
Math 503 computing assignment 1

FEM and FDM solution for u '' HxL + q uHxL = f

by Nasser Abbasi

Project for Mathematics 503, Summer 2007. California State University, Fullerton, CA.

(a) Purpose and design of project

In this project we are asked to implement the Finite Element Methods (FEM) and Finite difference method (FDM) to find the solution uHxL for

the following differential equation, and also compare both methods.

(1)-u '' HxL + q uHxL = f where uH0L = 0, uH1L = 0

The 2 methods are compared for speed of convergence to the exact solution. The exact analytical solution is known for this simple differential

equation:

Clear@u, x, f, qD;

sol = First�DSolve@8-u''@xD + q u@xD � f, u@0D � 0, u@1D � 0<, u@xD, xD

:u@xD ® -

ã
- q x K-1 + ã

q xO K-ã
q

+ ã
q xO f

K1 + ã
q O q

>

sol = Hu@xD �. %L �. 8q ® 4, f ® 4<

-

ã-2 x I-1 + ã2 xM I-ã2 + ã2 xM
1 + ã2

Plot@sol, 8x, 0, 1<, ImageSize ® 300, FrameLabel ® 8"x", "uHxL", "Exact solution"<,

Frame ® TrueD

0.0 0.2 0.4 0.6 0.8 1.0

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

x

u
HxL

Exact solution

The numerical solution for uHxL at each grid point is compared to the true solution, then the maximum error using each method is found. Also

the RMSerror is calculated.

A brief overview of the FEM and FDM scheme used is now discussed.

FEM method

For the FEM, the variational approach is used (as contrasted by the Garlkin method). In the variational method, we seek to find a solution

yHxL to a functional J HyHxLL defined by an integral such that this solution yHxL minimizes this functional. This solution will be the solution to

the differential equation itself. However, we do not use nor try to find the differential equation at all in this method. We work directly on the

first variation equation J ' Hy; ΦL = 0 itself by finding yHxL such that J ' Hy; ΦL = 0 for all the Φi permissible directions. In the Garlkin method,

we are given the differential equation, and then we substitute equation (2) below into the differential equation itself.

In this problem the Φ functions are also the basis for the vector space in which the solution yHxL defined in. In other words, these Φi represent

a basis for the V space of yHxL and we seek a solution

Printed by Wolfram Mathematica Student Edition

(2)uHxL = â
i=1

N

ci Φi HxL
Which satisfies J ' Hy; ΦiL = 0 for all the basis functions Φi. Φi is defined by

(3)ΦiHxL = Ψ
x

h

i

Where i is the shape function number i = 1, 2, 3 .. n and ΨHxL = 1 - x for 0 <x<1, and Ψ(x) = 0 for x > 1 and Ψ(x)=Ψ(-x). The relationship

between ΦiHxL and Ψ(x) is illustrated in this diagram

In this problem the functional we want to minimize is given

(4)J HuL = à
0

1Hu ' HxLL2
+ q uHxL2

- 2 f uHxL â x

Where q > 0 and f are given constants. In the first part of this project we found that J HuL achieves a minimum iff J ' Hy; ΦL = 0 where J' (y; Φ)

is given by

(5)J ' Hy; ΦL = à
0

1

u ' HxL Φ ' HxL + q uHxL ΦHxL - f ΦHxL â x

We start the FEM by setting up the equations J' (y; Φi) =0, therefore, we will have N number of equations, where N is the number of the

shape functions Φ. Hence for each j
th

 shape function Φ j we would have

J ' Iy; Φ jM = 0

à
0

1 â
i=1

N

ci Φ '
i

HxL Φ j ' HxL + q â
i=1

N

ci ΦiHxL Φ j IxM - f Φ j IxM â x = 0 j = 1 .. N

The above will generate N algebraic equations which we will then solve for the ci coefficients. Once the ci is found then we can determine

the FEM solution uHxL from (2) above at any x.

It is important to agree on the numbering scheme of nodes, elements, and shape functions. The following diagram illustrates the numbering

used.

2 solution.nb

Printed by Wolfram Mathematica Student Edition

This below plots the shape functions for illustration.

L = 20.; nPoints = 10; nElements = nPoints - 1; q = 4; f = 4;

nShapeFunctions = nPoints;

h =
L

nElements

;

Plot@Table@Φ@i, x, hD, 8i, 1, nShapeFunctions<D, 8x, 0, L<, PlotRange ® All,

AxesOrigin ® 80, 0<,

PlotLabel ® "Shape functions ΦHxL, h=" <> ToString@N@hDD <> ", L=" <>

ToString@LD <> ", N=" <> ToString@nPointsD, ImageSize ® 300D

5 10 15 20

0.2

0.4

0.6

0.8

1.0

Shape functions ΦHxL, h=2.22222, L=20., N=10

When generating each equation J ' Iy; Φ jM = 0 for each basis Φ j we take advantage of the domain of influence of each specific Φ j, we see

from above that Φ j is nonzero only over the range x j-1 .. x j+1. The program calls a function to generate one equation for each basis. This

function performs the integration shown in equation (4) but will only do the integration over x j-1 .. x j+1 since Φ j=0 elsewhere.

