# HW 12 Mathematics 503, computer part, July 26, 2007 

Nasser M. Abbasi

June 15, 2014

## 1 Derivation for the $\mathbf{A x}=\mathbf{b}$

This is a suplement to the report for the computer project for Math 503. This includes the symbolic derivation of the $A$ matrix and the $b$ vector for the problem of $A x=b$ which is generated from the FEM formulation for this project. I also include a very short Mathematica program which implements the FEM solution.

For $x=[0, L]$ where $L$ is the length, we define the shape functions (called tent function in this case) as shown below


The shape function is defined by $\phi_{i}(x)=\psi\left(\frac{x}{h}-i\right)$ where

$$
\psi(z)=\left\{\begin{array}{cc}
1-z & 0<z<1  \tag{1}\\
0 & z>1
\end{array}\right.
$$

And $\psi(z)=\psi(-z)$ as shown in this diagram


Now the derivative of $\phi_{i}^{\prime}(x)$ is given by

$$
\phi_{i}^{\prime}(x)=\left\{\begin{array}{cc}
\frac{1}{h} & (i-1) h<x \leq i h \\
-\frac{1}{h} & i h<x<(i+1) h \\
0 & \text { otherwise }
\end{array}\right.
$$

Now we write the weak form in terms of the above shape function (which is our admissible direction). From part 1 we had

$$
I=\int_{0}^{L} y^{\prime}(x) \phi^{\prime}(x)+q y(x) \phi(x)-f \phi(x) d x=0
$$

And Let

$$
\begin{aligned}
y(x) & =\sum_{j=1}^{N} c_{j} \phi_{j}(x) \\
y^{\prime}(x) & =\sum_{j=1}^{N} c_{j} \phi_{j}^{\prime}(x)
\end{aligned}
$$

Hence, now we pick one admissible direction at a time, and need to satisfy the above integral for each of these. Hence we write

$$
I_{j}=\int_{0}^{L}\left(\sum_{i=1}^{N} c_{i} \phi_{i}^{\prime}(x)\right) \phi_{j}^{\prime}(x)+q\left(\sum_{i=1}^{N} c_{i} \phi_{i}(x)\right) \phi_{j}(x)-f \phi_{j}(x) d x=0 \quad j=1,2, \cdots N
$$

But due to sphere on influence of the $\phi_{j}(x)$ extending to only $x_{j-1} \cdots x_{j+1}$ the above becomes

$$
I_{j}=\int_{x_{j-1}}^{x_{j+1}}\left(\sum_{i=j-1}^{j+1} c_{i} \phi_{i}^{\prime}(x)\right) \phi_{j}^{\prime}(x)+q\left(\sum_{i=j-1}^{j+1} c_{i} \phi_{i}(x)\right) \phi_{j}(x)-f \phi_{j}(x) d x=0 \quad j=1,2, \cdots N
$$

Hence we obtain $N$ equations which we solve for the $N$ coefficients $c_{j}$

Now to evaluate $I_{j}$ we write

$$
\begin{aligned}
I_{j}= & \int_{x_{j-1}}^{x_{j}} \cdots d x+\int_{x j}^{x_{j+1}} \cdots d x \\
& =\int_{x_{j-1}}^{x_{j}}\left(\sum_{i=j-1}^{j} c_{i} \phi_{i}^{\prime}(x)\right) \phi_{j}^{\prime}(x)+q\left(\sum_{i=j-1}^{j} c_{i} \phi_{i}(x)\right) \phi_{j}(x)-f \phi_{j}(x) d x \\
& + \\
& \int_{x_{j}}^{x_{j}+1}\left(\sum_{i=j}^{j+1} c_{i} \phi_{i}^{\prime}(x)\right) \phi_{j}^{\prime}(x)+q\left(\sum_{i=j}^{j+1} c_{i} \phi_{i}(x)\right) \phi_{j}(x)-f \phi_{j}(x) d x
\end{aligned}
$$

Now we will show the above for $j=1$ which will be sufficient to build the $A$ matrix due to symmetry.
For $j=1$

$$
I_{1}=\int_{0}^{2 h}\left(\sum_{i=1}^{2} c_{i} \phi_{i}^{\prime}(x)\right) \phi_{1}^{\prime}(x)+q\left(\sum_{i=1}^{2} c_{i} \phi_{i}(x)\right) \phi_{1}(x)-f \phi_{1}(x) d x
$$

