HOME

HW 11 Mathematics 503, Mathematical Modeling, CSUF , July 20, 2007

Nasser M. Abbasi

October 8, 2025

Contents

1 Problem 3 page 257 section 4.4 (Green Functions)
2 Problem 8, page 258 section 4.5

1 Problem 3 page 257 section 4.4 (Green Functions)

problem:

Consider boundary value problem \(u^{\prime \prime }-2xu^{\prime }=f\left ( x\right ) \),\(\ 0<x<1\),  \(u\left ( 0\right ) =u^{\prime }\left ( 1\right ) =0\). Find Green function or explain where there isn’t one.

answer:

We see that \(p\left ( x\right ) =-1\)

First, lets see if \(\lambda =0\) or not. Since if \(\lambda =0\) since by theorem 4.19 (page 248) Green function does not exist, and I do not need to try to find it.

Let

\[ u^{\prime \prime }-2xu^{\prime }=\lambda u \]

If \(\lambda =0\,\ \) then solve the homogeneous equation \(u^{\prime \prime }-2xu^{\prime }=0\). Let \(y\left ( x\right ) =u^{\prime }\left ( x\right ) \), hence we obtain \(y^{\prime }-2xy=0\), by separation of variables, we then have

\begin{align*} \frac {y^{\prime }}{y} & =2x\\ \frac {1}{y}dy & =2xdx\\ \int \frac {1}{y}dy & =2\int xdx \end{align*}

Hence

\[ \ln y=x^{2}+C \]

Which leads to \(y\left ( x\right ) =Ae^{x^{2}}\). But since \(y=u^{\prime }\), then \(\frac {du}{dx}=Ae^{x^{2}}\) or

\[ u\left ( x\right ) =A\int _{0}^{x}e^{t^{2}}dt+B \]

Therefore,

\[ \,u_{1}\left ( x\right ) =A\int _{0}^{x}e^{t^{2}}dt \]

and

\[ u_{2}\left ( x\right ) =B \]

At \(x=0\,\ \)we have \(u\left ( 0\right ) =0\), hence \(u\left ( 0\right ) =A\int _{0}^{0}e^{t^{2}}dt+B\) or \(0=B\) so now \(u\left ( x\right ) =A\int _{0}^{x}e^{t^{2}}dt\). Now lets see if this satisfies the second boundary condition \(u^{\prime }\left ( 1\right ) =0\). First note that

\[ \frac {d}{dx}\left ( A\int _{0}^{x}e^{t^{2}}dt\right ) =Ae^{x^{2}}\]

hence \(\ \)at \(x=1\) we obtain \(0=A\exp \left ( 1\right ) \) which means \(A=0\), but this means trivial solution since both \(A,B\) are zero. Hence \(\lambda \neq 0\) OK, so now I try to find Green function:

Now we need to find 2 independent solutions as combinations of \(A\int _{0}^{x}e^{t^{2}}dt\) and \(B\) such that each will satisfies at least one of the boundary conditions.

We need \(u\left ( 0\right ) =0\), hence if we take

\[ u_{1}\left ( x\right ) =\int _{0}^{x}e^{t^{2}}dt \]

which will be zero at \(x=0\), and if we take

\[ u_{2}\left ( x\right ) =1 \]

then we see that \(u_{2}^{\prime }\left ( 1\right ) =0.\) Now find the Wronskian

\[ W=\det \begin {bmatrix} u_{1} & u_{2}\\ u_{1}^{\prime } & u_{2}^{\prime }\end {bmatrix} =\det \begin {bmatrix} \int _{0}^{x}e^{t^{2}}dt & 1\\ e^{x^{2}} & 0 \end {bmatrix} =-e^{x^{2}}\]