Once the N equations are computed, We solve Ax=b to find x where x here is the vector which contain c j coefficients as shown in equation

(2) above. The matrix A will be tridiagonal in this problem since for each basis Φ j (other than the first and the last basis) we see that it

overlaps with 2 other basis Φ j-1 and Φ j+1 hence this causes an equation with 3 unknowns to be generated (c j-1, c j, c j+1M. This below is an

small function will shows the equations for N=8 and shows the A matrix to make this point more clear.

L = 20.; nPoints = 8; nElements = nPoints - 1; h =
L

nElements

;

nShapeFunctions = nPoints; q = 4; f = 4; leftBC = 0; rightBC = 0;

coeffShapeFunctions = Array@"c", nShapeFunctionsD;

grid = N@Range@0, L, hDD;

HFEMeqs = Table@makeEquation@i, h, coeffShapeFunctions, q, f, grid, nPointsD � 0,

8i, 1, nShapeFunctions<DL �� TableForm

-5.714285714 + 4.159523809 c@1D + 1.554761906 c@2D � 0

-11.42857136 + 1.554761906 c@1D + 8.31904755 c@2D + 1.554761908 c@3D � 0

-11.4285713 + 1.554761908 c@2D + 8.31904748 c@3D + 1.55476191 c@4D � 0

-11.42857123 + 1.55476191 c@3D + 8.319047411 c@4D + 1.554761912 c@5D � 0

-11.42857117 + 1.554761912 c@4D + 8.319047342 c@5D + 1.554761914 c@6D � 0

-11.4285711 + 1.554761914 c@5D + 8.319047273 c@6D + 1.554761916 c@7D � 0

-11.42857104 + 1.554761916 c@6D + 8.319047203 c@7D + 1.554761918 c@8D � 0

-5.714285486 + 1.554761918 c@7D + 4.159523568 c@8D � 0

Which in Ax = b format, the above becomes

solution.nb 3

Printed by Wolfram Mathematica Student Edition

8b, A< = CoefficientArrays@FEMeqs, coeffShapeFunctionsD;

A@@1, 2 ;; -1DD = 0;

A@@-1, 1 ;; -2DD = 0;

b@@1DD = A@@1, 1DD * leftBC;

b@@-1DD = A@@-1, -1DD * rightBC;

For@i = 2, i £ nPoints - 1, i++,

8
b@@iDD = b@@iDD - A@@i, 1DD * leftBC - A@@i, -1DD * rightBC;

A@@i, 1DD = 0;

A@@i, -1DD = 0;

<
D;

MatrixForm@AD
4.159523809 0. 0. 0. 0. 0. 0.

0. 8.31904755 1.554761908 0. 0. 0. 0.

0. 1.554761908 8.31904748 1.55476191 0. 0. 0.

0. 0. 1.55476191 8.319047411 1.554761912 0. 0.

0. 0. 0. 1.554761912 8.319047342 1.554761914 0.

0. 0. 0. 0. 1.554761914 8.319047273 1.554761916

0. 0. 0. 0. 0. 1.554761916 8.319047203

0. 0. 0. 0. 0. 0. 0.

The above shows that A is diagonally dominant, and tridiagonal. Hence a tridiagonal solver is used since it is much faster than Gaussian

elimination in this case. In FEM, the generate A matrix will always contain diagonal bands as the above and these matrices are sparse in

nature.

FDM

In the FDM method, the central difference method is used to approximate u '' HxL. Hence in this method we already know the differential

equation and we work directly on the differential equation, while in the FDM method above, we do not know necessarily what the differen-

tial equation is and work directly on the first variational term.

The central difference scheme is given by

(6)
ui '' =

ui+1 - 2 ui + ui-1

h2

Where ui means u at grid point xi. Now we substitute the above equation directly into the differential equation -u'' (x) + q u(x) = f and obtain

-I ui+1-2 ui+ui-1

h
2

M + q ui = f

ui-1 + I2 + qh
2M ui - ui+1 = f h

2

Hence for each point (we start from the first internal grid point i = 1 and not from the boundary point i = 0) and hence for each such internal

point, we see that we have 3 unknown. Hence the general Ax=b equations will also be tridiagonal. This is illustrate by this short example

below. Notice that 2 equations are inserted manually into the set of the generated equations since u0 = 0 and un = 0, since these are boundary

conditions given.

4 solution.nb

Printed by Wolfram Mathematica Student Edition

L = 1.; nPoints = 8; nElements = nPoints - 1; q = 4; f = 4;

init@ nPoints, q, f, L, 0, 0D;

u = Array@"u", nPointsD;

FDMeqs = TableB-
uPi + 1T - 2 uPiT + uPi - 1T

h2
+ q uPiT � f, 8i, 2, nPoints - 1<F;

eq = u@@1DD � leftBC; FDMeqs = Append@FDMeqs, eqD;

eq = u@@nPointsDD � rightBC; FDMeqs = Append@FDMeqs, eqD;

