure rate µi = iµ for 1 ≤ i < s and µi = sµ for s ≤ i

Notice that arrival rate does not depend on the number of servers s .
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The following state transition diagram illustrates the above result, with arrows leaving/en-
tering states show the rate of arrival and departure on them per the above result. To make
the diagram easier to make, I assume the following values: s = 3,m = 5, n = 2

Notice that µ0 = 0 and λn+m = 0 as expected.

Now compute the steady state distribution π (This is not asked for in this problem, but need
to do this to solve problem 12.3 later on and implement it)

Starting with the balance equation, where to balance the rate out of a state, with the rate
into a state. We have

πjvj =
∑
k 6=j

qkjπk

Hence for state i = 0 we have
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π0v0 = q1,0π1

But v0 = λ0 and q1,0 = µ1 hence

π0λ0 = µ1π1 (1)

For state i = 1 we have

π1v1 = q0,1π0 + q2,1π2

but v1 = λ1 + µ1, q0,1 = λ0, q2,1 = µ2,hence the above becomes

π1(λ1 + µ1) = λ0π0 + µ2π2

π1λ1 + π1µ1 = λ0π0 + µ2π2

But from (1) we have µ1π1 = λ0π0, hence the above becomes

π1λ1 + λ0π0 = λ0π0 + µ2π2

π1λ1 = µ2π2 (2)

Continue this way, we obtain that

πiλi = µi+1πi+1 i = 0, 1, 2, · · · , n+m

From the above, if we solve in terms of π0 we obtain that

πi =
λ0λ1· · ·λi−1

µ1µ2 · · ·µi
π0 i = 0, 1, 2, · · · , n+m (3)

and with the equation π0 + π1 + · · ·+ πn+m = 1 we can now solve for all πi as follows

π0 = 1− (π1 + · · ·+ πn+m)

= 1−
(
λ0

µ1
+ λ0λ1

µ1µ2
+ · · ·+ λ0λ1· · ·λn+m−1

µ1µ2 · · ·µn+m

)
π0

Hence

π0

(
1 +

(
λ0

µ1
+ λ0λ1

µ1µ2
+ · · ·+ λ0λ1· · ·λn+m−1

µ1µ2 · · ·µn+m

))
= 1

π0 =
1

1 +
(

λ0
µ1

+ λ0λ1
µ1µ2

+ · · ·+ λ0λ1···λn+m−1
µ1µ2···µn+m

)
Now that π0 is found, we can find the remaining πi using (3)
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4.13.2 Problem 10.6

Review of the problem setup: Imagine there is a queue of length r. Burned out bulbs enter
the queue (with inter-arrival time which is a random variable distributed as an exponential
with rate λ). Bulbs continue to enter the queue until the queue is full, then at that moment
we imagine a single server processing the bulbs in the queue all at once and immediately all
r bulbs become operational again and the queue is now empty. This process repeats again
and again.

Part A

A stochastic process X(t) is defined to have the Markov property if its transition to the
next state depends only on the current state and not on any earlier states. In other words it
satisfies the following

Pr {X(s+ t) = j|X(s) = i,X(u) for any u < i} = Pr {X(s+ t) = j|X(s) = i}

In this problem X(t) is the number of burned out bulbs in the queue at any time t. When
X(t) < r then X(t) can be viewed as a counting process (or pure birth process) or a Poisson
process (until the queue become full).

Therefore, The time between each successive events (where an event causes the count to
increase by one) is a random variable with exponential distribution (we are also given this
fact in the problem). But the exponential distribution is memoryless7 by definition. Therefore
it does not depend on clock time but only on the length of the time interval. Hence the
process satisfies the Markov property.