Hence breaking the interval into 2 parts we obtain

$$
\begin{aligned}
I_{1} & =\int_{0}^{h}\left(\sum_{i=1}^{1} c_{i} \phi_{i}^{\prime}(x)\right) \phi_{1}^{\prime}(x)+q\left(\sum_{i=1}^{1} c_{i} \phi_{i}(x)\right) \phi_{1}(x)-f \phi_{1}(x) d x \\
& + \\
& \int_{h}^{2 h}\left(\sum_{i=1}^{2} c_{i} \phi_{i}^{\prime}(x)\right) \phi_{1}^{\prime}(x)+q\left(\sum_{i=1}^{2} c_{i} \phi_{i}(x)\right) \phi_{1}(x)-f \phi_{1}(x) d x
\end{aligned}
$$

Hence

$$
\begin{align*}
I_{1} & =\int_{0}^{h}\left(c_{1} \phi_{1}^{\prime}(x)\right) \phi_{1}^{\prime}(x)+q\left(c_{1} \phi_{1}(x)\right) \phi_{1}(x)-f \phi_{1}(x) d x \\
& + \\
& \int_{h}^{2 h}\left(c_{1} \phi_{1}^{\prime}(x)+c_{2} \phi_{2}^{\prime}(x)\right) \phi_{1}^{\prime}(x)+q\left(c_{1} \phi_{1}(x)+c_{2} \phi_{2}(x)\right) \phi_{1}(x)-f \phi_{1}(x) d x \tag{2}
\end{align*}
$$

Now set up a little table to do the above integral.

| Range | $\phi_{1}^{\prime}$ | $\phi_{2}^{\prime}$ | $\phi_{1}$ | $\phi_{2}$ |
| :---: | :---: | :---: | :---: | :---: |
| $[0, h]$ | $\frac{1}{h}$ | $N / A$ | $\psi\left(-\frac{x}{h}+1\right) \rightarrow \frac{x}{h}$ | $N / A$ |
| $[h, 2 h]$ | $\frac{-1}{h}$ | $\frac{1}{h}$ | $\psi\left(\frac{x}{h}-1\right) \rightarrow 2-\frac{x}{h}$ | $\psi\left(-\frac{x}{h}+2\right) \rightarrow \frac{x}{h}-1$ |

The above table was build by noting that for $\phi_{j}$, it will have the equation $\psi\left(\frac{x}{h}-i\right)$ when $x$ is under the left leg of tent. And it will have the equation $\psi\left(-\frac{x}{h}+i\right)$ when $x$ is under the right leg of the tent.

This is because for $x<0$, the argument to $\psi()$ is negative and so we flip the argument as per the definition for $\psi$ shown in the top of this report.

Hence we obtain for the integral in (2)

$$
\begin{aligned}
& I_{1}=\int_{0}^{h}\left[c_{1}\left(\frac{1}{h}\right)\right]\left(\frac{1}{h}\right)+q\left(c_{1} \frac{x}{h}\right) \frac{x}{h}-f \frac{x}{h} d x \\
& \quad+ \\
& \quad \int_{h}^{2 h}\left[c_{1}\left(\frac{-1}{h}\right)+c_{2}\left(\frac{1}{h}\right)\right]\left(\frac{-1}{h}\right)+q\left(c_{1}\left(2-\frac{x}{h}\right)+c_{2}\left(\frac{x}{h}-1\right)\right)\left(2-\frac{x}{h}\right)-f\left(2-\frac{x}{h}\right) d x
\end{aligned}
$$

so the above becomes integral becomes

$$
\begin{aligned}
& I_{1}=\int_{0}^{h} \frac{c_{1}}{h^{2}}+q c_{1}\left(\frac{x^{2}}{h^{2}}\right)-f \frac{x}{h} d x \\
&+ \\
& \quad \int_{h}^{2 h} \frac{c_{1}}{h^{2}}-\frac{c_{2}}{h^{2}}+q c_{1}\left(4-4 \frac{x}{h}+\frac{x^{2}}{h^{2}}\right)+q c_{2}\left(3 \frac{x}{h}-\frac{x^{2}}{h^{2}}-2\right)-2 f+f \frac{x}{h} d x
\end{aligned}
$$