FDMeqs �� TableForm

4 u@2D - 0.1225 Hu@1D - 2 u@2D + u@3DL � 4

4 u@3D - 0.1225 Hu@2D - 2 u@3D + u@4DL � 4

4 u@4D - 0.1225 Hu@3D - 2 u@4D + u@5DL � 4

4 u@5D - 0.1225 Hu@4D - 2 u@5D + u@6DL � 4

4 u@6D - 0.1225 Hu@5D - 2 u@6D + u@7DL � 4

4 u@7D - 0.1225 Hu@6D - 2 u@7D + u@8DL � 4

u@1D � 0

u@8D � 0

This shows the A matrix from the above set of equations. We see it is a tridiagonal, The last 2 rows are for the 2 equations for the boundary

conditions

8b, A< = CoefficientArrays@FDMeqs, uD;

A �� MatrixForm

-0.1225 4.245 -0.1225 0 0 0 0 0

0 -0.1225 4.245 -0.1225 0 0 0 0

0 0 -0.1225 4.245 -0.1225 0 0 0

0 0 0 -0.1225 4.245 -0.1225 0 0

0 0 0 0 -0.1225 4.245 -0.1225 0

0 0 0 0 0 -0.1225 4.245 -0.1225

1. 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1.

solution.nb 5

Printed by Wolfram Mathematica Student Edition

(b) Summary of numerical results

The error in approximation between numerical and exact solution for uHxL as a function of increasing number of points is generated for up to

n = 200 and the complete table is shown in the appendix at the end of the report. Both max error and RMS error is calculated for each n.

Below is partial listing of the table for number of points n =4..21

q = 4; f = 4; L = 1; leftBC = 0; rightBC = 0; nElements = 20;

p = analysis@nElements, q, f, L, leftBC, rightBCD;

Grid@p, Frame ® AllD
number of elements FEM rms error FDM rms error FEM max error FDM max error

2 0.2423152421 0.2284263532 0.7269457264 0.6852790597

3 0.2262502829 0.220369977 0.6399324371 0.6233004204

4 0.2089802182 0.2059041154 0.709175374 0.6988845018

5 0.1944929825 0.1926552141 0.6811213574 0.6747543445

6 0.1824593741 0.1812602056 0.7062042017 0.7016335051

7 0.1723355501 0.1715026324 0.6923088451 0.689006997

8 0.1636906816 0.1630846053 0.7051854934 0.7026147643

9 0.156207374 0.1557502056 0.6968932722 0.6948825608

10 0.1496520314 0.1492971628 0.7047176159 0.7030723997

11 0.1438502382 0.1435682687 0.6992096169 0.6978590958

12 0.1386694627 0.1384410264 0.7044644168 0.7033219182

13 0.1340072442 0.133819121 0.7005405594 0.6995717615

14 0.1297830918 0.1296259812 0.7043120698 0.703472687

15 0.125932847 0.1258000358 0.7013751198 0.7006465698

16 0.1224046941 0.1222912285 0.7042133209 0.7035706699

17 0.1191562888 0.1190584416 0.7019326612 0.7013649956

18 0.1161526555 0.1160675744 0.704145678 0.703637905

19 0.1133646248 0.113290094 0.7023234977 0.7018687951

20 0.1107676559 0.1107019306 0.7040973229 0.7036860271

6 solution.nb

Printed by Wolfram Mathematica Student Edition

The numerical results in the table is also plotted. The following 2 plots compare both methods accuracy for max error and rms error as

function of increasing n for n up to 200. The full table is in the appendix.

ListLinePlot@ 8pP2 ;; 10, 2T, pP2 ;; 10, 3T<,

PlotRange ® All,

PlotStyle ® 8Red, Blue<,

AxesOrigin ® 80, 0<,

FrameLabel ® 8"number of points", "RMS error"<,

PlotLabel ® "Comparing RMS error between FEM and Central difference",

Frame ® True,

PlotLegends ® 8"FEM", "FDM"<D

0 2 4 6 8

0.00

0.05

0.10

0.15

0.20

0.25

number of points

R
M

S
e
rr

o
r

Comparing RMS error between FEM and Central difference

FEM

FDM

ListLinePlot@ 8pP2 ;; 10, 4T, pP2 ;; 10, 5T<,

PlotRange ® All,

PlotStyle ® 8Red, Blue<,

AxesOrigin ® 80, 0<,

FrameLabel ® 8"number of points", "RMS error"<,

PlotLabel ® "Comparing Max error between FEM and Central difference",

Frame ® True,

PlotLegends ® 8"FEM", "FDM"<D

0 2 4 6 8

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

number of points

R
M

S
e
rr

o
r

Comparing Max error between FEM and Central difference

FEM

FDM

solution.nb 7

Printed by Wolfram Mathematica Student Edition

(c) Discussion of numerical results

The FDM is more accurate than the FEM for low N. Two error measurements were used: RMS error and Max error. For low N, FDM is more

accurate than FEM, even more so when looking at the RMS error as seen by the plot above.

From the plots above we observe that as N increases both methods become as accurate as each others in approximating the exact solution. This

happens for both max error and for RMS error.

The following diagram below shows this more clearly, where both FEM and FDM solution are plotted for n = 2, 3, 4, 5, 6, 7, 8. We see that

FDM for low N is more accurate, but FEM catches up very quickly, and about N=8 FEM max error was the same as FDM error for up to 6

decimal places. The following was done for L = 10 instead of L = 1 to make the plots a little more interesting.