7A memorless random variable X is one in which Pr (X > t+ h|X > t) = Pr (X > h)
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part B

A stochastic process X(s) is defined to be stationary8 if its state transition pij(t) do not
depend on when the transitions happen but only on the time interval t. In other words,
random process X(s) is stationary if

Pr {X(s+ t) = j|X(s) = i} = Pr {X(c+ t) = j|X(c) = i}

For any c, s ≥ 0. So, letting c = 0, the system is stationary if

Pr {X(s+ t) = j|X(s) = i} = Pr {X(t) = j|X(0) = i}

This process is clearly stationary, since it is a counting process (when X(t) ≤ r − 1). A
counting Poisson process is stationary since it does not depend on clock time as was argued
in part (A). To show this more clearly, since this is a counting process, then by definition of
the Poisson process

Pr (X(s+ t)−X(s) = n) = e−λt (λt)
n

n! n = 0, 1, · · · , r − 1

We see that the probability of X = n does not depend on s and depends only on the time
interval t. If this was a non-stationary process, then s would appear in the RHS above. I.e.
the probability of the random variable would depend on clock time, but we see from the
above definition that it does not.

Part(c)

A stochastic process is a pure jump process if the transition probabilities can be written as

pii(h) = 1− vih+ o(h) and pij(h) = qijh+ o(h) as h → 0+

In this problem pii(h) is the probability than no bulb burns out during an interval h. This
is given by the probability than no bulb burns out from the current number of functional
bulbs which is N − i. Due to independence, we obtain

pii(h) = (1− λh+ o(h))(N−i)

Applying Binomial expansion (a+ b)n =
n∑

k=0

(
n

k

)
an−kbk, to the above, and taking a = 1, b =

−λh+ o(h) , n = N − i we obtain

pii(h) = 1 + (N − i) (−λh+ o(h)) + higher order terms in o(h) which can be ignored when h → 0+

= 1−Nλh+ iλh+ o(h)
= 1− hλ(N − i) + o(h)

Hence we can write pii(h) = 1− vih+ o(h) where vi = λ(N − i)

Now pij(h) is the probability that there will be j failed bulbs after h units of time given
that there is already i failed bulbs. For this to occur, then we need to have j − i bulbs fail
in h units of time. We can solve for the general case when j − i > 1, but since we will let
h → 0+ it is most likely that there will be only one event occur (one bulb fail) during this
time, and we can collect all other less likely probabilities in the o(h) term. Hence we will
only consider pi,i+1 in the following.

pi,i+1(h) =
(
N − i

1

)
(λh+ o(h)) (1− λh+ o(h))N−i−1 + o(h)

= (N − i)λh+ o(h)
8In Linear system theory, the term time-invariant is used.
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Therefore from pij(h) = qijh+o(h) we see that qi,i+1 = (N − i)λ i.e. λi = (N − i)λ i = 0, 1, · · · r − 1

Hence the Q matrix (The rate matrix) is

Q =



0 1 2 · · · r-1
0 −λN λN 0 0 0
1 0 −λ(N − 1) λ(N − 1) 0 0
2 0 0 −λ(N − 2) λ(N − 1) 0... ... ... ... ... ...
r-1 λ(N − r + 1) −λ(N − r + 1)


Part (d)

Figure 4.4: rate flow diagram for problem 10.6

The balance equation can be obtained from balancing the flow out rate of a state i (which
is given by vi) by all the flow in rate into the state which is given by

∑
v 6=i

qv,i as illustrated

below for the above problem

Hence we write

viπi = qi−1,iπi−1 i = 1, 2, · · · r − 1

and for state i = 0 we have

v0π0 = qr−1,0πr−1

Therefore we obtain
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λ(N − i)πi = (N − i+ 1)λπi−1 i = 1, 2, · · · r − 1
λNπ0 = (N − r + 1)λ πr−1 i = 0

Hence we have for i = 1, 2, · · · r − 1

λ(N − 1) π1 = Nλπ0

λ(N − 2) π2 = λ(N − 1) π1

λ(N − 3) π3 = λ(N − 2) π2

...
λ(N − r + 1) πr−1 = λ(N − r)πr−2

Therefore we have

π1 =
N

N − 1π0

π2 =
N − 1
N − 2π1

π3 =
N − 2
N − 3π2

...