Hence

$$
\begin{aligned}
I_{1} & =\frac{c_{1}}{h^{2}} \int_{0}^{h} d x+\frac{q}{h^{2}} c_{1} \int_{0}^{h} x^{2} d x-\frac{f}{h} \int_{0}^{h} x d x \\
& + \\
& \frac{c_{1}}{h^{2}} \int_{h}^{2 h} d x-\frac{c_{2}}{h^{2}} \int_{h}^{2 h} d x+q c_{1} \int_{h}^{2 h}\left(4-4 \frac{x}{h}+\frac{x^{2}}{h^{2}}\right) d x+q c_{2} \int_{h}^{2 h}\left(3 \frac{x}{h}-\frac{x^{2}}{h^{2}}-2\right) d x-2 f \int_{h}^{2 h} d x+\frac{f}{h} \int_{h}^{2 h} x d x
\end{aligned}
$$

## Which becomes

$$
\begin{aligned}
& I_{1}=\frac{c_{1}}{h^{2}} h+\frac{q}{h^{2}} c_{1}\left(\frac{1}{3} h^{3}\right)-\frac{f}{2 h} h^{2} \\
& \quad+ \\
& \quad \frac{c_{1}}{h^{2}} h-\frac{c_{2}}{h^{2}} h+q c_{1}\left(4 h-2 \frac{3 h^{2}}{h}+\frac{1}{3} \frac{7 h^{3}}{h^{2}}\right)+q c_{2}\left(\frac{3}{2 h}\left(3 h^{2}\right)-\frac{1}{3 h^{2}}\left(7 h^{3}\right)-2 h\right)-2 f h+\frac{f}{2 h} 3 h^{2}
\end{aligned}
$$

or

$$
\begin{aligned}
& I_{1}=\frac{c_{1}}{h}+c_{1} \frac{q h}{3}-\frac{f}{2} h \\
& \quad+ \\
& \quad \frac{c_{1}}{h}-\frac{c_{2}}{h}+q c_{1}\left(4 h-6 h+\frac{7}{3} h\right)+q c_{2}\left(\frac{9 h}{2}-\frac{7}{3} h-2 h\right)-2 f h+\frac{3 f}{2} h
\end{aligned}
$$

Therefore

$$
I_{1}=\frac{c_{1}}{h}+c_{1} \frac{q h}{3}+\frac{c_{1}}{h}-\frac{c_{2}}{h}+q c_{1}\left(\frac{1}{3} h\right)+q c_{2}\left(\frac{1}{6} h\right)-f h
$$

Hence

$$
I_{1}=c_{1}\left(\frac{2}{h}+\frac{2}{3} q h\right)+c_{2}\left(-\frac{1}{h}+\frac{1}{6} q h\right)-f h=0
$$

Multiply by $h$ we obtain

$$
\begin{equation*}
I_{1}=c_{1}\left(2+\frac{2}{3} h^{2} q\right)+c_{2}\left(-1+\frac{1}{6} h^{2} q\right)-f h^{2}=0 \tag{2}
\end{equation*}
$$

Hence we now can set up the $A x=b$ system using only the above equation by taking advantage that $A$ will be tridiagonal and there is symmetry along the diagonal.

$$
\left[\begin{array}{cccccc}
\left(2+\frac{2}{3} h^{2} q\right) & \left(-1+\frac{1}{6} h^{2} q\right) & 0 & 0 & \ldots & 0 \\
\left(-1+\frac{1}{6} h^{2} q\right) & \left(2+\frac{2}{3} h^{2} q\right) & \left(-1+\frac{1}{6} h^{2} q\right) & 0 & \ldots & 0 \\
0 & \left(-1+\frac{1}{6} h^{2} q\right) & \left(2+\frac{2}{3} h^{2} q\right) & \left(-1+\frac{1}{6} h^{2} q\right) & \ldots & 0 \\
0 & 0 & 0 & 0 & \ddots & \vdots \\
0 & 0 & 0 & \ldots & \left(-1+\frac{1}{6} h^{2} q\right) & \left(2+\frac{2}{3} h^{2} q\right)
\end{array}\right]\left[\begin{array}{c}
c_{1} \\
c_{2} \\
c_{3} \\
\vdots \\
c_{N}
\end{array}\right]=f h^{2}\left[\begin{array}{c}
1 \\
1 \\
1 \\
\vdots \\
1
\end{array}\right]
$$

The following is the FEM program to implement the above, with few plots showing how close it gets to the real solution as $N$ increases.