8 solution.nb

Printed by Wolfram Mathematica Student Edition

analysis2@D := Module@8<,

L = 10; nPoints = 10; q = 40; f = 40;

leftBC = 10; rightBC = 10; plotType = 2;

Table@process@i, q, f, L, leftBC, rightBC, plotTypeD, 8i, 3, 8<D
D

p = analysis2@D; GraphicsGrid@ 88p@@1DD, p@@2DD<, 8p@@3DD, p@@4DD<, 8p@@5DD, p@@6DD<<,

ImageSize ® 600D

2 4 6 8 10

0

5

10

number elements=3 grid spacing=3.33333

@FEM errorD RMS=1.47236 Max error=4.16446

@FDM errorD RMS=0.71425 Max error=2.0202

2 4 6 8 10

0

5

10

number elements=4 grid spacing=2.5

@FEM errorD RMS=1.41884 Max error=5.0011

@FDM errorD RMS=0.701125 Max error=2.03572

2 4 6 8 10

0

5

10

number elements=5 grid spacing=2.

@FEM errorD RMS=1.16615 Max error=4.72098

@FDM errorD RMS=0.676051 Max error=2.05559

2 4 6 8 10

0

5

10

number elements=6 grid spacing=1.66667

@FEM errorD RMS=1.03847 Max error=4.69309

@FDM errorD RMS=0.649284 Max error=2.07981

2 4 6 8 10

0

5

10

number elements=7 grid spacing=1.42857

@FEM errorD RMS=0.927077 Max error=4.59354

@FDM errorD RMS=0.623795 Max error=2.1087

2 4 6 8 10

0

5

10

number elements=8 grid spacing=1.25

@FEM errorD RMS=0.842188 Max error=4.49773

@FDM errorD RMS=0.600427 Max error=2.14289

FEM method is more complicated to implement than FDM. And from the above, we see that it does not give more accurate results than the

simpler FDM method using central difference scheme. One might ask then why use FEM over FDM? Although this did not come up in this

project, one can argue the following advantages of one method over the other:

solution.nb 9

Printed by Wolfram Mathematica Student Edition

Advantage of FEM over FDM

è FEM solution uHxL can be used at point x in the domain and not just at the grid points xi as with FDM

è FEM can handle complicated boundary geometry, while FDM requires simple boundary geometry.

è With FEM, one can add more elements in the vicinity where the solution changes rapidly to obtain more

accuracy there. With FDM this is normally not done. Although one can also implement adaptive grid sizing as

well in FDM, it is normally done in the time domain and not in the space domain.

è Does not require knowing the differential equation to find the solution when working from the Variational

approach as in this project. FDM requires knowing the differential equation.

Advantages of FDM over FEM

è More accurate than FEM for low N. This is in particular when the exact solution is not too smooth. When the

solution is not too smooth, more points are needed to make FEM as accurate as FDM.

è Simpler to code and implement.

10 solution.nb

Printed by Wolfram Mathematica Student Edition

(d) Source code listing

Global parameters

gPlotTypeFEM = 0;

gPlotTypeFDM = 1;

gPlotTypeBoth = 2;

gPlotTypeFEMdata = 3;

gPlotTypeFDMdata = 4;

Function name: makeEquation and its helpers

Input: the shape function number. Also access variable q, f , Φi, ci to generate the weak form equation for the i
th

 shape function

Purpose: generate the weak for equation for i
th

 shape function. To make it simpler, I have 2 special functions to handle the first and last shape

elements since these are special conditions.

Returns: The weak for equation for the i
th

 shape function

makeEquation@i_, h_, c_, q_, f_, grid_, nShapeFunctions_D := Module@8g<,

If@i � 1, g = makeFirstEquation@h, c, q, f, gridD,

If@i � Length@cD, g = makeLastEquation@h, c, q, f, grid, nShapeFunctionsD,

g = makeInnerEquation@i, h, c, q, f, gridDDD
D

makeFirstEquation@h_, c_, q_, f_, grid_D :=

ModuleB8<,

à
gridP1T
gridP2T

cP1T -1

h

+ cP2T 1

h

-1

h

+

Hq HcP1T Evaluate@Φ@1, x, hDD + cP2T Evaluate@Φ@2, x, hDDL - fL
Evaluate@Φ@1, x, hDD âx

F
makeLastEquation@h_, c_, q_, f_, grid_, nMax_D :=

ModuleB8<,

à
gridP-2T
gridP-1T

cP-2T -1

h

+ cP-1T 1

h

1

h

+

Hq HcP-2T Evaluate@Φ@nMax - 1, x, hDD + cP-1T Evaluate@Φ@nMax, x, hDDL - fL
Evaluate@Φ@nMax, x, hDD âx

F
makeInnerEquation@i_, h_, c_, q_, f_, grid_D := ModuleB8r1, r2<,

à
gridPi-1T
gridPiT

cPi - 1T -1

h

+ cPiT 1

h

1

h

+

Hq HcPi - 1T Φ@i - 1, x, hD + cPiT Φ@i, x, hDL - fL Φ@i, x, hD âx +

à
gridPiT
gridPi+1T

cPiT -1

h

+ cPi + 1T 1

h

-1

h

+

Hq HcPiT Φ@i, x, hD + cPi + 1T Φ@i + 1, x, hDL - f L Φ@i, x, hD âx

F

Function name: Φ

Input: i, the shape function number. z, the distance along the domain to find Φ at

Purpose: generate the Φ function.