Hence using equation 4.46 we obtain, noting that \(p=-1\)

\begin{align*} g\left ( x,\xi \right ) & =\left \{ \begin {array} [c]{cc}-\frac {u_{1}\left ( x\right ) u_{2}\left ( \xi \right ) }{p\ W\left ( \xi \right ) } & x<\xi \\ -\frac {u_{1}\left ( \xi \right ) u_{2}\left ( x\right ) }{p\ W\left ( \xi \right ) } & x>\xi \end {array} \right . =\left \{ \begin {array} [c]{cc}-\frac {u_{1}\left ( x\right ) u_{2}\left ( \xi \right ) }{\left ( -1\right ) \left ( \ -e^{\xi ^{2}}\right ) } & x<\xi \\ -\frac {u_{1}\left ( \xi \right ) u_{2}\left ( x\right ) }{\left ( -1\right ) \ \left ( -e^{\xi ^{2}}\right ) } & x>\xi \end {array} \right . \\ & =\left \{ \begin {array} [c]{cc}-e^{-\xi ^{2}}\int _{0}^{x}e^{t^{2}}dt & x<\xi \\ -e^{-\xi ^{2}}\int _{0}^{\xi }e^{t^{2}}dt & x>\xi \end {array} \right . \end{align*}

Hence

\[ \fbox {$g\left ( x,\xi \right ) =-e^{-\xi ^{2}}\left ( H\left ( \xi -x\right ) \int _{0}^{x}e^{t^{2}}dt+H\left ( x-\xi \right ) \int _{0}^{\xi }e^{t^{2}}dt\right ) $}\]

and

\[ u\left ( x\right ) =\int _{0}^{x}g\left ( x,\xi \right ) f\left ( \xi \right ) d\xi \]

I used the Green function I derived, and used it to plot the solution (for \(f\left ( x\right ) =1\)) and compare the plot with the analytical solution.

PIC

This is a plot of just the impulse response (green function) due to an impulse at \(x=0.5\)

PIC

This is another method to solving this problem by using properties of Green function

From above we found \(u_{1}=\int _{0}^{x}e^{t^{2}}dt\), \(u_{2}=1\), but

\begin{align*} g\left ( x,\xi \right ) & =A\left ( \xi \right ) u_{1}\left ( x\right ) \ 0<x<\xi \\ & =A\left ( \xi \right ) \int _{0}^{x}e^{t^{2}}dt \end{align*}

and

\begin{align*} g\left ( x,\xi \right ) & =B\left ( \xi \right ) u_{2}\left ( x\right ) \\ & =B\left ( \xi \right ) \ \ \ \ \ \xi <x<1 \end{align*}

At \(x=\xi \), due to continuity, we require that  

\begin{equation} A\left ( \xi \right ) \int _{0}^{\xi }e^{t^{2}}dt=B\left ( \xi \right ) \tag {1}\end{equation}

and to impose the discontinuity condition on the first derivative we have

\begin{align} g^{\prime }\left ( \xi ^{+},\xi \right ) -g^{\prime }\left ( \xi ^{-},\xi \right ) & =\frac {-1}{p\left ( \xi \right ) }\nonumber \\ 0-A\left ( \xi \right ) e^{\xi ^{2}} & =1\nonumber \\ A\left ( \xi \right ) & =\frac {-1}{e^{\xi ^{2}}} \tag {2}\end{align}

From (1) we then obtain that

\[ B\left ( \xi \right ) =\frac {-1}{e^{\xi ^{2}}}\int _{0}^{\xi }e^{t^{2}}dt \]

Hence

\begin{align*} g\left ( x,\xi \right ) & =A\left ( \xi \right ) u_{1}\left ( x\right ) \ \ \\ & =\frac {-1}{e^{\xi ^{2}}}\int _{0}^{x}e^{t^{2}}dt\ \ \ \ \ \ \ 0<x<\xi \end{align*}

and

\begin{align*} g\left ( x,\xi \right ) & =B\left ( \xi \right ) u_{2}\left ( x\right ) \\ & =\frac {-1}{e^{\xi ^{2}}}\int _{0}^{\xi }e^{t^{2}}dt\ \ \ \ \ \ \ \ \ \xi <x<1 \end{align*}

Hence

\[ \fbox {$g\left ( x,\xi \right ) =\frac {-1}{e^{\xi ^{2}}}\left ( H\left ( \xi -x\right ) \int _{0}^{x}e^{t^{2}}dt+H\left ( x-\xi \right ) \int _{0}^{\xi }e^{t^{2}}dt\ \right ) $}\]

Compare this solution to the one found above using the formula method we see they are the same.