I also written a small Manipulate program to simulate the above. Here it is
$\ln [345]:=$ Remove["Global **"] ;
(*by Nasser Abbasi. FEM program for Math 503*)
$\psi\left[x_{-}, L_{-}\right]:=L-x / ; 0 \leq x \leq L$
$\psi\left[x_{-}, L_{-}\right]:=0 / ; x>L$
$\psi\left[x_{-}, L_{-}\right]:=\psi[-x, L] / ; x<L$
$\phi\left[x_{-}, i_{-}, h_{-}, L_{-}\right]:=\psi\left[\frac{x}{h}-i, L\right]$
yApprox[x_, $\left.c_{-}, h_{-}, n_{-}, L_{-}\right]:=\operatorname{Module}[\{i\}, \operatorname{Sum}[c \llbracket i \rrbracket \phi[x, i, h, L],\{i, 1, n\}]]$
plotIt[n_]:=
Module $[\{\mathrm{A}, \mathrm{b}, \mathrm{c}, \mathrm{nElements}, \mathrm{nShapeFunctions}, \mathrm{i}, \mathrm{j,h}, \mathrm{q}, \mathrm{f}, \mathrm{t1}, \mathrm{t2}, \mathrm{t3}, \mathrm{L}, \mathrm{y}$, exactSol, grid, p, p2, nPoints, rmserror, data\},
$\mathrm{L}=1 ; \mathrm{q}=4 ; \mathrm{f}=4 ; \mathrm{nElements}=\mathrm{n} ; \mathrm{nShapeFunctions}=\mathrm{nElements}-1 ; \mathrm{h}=\frac{\mathrm{L}}{\mathrm{nElements}}$;
nPoints $=$ nElements +1 ;
exactSol $=y[x] / . \operatorname{First@DSolve}\left[\left\{-y^{\prime} '[x]+q y[x]==f, y[0]=0, y[L]==0\right\}, y[x], x\right]$;
$\left(* t 1=\left(\frac{2}{h}+\frac{2 h\left(1-3 L+3 L^{2}\right) q}{3 L^{2}}\right) ; t 2=\left(-\frac{1}{h}+\frac{1}{6} h\left(6+\frac{1}{L^{2}}-\frac{6}{L}\right) q\right) ; t 3=-f h\left(-2+\frac{1}{L}\right) ; *\right)$
$\mathrm{t} 1=2+\frac{2}{3} \mathrm{qh} h^{2} ; \mathrm{t} 2=-1+\frac{1}{6} \mathrm{qh} \mathrm{h}^{2} ; \mathrm{t} 3=\mathrm{h}^{2} \mathrm{f}$;
$A=\operatorname{Table}[\operatorname{If}[i=j, t 1, \operatorname{If}[j=i-1| | j=i+1, t 2,0]],\{i, n S h a p e F u n c t i o n s\}$,
\{j, nShapeFunctions\}];
$\mathrm{b}=$ Table [t3, \{nShapeFunctions\}];
$c=$ LinearSolve[A, b] ;
grid $=$ Range [ $0, \mathrm{~L}, \mathrm{~h}] / / \mathrm{N}$;
rmserror $=\sum_{i=1}^{\text {nPoints }}(\text { exactSol } / . x \rightarrow \text { grid } \llbracket i \rrbracket-y A p p r o x[g r i d \llbracket i \rrbracket, c, h, n S h a p e F u n c t i o n s, L])^{2} ;$
rmserror $=$ Sqrt[rmserror]/nPoints;
$p=\operatorname{Plot}[\{$ exactSol, yApprox [x, $\mathrm{c}, \mathrm{h}, \mathrm{nShapeFunctions,L} \mathrm{~L}\},\{\mathrm{x}, 0, \mathrm{~L}\}$,
PlotRange $\rightarrow$ All,
PlotLabel $\rightarrow$ "N=" <> ToString[ $n$ ] <> "\nRMS error=" <> ToString[rmserror],
PlotStyle $\rightarrow$ \{Black, \{Dashed, Red \}\}, PlotRange $\rightarrow\{\{0,1\},\{0, .5\}\}$, AxesOrigin $\rightarrow\{0,0\}]$;
data $=$ Table[\{grid $\mathbb{i} \rrbracket$, yApprox[grid【i】, $\mathrm{c}, \mathrm{h}$, nShapeFunctions, L]\}, \{i, 1, nPoints\}];
p2 = Graphics [\{PointSize[Large], Point[data]\}];
Show [\{p, p2\}]
]
$\ln [353]:=$ demo $=$ Manipulate[plotIt[i], \{i, 2, 30, 1\}, AutorunSequencing $\rightarrow\{\{1,80\}\}$,
"Finite Element solution, hardcoded A/b method. Math 503, summer 2007, CSUF by Nasser Abbasi"]