Returns: the value of Φ function at this z value.

Ψ@x_D := Module@8<, If@x > 1, 0, If@x ³ 0 , 1 - x, Ψ@-xDDDD

solution.nb 11

Printed by Wolfram Mathematica Student Edition

Φ@i_, x_, h_D := ModuleB8<,

ΨB x

h

- Hi - 1LF
F

Function name: yApprox

Input: x, distance along x direction. coeff, the ci coefficient found for the FEM approximation from the equation y=Úi=1
n

cHiL Φ@i, xD , h is the

grid spacing, nPoints is number of points.

Purpose: calculate the solution from the FEM calculation after the ci has been found.

Returns: u(x) based on FEM approximation

yApprox@x_, coeff_, h_, nPoints_D := Module@8i<,

Sum@coeffPiT Φ@i, x, hD, 8i, 1, nPoints<D
D

12 solution.nb

Printed by Wolfram Mathematica Student Edition

Function name: getUCentralMethod

Input: access to number of points

Purpose: performs finite difference calculation using the central difference scheme for the second derivative.

Returns: data, which is a matrix of 2 columns. The first column is the x value, second column is the u value at this x.

getUCentralMethod@rightBC_, leftBC_, h_, q_, f_, nPoints_, grid_D :=

ModuleB8data, i, eq, A, b, u, coeff, nRow, nCol, FDMeqs<,

u = Array@"c", nPoints - 1D;

H*The equation uses central difference method for the u''@xD. We just

need to be carfull with the first last grid points,

since these need boundary conditions on this*L

FDMeqs = TableBIfBnPoints � 3, -
rightBC - 2 uPiT + leftBC

h2
+ q uPiT � f,

IfBi � 2, -
uPi + 1T - 2 uPiT + leftBC

h2
+ q uPiT � f,

IfBi � nPoints - 1, -
rightBC - 2 uPiT + uPi - 1T

h2
+ q uPiT � f,

-
uPi + 1T - 2 uPiT + uPi - 1T

h2
+ q uPiT � fFFF, 8i, 2, nPoints - 1<F;

8b, A< = CoefficientArrays@FDMeqs, uP2 ;;TD;

8nRow, nCol< = Dimensions@AD;

H*Now solve Ax=b. Use triDiagonal for speed for large matrices*L
coeff = If@nRow < 5, LinearSolve@A, bD, triDiagonalSolve@A, bDD;

data = Table@8gridPiT, If@i � 1, leftBC, If@i � nPoints, rightBC, coeffPi - 1TDD<,

8i, 1, nPoints<D;

8data, FDMeqs, A, b<
F;

solution.nb 13

Printed by Wolfram Mathematica Student Edition

Function name: getErrorsInApproximation

Input: access FEM matrix, grid points, FDM data.

Purpose: called to calculate the RMS error and Max error for the FEM and FDM methods.

Returns: 4 numbers. rmserrorFEM, maxErrorFEM, rmserrorDiff, maxErrorFDM

getErrorsInApproximation@plotType_, grid_, nPoints_, FEMcoeff_, xnumeric_, sol_, h_D :=

Module@8k, i, rmserrorFEM = 0, maxErrorFEM = 0, rmserrorDiff = 0, maxErrorFDM = 0,

femSolAtPoints, exactSolAtPoints<,

exactSolAtPoints = Table@sol �. 8z ® gridPiT<, 8i, 1, nPoints<D;

If@plotType � gPlotTypeFEM ÈÈ plotType � gPlotTypeBoth,

8
femSolAtPoints = Table@yApprox@gridPiT, FEMcoeff, h, nPointsD, 8i, 1, nPoints<D;

rmserrorFEM = Sum@N@HexactSolAtPointsPkT - femSolAtPointsPkTL^2D,

8k, 1, nPoints<D;

rmserrorFEM = Sqrt@rmserrorFEMD � nPoints;

maxErrorFEM = Max@Abs@exactSolAtPoints - femSolAtPointsDD;

<
D;

If@plotType � gPlotTypeFDM ÈÈ plotType � gPlotTypeBoth,

8
rmserrorDiff = Sum@N@HexactSolAtPointsPkT - xnumericPk, 2TL^2D, 8k, 1, nPoints<D;

rmserrorDiff = Sqrt@rmserrorDiffD � nPoints;

maxErrorFDM = Max@Abs@exactSolAtPoints - xnumericPAll, 2TDD;

<
D;

N@8rmserrorFEM, maxErrorFEM, rmserrorDiff, maxErrorFDM<D
D

Function name: triDiagonalSolve

Input: A,d

Purpose: called to solve for x in Ax=d for use on tridiagonal matrices A. This only works correctly if A is diagonally dominant.