2 Problem 8, page 258 section 4.5

Problem:

Find the inverse of the differential operator \(Lu=-\left ( x^{2}u^{\prime }\right ) ^{\prime }\) on \(1<x<e\) subject to \(u\left ( 1\right ) =u\left ( e\right ) =0\)

solution:

This is SLP problem with \(p=x^{2},q=0\). First find if \(\lambda =0\) is possible eigenvalue.

\[ \lambda u=-\left ( x^{2}u^{\prime }\right ) ^{\prime }\]

Let \(\lambda =0\), hence we have \(-\left ( x^{2}u^{\prime }\right ) ^{\prime }=0\) or \(-\left ( 2xu^{\prime }+x^{2}u^{\prime \prime }\right ) =0\) or

\[ u^{\prime \prime }+\frac {2}{x}u^{\prime }=0 \]

Use separation of variables. First let \(y=u^{\prime }\), hence \(y^{\prime }+\frac {2}{x}y=0\) or \(\frac {1}{y}\frac {dy}{dx}=-\frac {2}{x}\) hence

\begin{align*} \int \frac {1}{y}dy & =-2\int \frac {1}{x}dx\\ \ln y & =-2\ln x+c\\ y & =Ae^{-2\ln x}\\ y & =A\frac {1}{x^{2}}\end{align*}

But \(y=u^{\prime }\), hence \(du=A\frac {1}{x^{2}}dx\) or \(u=A\int \frac {1}{x^{2}}dx\)

hence \(u=-A\frac {1}{x}+B\) or

\[ \fbox {$u\left ( x\right ) =\frac {A}{x}+B$}\]

where the minus sign is absorbed into \(A\). Hence we have 2 independent solutions \(\frac {A}{x}\) and \(B\), so we need combination of these 2 solutions to satisfy the BV. At \(x=1\) we have \(u=0\), hence if we take \(u_{1}=\frac {1}{x}-1\) then it will satisfy this condition. At \(x=e\) we need \(u=0\), hence take \(u_{2}=\frac {1}{x}-\exp \left ( -1\right ) \)

Then

\[ W=\det \begin {bmatrix} u_{1} & u_{2}\\ u_{1}^{\prime } & u_{2}^{\prime }\end {bmatrix} =\det \begin {bmatrix} \frac {1}{x}-1 & \frac {1}{x}-\exp \left ( -1\right ) \\ \frac {-1}{x^{2}} & \frac {-1}{x^{2}}\end {bmatrix} =-e^{x^{2}}\]

Hence

\[ W=\frac {1-e^{-1}}{x^{2}}\]

Then green function is

\begin{align*} g\left ( x,\xi \right ) & =\left \{ \begin {array} [c]{cc}-\frac {u_{1}\left ( x\right ) u_{2}\left ( \xi \right ) }{W\left ( \xi \right ) } & x<\xi \\ -\frac {u_{1}\left ( \xi \right ) u_{2}\left ( x\right ) }{W\left ( \xi \right ) } & x>\xi \end {array} \right . =\left \{ \begin {array} [c]{cc}-\frac {\left ( \frac {1}{x}-1\right ) \left ( \frac {1}{\xi }-e^{-1}\right ) }{\xi ^{2}\frac {1-e^{-1}}{\xi ^{2}}} & x<\xi \\ -\frac {\left ( \frac {1}{\xi }-1\right ) \left ( \frac {1}{x}-e^{-1}\right ) }{\xi ^{2}\frac {1-e^{-1}}{\xi ^{2}}} & x>\xi \end {array} \right . \\ & \left \{ \begin {array} [c]{cc}\left ( 1-\frac {1}{x}\right ) \frac {\left ( 1-\xi e^{-1}\right ) }{\xi \left ( e^{-1}-1\right ) } & x<\xi \\ \left ( \frac {1}{x}-e^{-1}\right ) \frac {\left ( 1-\xi \right ) }{\xi \left ( e^{-1}-1\right ) } & x>\xi \end {array} \right . \end{align*}

But the inverse \(L^{-1}\) is \({\displaystyle \int } g\left ( x,\xi \right ) f\left ( x\right ) dx\) where \(g\left ( x,\xi \right ) \) is the green function given aboive.