πr−1 =
N − r

N − r + 1πr−2

back substitute, we obtain

π1 =
N

N − 1π0

π2 =
N − 1
N − 2

N

N − 1π0

π3 =
N − 2
N − 3

N − 1
N − 2

N

N − 1π0

...

πr−1 =
N − r

N − r + 1
N − r − 1
N − r

· · · N

N − 1π0

Hence

π1 =
N

N − 1π0

π2 =
N

N − 2π0

π3 =
N

N − 3π0

...

πr−1 =
N

N − r + 1π0
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We notice that the last equation above, is the same as for the case i = 0. Hence we have one
of the r equations duplicated. Hence we need one more equation to solve for the unknowns

πi and for that we use
r∑

i=0

πi = 1

Therefore, the general expression for πi is

πi =
N

N − i
π0 i = 1, 2, · · · , r − 1 (1)

Now since π0 + π1 + · · ·+ πr−1 = 1, then we write

π0 +
r∑

i=1

N

N − i
π0 = 1

π0

(
1 +N

r∑
i=1

1
N − i

)
= 1

π0 =
1

1 +N
r∑

i=1

1
N−i

(2)

So now that we know π0 from (2), we substitute it into (1) and solve for the remaining πi

πi =
N

N − i

1(
1 +N

r∑
i=1

1
N−i

)
= N

(N − i) + (N − i)N
r∑

i=1

1
N−i

(3)

But
r∑

i=1

1
N − i

= 1
N − 1 + 1

N − 2 + · · ·+ 1
N − r

=
N−1∑
k=1

1
k
−

N−r−1∑
k=1

1
k

Which is the difference between 2 partial sums of harmonic numbers. Let Hn =
n∑

k=1

1
k
, then

r∑
i=1

1
N−i

= HN−1 −HN−r−1 hence (3) becomes

πi =
N

(N − i) (1 +N (HN−1 −HN−r−1))
i = 1, 2, · · · , r − 1

= 1
(N − i)

( 1
N
+HN−1 −HN−r−1

) i = 1, 2, · · · , r − 1

Hence

πi =
1

(N − i) (HN −HN−r−1)
i = 1, 2, · · · , r − 1

This is a small program which show the long term π for N = 100, r = 10 using the above
equation
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4.14 Wed 5/7/2008

Grade: 4/4.

Computer problem, problem 12.3 in lecture notes. Simulation of problem 10.5 in above HW.
Repair shop problem
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Problem 12.3  lecture notes, Mathematics 504 
Spring 2008, CSUF 
By Nasser Abbasi 

Problem............................................................................................................................... 1 
Solution............................................................................................................................... 1 

Result .............................................................................................................................. 2 
Source code......................................................................................................................... 3 

Driver script .................................................................................................................... 3 
Matlab function............................................................................................................... 5 

 

Problem 
Problem 

 

Solution 
 
A Matlab function written to implement the above 2 cases. A driver script was written to 
call the function and display result. This is the result of the driver run, followed by the 
Matlab source code listing for the driver script and for the function which calculates the 
average number of machines not operational. 
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Result 
CASE(a) 
mu=[0.500000], lambda=[0.250000], m=6, n=2, s=2 
Average number of machines not operational [4.117902] 
long Term stationary distribution vector 
 
longTermPi = 
 
    0.0236 
    0.0707 
    0.1061 
    0.1592 
    0.1990 
    0.1990 
    0.1492 
    0.0746 
    0.0187 
 
CASE(b) 
mu=[0.500000], lambda=[0.250000], m=6, n=2, s=3 
Average number of machines not operational [3.048312] 
long Term stationary distribution vector 
 
longTermPi = 
 
    0.0477 
    0.1430 
    0.2144 
    0.2144 
    0.1787 
    0.1191 
    0.0596 
    0.0199 
    0.0033 
 
We now study how the average number of machines not operational changes with 
increasing number of servers for case(a) parameter. This is done by changing the number 
of servers from s=1 all the way up to s=n+m while keeping all the other parameters the 
same. 
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Source code 

Driver script 
This is listing of the server script which generated the above results 
 
close all; 
clear all; 
  
mu=0.5; 
lambda=0.25; 
  