Returns: vector x, the solution from Ax=d

14 solution.nb

Printed by Wolfram Mathematica Student Edition

triDiagonalSolve@A_, d_D := ModuleB8nRow, nCol, Β, Α, b, a, c, z, i, j, n, x<,

8n, nCol< = Dimensions@AD;

If@n ¹ nCol, 8Print@"Matrix must be square. Matrix is" <> ToString@N@ADDD;

Abort@D<D;

Β = Table@0, 8n<D;

c = Table@0, 8n - 1<D;

z = Table@0, 8n<D;

Α = Β; b = Α; x = z;

a = Diagonal@AD;

For@8i = 2; j = 1<, i £ n, 8i++; j++<, bPiT = APi, jTD;

For@8i = 1; j = 2<, i < n, 8i++; j++<, cPiT = APi, jTD;

ΑP1T = aP1T;

ForBi = 2, i £ n, i++, :ΒPiT =
bPiT

ΑPi - 1T ; ΑPiT = aPiT - ΒPiT cPi - 1T>F;

zP1T = dP1T;

For@i = 2, i £ n, i++, zPiT = dPiT - ΒPiT zPi - 1T D;

xPnT =
zPnT
ΑPnT ;

ForBi = n - 1, i ³ 1, i--, xPiT =
1

ΑPiT HzPiT - cPiT xPi + 1TL F;

x

F

solution.nb 15

Printed by Wolfram Mathematica Student Edition

Function name: process

Input: access to all the input parameters from the GUI. See init[] function above.

Purpose: called by the GUI after the call to init[] is made. This function is the driver which calls all the other functions above. It find the FEM

and FDM solutions and plot them.

Returns: Graphics plot for the GUI to display

process@nElements_, q_, f_, L_, leftBC_, rightBC_, plotType_D := Module@
8i, A, b, k, p, p2, v, y, maxu, minu, nRow, nCol, nPoints, pExact, pFEM, h,

grid, nShapeFunctions, coeffShapeFunctions, pFEMpoints, pFDMpoints,

exactSolAtPoints, femSolAtPoints, maxFEM, minFEM, FEMeqs, sol, FEMcoeff,

FDMeqs, FDMmatrix, xnumeric, FDMbMatrix, rmserrorFEM, maxErrorFEM,

rmserrorDiff, maxErrorFDM, nRowFDM, nColFDM, g, statsFDM, statsFEM, stats,

imageSize<,

imageSize = 8300, 250<;

nPoints = nElements + 1;

h = L � nElements; H*distance between 2 points*L
grid = N@Range@0, L, hDD; H*the GRID itself*L
nShapeFunctions = nPoints;

coeffShapeFunctions = Array@"c", nShapeFunctionsD;

sol =

y@zD �. First�DSolve@8-y''@zD + q y@zD � f, y@0D � leftBC, y@LD � rightBC<, y@zD, zD;

exactSolAtPoints = Table@sol �. 8z ® gridPiT<, 8i, 1, nPoints<D;

H*Find max�min limits for plotting *L
maxu = Max@exactSolAtPointsD;

maxu = maxu + 0.3 Abs@maxuD;

minu = Min@exactSolAtPointsD;

minu = minu - 0.3 Abs@minuD;

H*Now based on plot type requested, do the needed calculations*L
If@plotType � gPlotTypeFEM ÈÈ plotType � gPlotTypeBoth ÈÈ

plotType � gPlotTypeFEMdata,

8
H*Now generate the FEM set of equations from the weak form*L
FEMeqs =

Table@makeEquation@i, h, coeffShapeFunctions, q, f, grid, nShapeFunctionsD � 0,

8i, 1, nShapeFunctions<D;

8b, A< = CoefficientArrays@FEMeqs, coeffShapeFunctionsD;

H*Now we need to fix up the A matrix due to the initial conditions.*L
H*This below is a standard method I learned from my other courses,

and it works, so I use it*L
A@@1, 2 ;; -1DD = 0;

A@@-1, 1 ;; -2DD = 0;

b@@1DD = A@@1, 1DD * leftBC;

b@@-1DD = A@@-1, -1DD * rightBC;

For@i = 2, i < nPoints, i++,

8
b@@iDD = b@@iDD - A@@i, 1DD * leftBC - A@@i, -1DD * rightBC;

A@@i, 1DD = 0;

A@@i, -1DD = 0;

<
D;

16 solution.nb

Printed by Wolfram Mathematica Student Edition

H*Now solve Ax=b. *L
8nRow, nCol< = Dimensions@AD;

FEMcoeff = LinearSolve@A, bD;

femSolAtPoints = Table@yApprox@gridPiT, FEMcoeff, h, nPointsD, 8i, 1, nPoints<D;

maxFEM = Max@femSolAtPointsD;

If@ maxFEM > maxu, 8maxu = maxFEM; maxu = maxu + 0.1 Abs@maxuD<D;

minFEM = Min@femSolAtPointsD;

If@ minFEM < minu, 8minu = minFEM; minu = minu - 0.1 Abs@minuD<D;

<
D;

If@plotType � gPlotTypeFDM ÈÈ plotType � gPlotTypeBoth ÈÈ
plotType � gPlotTypeFDMdata,

8
8xnumeric, FDMeqs, FDMmatrix, FDMbMatrix< =

getUCentralMethod@rightBC, leftBC, h, q, f, nPoints, gridD;

8nRowFDM, nColFDM< = Dimensions@FDMmatrixD
<

D;

H*rest is just plotting stuff *L
g = 0;