Another way to solve the problem:

From above we found \(u_{1}=\frac {1}{x}-1\), \(u_{2}=\frac {1}{x}-e^{-1}\), but

\begin{align*} g\left ( x,\xi \right ) & =A\left ( \xi \right ) u_{1}\left ( x\right ) \ \\ & =A\left ( \xi \right ) \left ( \frac {1}{x}-1\right ) \ \ \ \ \ 1<x<\xi \end{align*}

and

\begin{align*} g\left ( x,\xi \right ) & =B\left ( \xi \right ) u_{2}\left ( x\right ) \\ & =B\left ( \xi \right ) \ \left ( \frac {1}{x}-e^{-1}\right ) \ \ \ \ \ \xi <x<e \end{align*}

At \(x=\xi \), due to continuity, we require that  

\begin{equation} A\left ( \xi \right ) \left ( \frac {1}{\xi }-1\right ) =B\left ( \xi \right ) \ \left ( \frac {1}{\xi }-e^{-1}\right ) \tag {1}\end{equation}

and to impose the discontinuity condition on the first derivative we have

\begin{align} g^{\prime }\left ( \xi ^{+},\xi \right ) -g^{\prime }\left ( \xi ^{-},\xi \right ) & =\frac {-1}{p\left ( \xi \right ) }\nonumber \\ B\left ( \xi \right ) \ \left ( \frac {-1}{\xi ^{2}}\right ) -A\left ( \xi \right ) \left ( \frac {-1}{\xi ^{2}}\right ) & =\frac {-1}{\xi ^{2}}\nonumber \\ B\left ( \xi \right ) \ -A\left ( \xi \right ) & =1 \tag {2}\end{align}

Solve (1) and (2) for \(B\left ( \xi \right ) ,A\left ( \xi \right ) \)

From (2) we have\(B\left ( \xi \right ) =1+A\left ( \xi \right ) \)\(,\)substitute into (1) we have \(A\left ( \xi \right ) \left ( \frac {1}{\xi }-1\right ) =\left ( 1+A\left ( \xi \right ) \right ) \ \left ( \frac {1}{\xi }-e^{-1}\right ) \) or

\begin{align*} \frac {A\left ( \xi \right ) }{\xi }-A\left ( \xi \right ) & =\ \frac {1}{\xi }-e^{-1}+\frac {A\left ( \xi \right ) }{\xi }-A\left ( \xi \right ) e^{-1}\\ -A\left ( \xi \right ) +A\left ( \xi \right ) e^{-1} & =\frac {1}{\xi }-e^{-1}\\ A\left ( \xi \right ) \left ( e^{-1}-1\right ) & =\frac {1}{\xi }-e^{-1}\\ A\left ( \xi \right ) & =\frac {1-\xi e^{-1}}{\xi \left ( e^{-1}-1\right ) }\end{align*}

Hence

\begin{align*} B\left ( \xi \right ) & =1+A\left ( \xi \right ) \\ & =1+\frac {1-\xi e^{-1}}{\xi \left ( e^{-1}-1\right ) }\\ & =\frac {1-\xi }{\xi \left ( e^{-1}-1\right ) }\end{align*}

Then

\begin{align*} g\left ( x,\xi \right ) & =A\left ( \xi \right ) u_{1}\left ( x\right ) \ \\ & =\left ( \frac {1-\xi e^{-1}}{\xi \left ( e^{-1}-1\right ) }\right ) \left ( \frac {1}{x}-1\right ) \ \ \ \ \ 1<x<\xi \end{align*}
\begin{align*} g\left ( x,\xi \right ) & =B\left ( \xi \right ) u_{2}\left ( x\right ) \\ & =\left ( \frac {1-\xi }{\xi \left ( e^{-1}-1\right ) }\right ) \left ( \frac {1}{x}-e^{-1}\right ) \ \ \ \ \ \ \ \ \xi <x<e \end{align*}

Hence

\[ \fbox {$g\left ( x,\xi \right ) =\frac {1}{e^{\xi ^{2}}}\left ( H\left ( \xi -x\right ) \left ( \frac {1-\xi e^{-1}}{\xi \left ( e^{-1}-1\right ) }\right ) \left ( \frac {1}{x}-1\right ) +H\left ( x-\xi \right ) \left ( \frac {1-\xi }{\xi \left ( e^{-1}-1\right ) }\right ) \left ( \frac {1}{x}-e^{-1}\right ) \ \right ) $}\]

Which agree with the formula method.

This a plot of Green function for \(\xi =2\)

PIC