%CASE(a) 
s=2; 
m=6; 
n=2; 
  
[av,longTermPi]=nma_HW_12_3(lambda,mu,m,n,s); 
fprintf('CASE(a)\n'); 
fprintf('mu=[%f], lambda=[%f], m=%d, n=%d, s=%d\n',mu,lambda,m,n,s); 
  
fprintf('Average number of machines not operational [%f]\n',av); 
fprintf('long Term stationary distribution vector\n'); 
longTermPi 
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%CASE(b) 
s=3; 
m=6; 
n=2; 
  
[av,longTermPi]=nma_HW_12_3(lambda,mu,m,n,s); 
fprintf('CASE(b)\n'); 
fprintf('mu=[%f], lambda=[%f], m=%d, n=%d, s=%d\n',mu,lambda,m,n,s); 
  
fprintf('Average number of machines not operational [%f]\n',av); 
fprintf('long Term stationary distribution vector\n'); 
longTermPi 
  
  
% 
% 
% 
m=6; 
n=2; 
  
s=1:n+m; 
averages=zeros(length(s),1); 
  
for i=1:length(s) 
    [averages(i),longTermPi]=nma_HW_12_3(lambda,mu,m,n,s(i)); 
end 
  
plot(s,averages); 
title('Showing effect of increasing number of servers on average'); 
xlabel('S, number of servers'); 
ylabel('Average number of machines not operational'); 
ylim([0,max(averages)]); 
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Matlab function 
function [av,steadyStatePI] = nma_HW_12_3(lambda,mu,m,n,s) 
% 
%function nma_HW_12_3(lambda,mu,m,n,s) 
%solves problem 12.3 in lecture notes by Professor Gearhart, 
%CSUF Mathematics 504, spring 2008 
% 
%by Nasser Abbasi 
% 
%INPUT: 
%  lambda, mean time between breakdown of machines 
%  mu,     mean service time 
%  m,      maximum number of operating machines 
%  n,      maximum number of spare machines 
%  s,      number of servers.  1<=s<=m 
% 
%OUTPUT: 
%  av,     The expected number of days a machine stays in the 
%          queue (or in the repair shop) 
  
av    = -1; 
DEBUG = 0; 
  
[msg,status] = validInput(lambda,mu,m,n,s); 
if ~status 
    error(msg); 
end 
  
% 
% Allocate data storage 
% 
nStates       = n+m+1; 
steadyStatePI = zeros(nStates,1); 
factors       = zeros(nStates-1,1); 
mus           = zeros(nStates-1,1); 
lambdas       = zeros(nStates,1); 
  
% 
%  Make the Lambda vector 
% 
for i=0:n+m 
    if i<=n 
        lambdas(i+1)=m*lambda; 
    else 
        lambdas(i+1)=(m+n-i)*lambda; 
    end 
end 
  
% 
%  Make the mu vector 
% 
for i=1:n+m 
    if i<s 
        mus(i)=i*mu; 
    else 
        mus(i)=s*mu; 
    end 
end 
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% 
%  build the factors lambda/mu terms 
% 
factors(1)=lambdas(1)/mus(1); 
for i=2:n+m 
    factors(i)=factors(i-1)*lambdas(i)/mus(i); 
end 
  
% 
% Find mu_0 and initialize PI vector 
% 
muZero=1/(1+sum(factors)); 
steadyStatePI(1)=muZero; 
  
% 
% calculate the rest of the steady state PI vector 
% 
for i=2:nStates 
    steadyStatePI(i)=factors(i-1)*muZero; 
end 
  
% 
% verify sum is ONE 
% 
if DEBUG 
    fprintf('sum of PI vector is %f\n',sum(steadyStatePI)); 
end 
  