Which@
plotType � gPlotTypeFDMdata,

g = 8Text@MatrixForm@N@FDMmatrixDD, 80, 0<D,

Text@MatrixForm@N@FDMbMatrixDD, 80.4 + 0.03 nRowFDM, 0<D,

Text@TableForm@N@FDMeqsDD, 80, .5<D<,

plotType � gPlotTypeFEMdata,

g = 8 Text@MatrixForm@N@A@@2 ;; -2, 2 ;; -2DDDD, 80, 0<D,

Text@MatrixForm@N@b@@2 ;; -2DDDD, 80.4 + 0.05 nRow, 0<D,

Text@TableForm@FEMeqsD, 80, .5<D
<,

True,

8
8rmserrorFEM, maxErrorFEM, rmserrorDiff, maxErrorFDM< =

getErrorsInApproximation@plotType, grid, nPoints, FEMcoeff, xnumeric, sol, hD;

statsFEM = ""; statsFDM = "";

stats = "number elements=" <> ToString@nElementsD <> " grid spacing=" <>

ToString@N@hDD;

If@plotType � 0 ÈÈ plotType � 2,

statsFEM = "@FEM errorD RMS=" <> ToString@AccountingForm@rmserrorFEMDD <>

" Max error=" <> ToString@AccountingForm@maxErrorFEMDD
D;

If@plotType � gPlotTypeFDM ÈÈ plotType � gPlotTypeBoth,

statsFDM = "@FDM errorD RMS=" <> ToString@AccountingForm@rmserrorDiffDD <>

" Max error=" <> ToString@AccountingForm@maxErrorFDMDD
D;

stats = stats <> "\n" <> statsFEM <> "\n" <> statsFDM;

pExact = Plot@sol �. z ® x, 8x, 0, L<, PlotRange ® 880, L<, 8maxu, minu<<,

, , D;

solution.nb 17

Printed by Wolfram Mathematica Student Edition

ImageSize ® imageSize, PlotStyle ® Red, PlotLabel ® statsD;

If@plotType � gPlotTypeFEM ÈÈ plotType � gPlotTypeBoth,

8
pFEM = Plot@yApprox@x, FEMcoeff, h, nPointsD, 8x, 0, L<,

PlotRange ® 880, L<, 8maxu, minu<<, AxesOrigin ® 80, 0<, PlotStyle ® Black,

ImageSize ® imageSizeD;

pFEMpoints =

Table@ Graphics@8PointSize@0.02D, Black,

Point@8i h, yApprox@i h, FEMcoeff, h, nPointsD<D<D, 8i, 0, nPoints - 1<D;

<
D;

If@plotType � gPlotTypeFDM ÈÈ plotType � gPlotTypeBoth,

8
p2 = ListLinePlot@xnumeric, PlotRange ® 880, L<, 8maxu, minu<<,

AxesOrigin ® 80, 0<, PlotStyle ® 8Blue, Dashed<, ImageSize ® imageSizeD;

pFDMpoints =

Table@ Graphics@8PointSize@0.02D, Blue,

Point@8xnumericPi, 1T, xnumericPi, 2T<D<D, 8i, 1, nPoints<D;

<
D;

Which@plotType � gPlotTypeFEM,

g = Show@8pExact, pFEM, pFEMpoints<D,

plotType � gPlotTypeFDM,

g = Show@8pExact, p2, pFDMpoints<D,

plotType � gPlotTypeBoth,

g = Show@8pExact, pFEM, p2<, pFDMpoints, pFEMpointsD
D

<
D;

Graphics@ g, ImageSize ® imageSizeD
D

This is the Manipulate function. This is the GUI interface for the program. It display the GUI and called the Init and Process functions above

to do the actual calculations

18 solution.nb

Printed by Wolfram Mathematica Student Edition

Manipulate@
process@numberOfElements, q, f, L, leftBC, rightBC, plotTypeD,

88q, 4, "q"<, 1, 100, 1, Appearance ® "Labeled"<,

88f, 4, "f"<, 1, 100, 1, Appearance ® "Labeled"<,

88L, 1, "Length"<, 1, 200, 1, Appearance ® "Labeled"<,

88leftBC, 0, "Left boundary condition: uH0L"<, -50, 50, 1,

Appearance ® "Labeled"<,

88rightBC, 0, "Right boundary condition: uHLL"<, -50, 50, 1,

Appearance ® "Labeled"<,

88plotType, 0, "display type"<,

8gPlotTypeFEM ® "PLOT: Finite Elements",

gPlotTypeFDM ® "PLOT: Central Difference",

gPlotTypeBoth ® "PLOT: Both",

gPlotTypeFEMdata ® "DATA: Finite element",

gPlotTypeFDMdata ® "DATA: central difference"<
<,

88numberOfElements, 2, "number of Elements"<, 2, 50, 1, Appearance ® "Labeled"<,

FrameLabel ® "Solution to -y''+q y==f using FEM and divided difference methods",

SynchronousUpdating ® TrueD

q 4

f 4

Length 1

Left boundary condition: uH0L 0

Right boundary condition: uHLL 0

display type PLOT: Finite Elements PLOT: Central Difference PLOT: Both DATA

number of Elements 2

process@2, 4, 4, 1, 0, 0, 0D
Solution to -y''+q y==f using FEM and divided difference methods

solution.nb 19

Printed by Wolfram Mathematica Student Edition

Appendix

This is an analysis function. Not part of the main program. It is used to generate a table that shows the error (RMS and Max) between FEM

and FDM methods as n, the number of points, is increased.