%Find expected value 
av=0; 
for i=0:n+m 
    av=av+i*steadyStatePI(i+1); 
end 
  
%%%%%%%%%%%%%% 
% Function to validate input 
% 
%%%%%%%%%%%%%% 
function [msg,status] = validInput(lambda,mu,m,n,s) 
VALID     = 1; 
NOT_VALID = 0; 
  
status = NOT_VALID; 
msg    = ''; 
  
if ~isnumeric(s) || ~isnumeric(m) || ~isnumeric(n) ... 
        ||  ~isnumeric(mu) ||  ~isnumeric(lambda) 
    msg='not a numeric value in input. correct'; 
    return; 
end 
  
if s<=0 || m<=0 || n<0 || lambda<=0 || mu <=0 
    msg='negative value in input. correct'; 
    return; 
end 
  
if s>n+m 
    msg='number of servers must be less than n+m'; 
    return; 
end  
status=VALID; 
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key Matlab code given� �
close all;
clear all;

mu=0.5;
lambda=0.25;

%CASE(a)
s=2;
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m=6;
n=2;

[av,longTermPi]=nma_HW_12_3(lambda,mu,m,n,s);
fprintf('CASE(a)\n');
fprintf('mu=[%f], lambda=[%f], m=%d, n=%d, s=%d\n',mu,lambda,m,n,s);

fprintf('Average number of machines not operational [%f]\n',av);
fprintf('long Term stationary distribution vector\n');
longTermPi

%CASE(b)
s=3;
m=6;
n=2;

[av,longTermPi]=nma_HW_12_3(lambda,mu,m,n,s);
fprintf('CASE(b)\n');
fprintf('mu=[%f], lambda=[%f], m=%d, n=%d, s=%d\n',mu,lambda,m,n,s);

fprintf('Average number of machines not operational [%f]\n',av);
fprintf('long Term stationary distribution vector\n');
longTermPi

%
%
%
m=6;
n=2;

s=1:n+m;
averages=zeros(length(s),1);

for i=1:length(s)
[averages(i),longTermPi]=nma_HW_12_3(lambda,mu,m,n,s(i));

end

plot(s,averages);
title('Showing effect of increasing number of servers on average');
xlabel('S, number of servers');
ylabel('Average number of machines not operational');
ylim([0,max(averages)]);� �
Matlab function� �
function [av,steadyStatePI] = nma_HW_12_3(lambda,mu,m,n,s)
%
%function nma_HW_12_3(lambda,mu,m,n,s)
%solves problem 12.3 in lecture notes by Professor Gearhart,
%CSUF Mathematics 504, spring 2008
%
%by Nasser Abbasi
%
%INPUT:
% lambda, mean time between breakdown of machines
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% mu, mean service time
% m, maximum number of operating machines
% n, maximum number of spare machines
% s, number of servers. 1<=s<=m
%
%OUTPUT:
% av, The expected number of days a machine stays in the
% queue (or in the repair shop)

av = -1;
DEBUG = 0;

[msg,status] = validInput(lambda,mu,m,n,s);
if ~status

error(msg);
end

%
% Allocate data storage
%
nStates = n+m+1;
steadyStatePI = zeros(nStates,1);
factors = zeros(nStates-1,1);
mus = zeros(nStates-1,1);
lambdas = zeros(nStates,1);

%
% Make the Lambda vector
%
for i=0:n+m

if i<=n
lambdas(i+1)=m*lambda;

else
lambdas(i+1)=(m+n-i)*lambda;

end
end

%
% Make the mu vector
%
for i=1:n+m

if i<s
mus(i)=i*mu;

else
mus(i)=s*mu;

end
end

%
% build the factors lambda/mu terms
%
factors(1)=lambdas(1)/mus(1);
for i=2:n+m

factors(i)=factors(i-1)*lambdas(i)/mus(i);
end

%
% Find mu_0 and initialize PI vector
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%
muZero=1/(1+sum(factors));
steadyStatePI(1)=muZero;