analysis@maxN_, q_, f_, L_, leftBC_, rightBC_D := Module@
8i, j, A, b, k, p, p2, v, y, maxu, minu, nRow, nCol, nPoints, pExact, pFEM,

h, grid, nShapeFunctions, coeffShapeFunctions, pFEMpoints, pFDMpoints,

exactSolAtPoints, femSolAtPoints, maxFEM, minFEM, startingAt, nEntries,

sol, nElements, FEMeqs, xnumeric, FEMcoeff, rmserrorFEM, FDMeqs, FDMmatrix,

FDMbMatrix, maxErrorFEM, rmserrorDiff, maxErrorFDM, nRowFDM, nColFDM<,

startingAt = 2;

nEntries = maxN - startingAt + 1;

p = Table@80, 0, 0, 0, 0<, 8nEntries + 1<D;

pP1, 1T = "number of elements"; pP1, 2T = "FEM rms error";

pP1, 3T = "FDM rms error";

pP1, 4T = "FEM max error"; ; pP1, 5T = "FDM max error";

j = 1;

For@nElements = startingAt, nElements £ maxN, nElements++,

8
nPoints = nElements + 1;

h = L � nElements; H*distance between 2 points*L
grid = N@Range@0, L, hDD; H*the GRID itself*L
nShapeFunctions = nPoints;

coeffShapeFunctions = Array@"c", nShapeFunctionsD;

sol =

y@zD �. First�DSolve@8-y''@zD + q y@zD � f, y@0D � leftBC, y@LD � rightBC<,

y@zD, zD;

exactSolAtPoints = Table@sol �. 8z ® gridPiT<, 8i, 1, nPoints<D;

H*Find max�min limits for plotting *L
maxu = Max@exactSolAtPointsD;

maxu = maxu + 0.3 Abs@maxuD;

minu = Min@exactSolAtPointsD;

minu = minu - 0.3 Abs@minuD;

FEMeqs =

Table@makeEquation@i, h, coeffShapeFunctions, q, f, grid, nShapeFunctionsD � 0,

8i, 1, nShapeFunctions<D;

FEMeqs = Simplify@FEMeqsD;

8b, A< = CoefficientArrays@FEMeqs, coeffShapeFunctionsD;

H*Now we need to fix up the A matrix due to the initial conditions.*L
H*This below is a standard method I learned from my other courses,

and it works, so I use it*L
A@@1, 2 ;; -1DD = 0;

A@@-1, 1 ;; -2DD = 0;

b@@1DD = A@@1, 1DD * leftBC;

b@@-1DD = A@@-1, -1DD * rightBC;

For@i = 2, i < nPoints, i++,

8
b@@iDD = b@@iDD - A@@i, 1DD * leftBC - A@@i, -1DD * rightBC;

;

20 solution.nb

Printed by Wolfram Mathematica Student Edition

A@@i, 1DD = 0;

A@@i, -1DD = 0;

<
D;

H*Now solve Ax=b. Use triDiagonal for speed for large matrices*L
8nRow, nCol< = Dimensions@AD;

FEMcoeff = LinearSolve@A, bD;

8xnumeric, FDMeqs, FDMmatrix, FDMbMatrix< =

getUCentralMethod@rightBC, leftBC, h, q, f, nPoints, gridD;

8nRowFDM, nColFDM< = Dimensions@FDMmatrixD;

8rmserrorFEM, maxErrorFEM, rmserrorDiff, maxErrorFDM< =

getErrorsInApproximation@2, grid, nPoints, FEMcoeff, xnumeric, sol, hD;

j = j + 1;

pPj, 1T = nElements;

H*pPj,2T=AccountingForm@rmserrorFEMD;

pPj,3T=AccountingForm@rmserrorDiffD;

pPj,4T=AccountingForm@maxErrorFEMD;

pPj,5T=AccountingForm@maxErrorFDMD;*L
pPj, 2T = rmserrorFEM;

pPj, 3T = rmserrorDiff;

pPj, 4T = maxErrorFEM;

pPj, 5T = maxErrorFDM;

<
D;

p

D

solution.nb 21

Printed by Wolfram Mathematica Student Edition

L = 10; nPoints = 10; q = 40; f = 40;

leftBC = 10; rightBC = 10; plotType = 2;

p = analysis@9, q, f, L, leftBC, rightBCD;

Grid@p, Frame ® AllD

number of elements FEM rms error FDM rms error FEM max error FDM max error

2 2.483549379 0.6726546906 7.450648138 2.017964072

3 1.472357539 0.714250167 4.164456016 2.020204546

4 1.418838555 0.7011253334 5.001097349 2.035716634

5 1.166152855 0.6760513056 4.720983299 2.055586579

6 1.038474961 0.649283981 4.693088351 2.079811891

7 0.9270771087 0.6237946859 4.593536486 2.108701262

8 0.8421881382 0.6004271042 4.497725424 2.142886186

9 0.7729730024 0.5793160904 4.392476013 2.183208617

22 solution.nb

Printed by Wolfram Mathematica Student Edition