%
% calculate the rest of the steady state PI vector
%
for i=2:nStates

steadyStatePI(i)=factors(i-1)*muZero;
end

%
% verify sum is ONE
%
if DEBUG

fprintf('sum of PI vector is %f\n',sum(steadyStatePI));
end

%Find expected value
av=0;
for i=0:n+m

av=av+i*steadyStatePI(i+1);
end

%%%%%%%%%%%%%%
% Function to validate input
%
%%%%%%%%%%%%%%
function [msg,status] = validInput(lambda,mu,m,n,s)
VALID = 1;
NOT_VALID = 0;

status = NOT_VALID;
msg = '';

if ~isnumeric(s) || ~isnumeric(m) || ~isnumeric(n) ...
|| ~isnumeric(mu) || ~isnumeric(lambda)

msg='not a numeric value in input. correct';
return;

end

if s<=0 || m<=0 || n<0 || lambda<=0 || mu <=0
msg='negative value in input. correct';
return;

end

if s>n+m
msg='number of servers must be less than n+m';
return;

end

status=VALID;� �
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4.15 Wed 5/7/2008

Problems 9.3 and 9.5 (On Poisson process)

4.15.1 Problem 9.3

Start by showing that the processes N1(t) and N2(t) are each a Poisson process. Next show
that they are independent by showing that the product of these 2 distributions is equal to
the joined distribution.

Given: N(t) = N1(t) + N2(t), Where are told that N(t) is a Poisson process. Need to find
Pr (N1(t) = n) and Pr (N2(t) = m).

By law of total probabilities

Pr (N1(t) = n) = Pr (N1(t) = n,N2(t) = 0)
orPr (N1(t) = n,N2(t) = 1)
orPr (N1(t) = n,N2(t) = 2)
...
orPr (N1(t) = n,N2(t) = ∞)

Hence

Pr (N1(t) = n) =
∞∑

m=0

Pr (N1(t) = n,N2(t) = m) (A1)

Similarly,

Pr (N2(t) = m) =
∞∑
n=0

Pr (N1(t) = n,N2(t) = m) (A2)

Now find expression for the joined distribution Pr (N1(t) = n,N2(t) = m) to complete the
above evaluation. Condition on N(t) hence we obtain

Pr (N1(t) = n,N2(t) = m) = Pr (N1(t) = n,N2(t) = m | N(t) = 0)Pr (N(t) = 0)
orPr (N1(t) = n,N2(t) = m | N(t) = 0)Pr (N(t) = 1)
orPr (N1(t) = n,N2(t) = m | N(t) = 0)Pr (N(t) = 2)
...
orPr (N1(t) = n,N2(t) = m | N(t) = 0)Pr (N(t) = ∞)

or
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Pr (N1(t) = n,N2(t) = m) =
∞∑
k=0

Pr (N1(t) = n,N2(t) = m | N(t) = k) Pr (N(t) = k)

But since N(t) = N1(t) +N2(t), then the above reduces to one case which is

Pr (N1(t) = n,N2(t) = m) = Pr (N1(t) = n,N2(t) = m | N(t) = n+m) Pr (N(t) = n+m)
(1)

And all the other probabilities must be zero.

Now in (1), we are given that Pr (N(t) = n+m) is a Poisson process with some rate λ Hence
the rate adjusted for duration t must be λt , hence from definition of Poisson process with
rate λt we write

Pr (N(t) = n+m) = (λt)n+m e−(λt)

(n+m)! (2)

Now we need to evaluate the term Pr (N1(t) = n,N2(t) = m | N(t) = n+m) in (1). This
terms asks for the probability of getting the sum (n+m). If we think of n as number of
successes and m as number of failures, then this is asking for probability of getting n success
out of n+m trials. But this is given by Binomial distribution

Pr (X = n) =
(
n+m

n

)
pnqm

Where p is the probability of event type I, and q is the probability of not getting this event,
which is the probability of event II which is given by q = (1− p) hence the above becomes

Pr (N1(t) = n,N2(t) = m | N(t) = n+m) =
(
n+m

n

)
pnqm (3)

Substitute (2) and (3) into (1) we obtain

Pr (N1(t) = n,N2(t) = m) =
(
n+m

n

)
pnqm

(λt)n+m e−(λt)

(n+m)!

= (n+m)!
m!n! pnqm

(λt)n+m e−(λt)

(n+m)!

= (pλt)n

n!
(qλt)m

m! e−(λt) (4)

But p+ q = 1, hence e−(λt) = e−(λt(p+q)) = e−((λtp)+(λtq)) = e−(λtp)e−(λtq) hence (4) becomes

Pr (N1(t) = n,N2(t) = m) =
(
(pλt)n

n! e−(λtp)
)(

(qλt)m

m! e−(λtq)
)

(5)

The above is the joined probability ofN1(t) andN2(t) .We know can determine the probability
distribution of N1(t) and N2(t) from substituting (5) into (A1) and (A2)

Pr (N2(t) = m) =
∞∑
n=0

Pr (N1(t) = n,N2(t) = m)

=
∞∑
n=0

(
(pλt)n

n! e−(λtp)
)(

(qλt)m

m! e−(λtq)
)
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We remove terms outside sum which do not depend on n and obtain

Pr (N2(t) = m) =
(
(qλt)m

m! e−(λtq)
)
e−(λtp)

∞∑
n=0

(pλt)n

n!

But
∞∑
n=0

(pλt)n
n! = epλt by definition, hence the above becomes

Pr (N2(t) = m) = (qλt)m

m! e−(λtq)

Therefore, we see that Pr (N2(t) = m) satisfies the Poisson formula. To show it is a Poisson
distribution, we must also show that it satisfies the following

1. N2(0) = 0. We see that at t = 0, the above becomes Pr (N2(0) = 0) = (qλ×0)0
0! e−(λq×0) =

00 × 1,But9 00 = 1, hence Pr (N2(0) = 0) = 1, Therefore N2(0) = 0.

2. Increments are independents of each others. Since the original process N(t) is already
given to be Poisson process, then the increments of N(t) are independent of each others.
But N2(t) increments are a subset of those increments. Therefore, N2(t) increments
must by necessity be independent of each others.

Similar arguments show that

Pr (N1(t) = n) = (qλt)n

n! e−(λtq)

and that it satisfies the Poisson definition.We now need to show independence. We see that

Pr (N2(t) = m) Pr (N1(t) = n) = (qλt)m

m! e−(λtq) (qλt)
n

n! e−(λtq)

But from (5) above, we see this is the same as Pr (N1(t) = n,N2(t) = m), therefore

Pr (N2(t) = m) Pr (N1(t) = n) = Pr (N1 = n,N2 = m)

Hence N1(t) and N2(t) are 2 independent Poisson processes.

4.15.2 Problem 9.5

Let the interr arival time between each car be Ti where i is the interval as indicated by this
diagram

900 depends on the context. I checked a reference that in this context, it is ok to define 00 = 1 otherwise,
00 is taken as undefined.
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Figure 4.5: Inter-arrival times are random variable which is exponential distributed

For the number of cars that pass through the intersection to be n it must imply that the
interval between the first n cars was less than τ and that the (n+ 1)th car arrived after than
nth car after more than τ units of time. Therefore

Pr (X = n) = Pr (T1 < τ, T2 < τ, T3 < τ, · · · , Tn < τ, Tn+1 ≥ τ) (1)

But since X is a Poisson random number with parameter λ , then the time between increment
T is an exponential random number with parameter λ (and they are independent from each
others). Hence

Pr (Ti ≥ τ) = e−λτ

and
Pr (Ti < τ) = 1− e−λτ

Hence (1) becomes

Pr (X = n) =
(
1− e−λτ

)n
e−λτ

This is a small program which plots the probability above as function of n for some fixed
λ, τ . It shows as expected the probability of n becomes smaller the larger n gets.

Now

E(X) =
∞∑
n=0

nPr (X = n)

=
∞∑
n=0

n
(
1− e−λτ

)n
e−λτ

= e−λτ
∞∑
n=1

n
(
1− e−λτ

)n
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Let 1− e−λτ = z then the above becomes

E(X) = e−λτ
∞∑
n=1

nzn

The above sum converges since by ratio test the (k)th term over the (k + 1)th term is less
than one. (I can find a closed form expression for this sum?)

4.16 Challenge Problems
These are extra problems relating to first midterm the instructor gave the class to try to
work out. Here are the questions

4.16.1 Problems

Figure 4.6: Problem 1
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Figure 4.7: Problem 2

4.16.2 Problem 1

Solution:

We start with the solution we already10 obtained for E(Yi) which is

E(Yi) = 1 +
i−1∑
k=1

E(Yk)Pik

Let E(Yi) = xi hence the above can be written as

xi = 1 +
i−1∑
k=1

xkPik

10See my midterm solution for this problem
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But Pik = 1
i
then the above becomes

xi = 1 + 1
i

i−1∑
k=1

xk

Multiply by i the above becomes

i xi = i+
i−1∑
k=1

xk

Therefore, we obtain the following equations for i = 1· · · r

For i = 1

x1 = 1 (1)

For i = 2

2x2 = 2 + x1 (2)

For i = 3

3x3 = 3 + x1 + x2 (3)

For i = 4

4x4 = 4 + x1 + x2 + x3 (4)

etc...

Now evaluate (2)-(1) and (3)-(2) and (4)-(3), etc... we obtain the following equations

(2)-(1) gives

2x2 − x1 = 2 + x1 − 1

x2 =
1 + 2x1

2 (5)

(3)-(2) gives

3x3 − 2x2 = 3 + x1 + x2 − 2− x1

3x3 − 2x2 = 1 + x2

x3 =
1 + 3x2

3

etc... Hence we see that for the rth term we obtain

xr =
1 + r xr−1

r

Hence
xr =

1
r
+ xr−1 (6)

Now replace r by r − 1 in the above we obtain

xr−1 =
1

r − 1 + xr−2
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replace the above in (6) we obtain

xr =
1
r
+
(

1
r − 1 + xr−2

)
(7)

And again, in the above, xr−2 = 1
r−2 + xr−3 hence (7) becomes

xr =
1
r
+
(

1
r − 1 +

(
1

r − 2 + xr−3

))
(8)

and so on, until we get to x1 = 1, hence we obtain

xr = 1
r
+ 1

r−1 +
1

r−2 + · · ·+ 1

Hence
xr =

r∑
k=1

1
k

Which is the harmonic series. Now, it is known that11

Please see http://en.wikipedia.org/wiki/Harmonic_number

lim
r→∞

xr = log (r)− γ

Where γ is Euler Gamma constant given by

11Do I have to proof this?

http://en.wikipedia.org/wiki/Harmonic_number
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4.17 Links
1. Mathworks SimEvents http://www.mathworks.com/products/simevents/descrip

tion2.html

2. Free demo of extend http://www.extendsim.com/prods_demo.html

3. Started to make comparison between some simulation packages. This is not complete

This note compares features between SimEvents™ discrete event simulator from 
The MathWorks and ExtendSim from Imagine Than inc.

(I need to add Rockwell Arena also) http://www.arenasimulation.com/   check arean basic 
edition.  Arena 10 for students can be downloaded for free from 

http://pl.wordpress.com/tag/simulation-software/ 

(when installing, use STUDENT as serial number)

By Nasser Abbasi, last updated 12/22/07

SimEvent
s

ExtendSim

Queue type Sorted queue FIFO X X

Sorted queue LIFO X X
Sorted queue attribute value X
Sorted queue priority X X
Resource pool queue X

Server Type Infinite server X X

N-Server X ?
Single server X X
Select server delay time statistics from 
known distributions?

No Yes

I think extendSim has more capabilities, but I need more time to study this. I do not have 
an evaluation version of SimEvents, but I have access to a demo version of ExtendSim.

Will update this as time permits.

Links
http://www.wintersim.org/  winter simulation conference 
http://www.wintersim.org/pastprog.htm  papers from winder simulation conferences on-
line 

http://www.mathworks.com/products/simevents/description2.html
http://www.mathworks.com/products/simevents/description2.html
http://www.extendsim.com/prods_demo.html 
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