HOME

HW 5 Mathematics 503, Mathematical Modeling, CSUF , June 18, 2007

Nasser M. Abbasi

October 8, 2025

Contents

1 Problem 1 (section 3.5, 5(b), page 185)
2 Problem 2 (section 3.5,#6, page 185)

1 Problem 1 (section 3.5, 5(b), page 185)

problem: Find extrermals for the following functional:

(b) \(J\left ( y\right ) =\int _{0}^{3}e^{2x}\left ( y^{\prime 2}-y^{2}\right ) dx\)

\(y\left ( 0\right ) =1,y\left ( 3\right ) =\)free

Solution:

\[ L\left ( x,y,y^{\prime }\right ) =e^{2x}\left ( y^{\prime 2}-y^{2}\right ) \]

Starting from first principles. First the preliminary standard setup:

Let \(J:\left ( A\subset V\right ) \rightarrow \mathbb {R} \), where \(A\) is the set of admissible functions, and \(V:C^{2}\left [ a,b\right ] \), hence \(A=\left \{ y\in V:\ y\left ( a\right ) =0,y\left ( b\right ) =\text {free}\right \} \)

Let \(v\left ( x\right ) \) be the set \(A_{d}\left ( y\right ) \) of the permissible directions defined as \(A_{d}\left ( y\right ) =\left \{ v\in V:y+tv\in A\right \} \) for some real scalar \(-\xi <t<\xi \)

And \(L_{y}\left ( x,y,y^{\prime }\right ) \equiv \frac {\partial L}{\partial y}L\left ( x,y,y^{\prime }\right ) \) and \(L_{y^{\prime }}\left ( x,y,y^{\prime }\right ) \equiv \frac {\partial L}{\partial y^{\prime }}L\left ( x,y,y^{\prime }\right ) \)

Now we write

\begin{align} \delta J\left ( y,v\right ) & =\frac {d}{dt}J\left ( y+tv\right ) |_{t=0}\nonumber \\ & =\int _{a}^{b}L_{y}\left ( x,y,y^{\prime }\right ) v+L_{y^{\prime }}\left ( x,y,y^{\prime }\right ) v^{\prime }\ dx \tag {see 3.14 in book}\end{align}

Therefor a necessary condition for \(y\left ( x\right ) \in A\) to be a local minimum for the functional \(J\left ( y\right ) \) is that \(\delta J\left ( y,v\right ) =0\) for all \(v\in A_{d}\), which means

\[ \int _{a}^{b}L_{y}\left ( x,y,y^{\prime }\right ) v+L_{y^{\prime }}\left ( x,y,y^{\prime }\right ) v^{\prime }\ dx=0 \]

Integrating by parts the second term above results in the general expression for the necessary condition for \(y\left ( x\right ) \) to be a local minimum for \(J\left ( y\right ) \), which is

\begin{equation} \int _{a}^{b}\left \{ L_{y}\left ( x,y,y^{\prime }\right ) -\frac {d}{dx}L_{y^{\prime }}\left ( x,y,y^{\prime }\right ) \right \} v\ dx+\left [ L_{y^{\prime }}\left ( x,y,y^{\prime }\right ) v\right ] _{a}^{b}=0 \tag {see 3.15 in text}\end{equation}

Since \(v\left ( a\right ) =0\), the second term above simplifies, and the above equation becomes

\begin{equation} \int _{a}^{b}\left \{ L_{y}\left ( x,y,y^{\prime }\right ) -\frac {d}{dx}L_{y^{\prime }}\left ( x,y,y^{\prime }\right ) \right \} v\ dx+L_{y^{\prime }}\left ( b,y\left ( b\right ) ,y^{\prime }\left ( b\right ) \right ) v\left ( b\right ) =0 \tag {1}\end{equation}

Now we apply the following argument: Out of all functions \(v\in A_{d}\), we can find a set which has the property such that \(v\left ( b\right ) =0\). For these \(v^{\prime }s\) only (1) becomes

\[ \int _{a}^{b}\left \{ L_{y}\left ( x,y,y^{\prime }\right ) -\frac {d}{dx}L_{y^{\prime }}\left ( x,y,y^{\prime }\right ) \right \} v\ dx=0 \]

Where now we apply the other standard argument: Since the above is true for every arbitrary \(v\) (but remember now \(v\) is such that \(v\left ( b\right ) =0,\) but since there are so many such \(v^{\prime }s\) still, then the argument still holds) , then it must mean that

\begin{equation} L_{y}\left ( x,y,y^{\prime }\right ) -\frac {d}{dx}L_{y^{\prime }}\left ( x,y,y^{\prime }\right ) =0 \tag {2}\end{equation}

This will generate a second order ODE, which we will solve, with the boundary conditions \(y\left ( 0\right ) =1\)

But we need another boundary condition. Then we hold off solving this for one moment. Let us now consider those functions \(v\in A_{d}\) which have the property that \(v\left ( b\right ) \neq 0.\) For these \(v\)’s, and for the second term in (1) to become zero, we now must have

\begin{equation} L_{y^{\prime }}\left ( b,y\left ( b\right ) ,y^{\prime }\left ( b\right ) \right ) =0 \tag {3}\end{equation}

Now from (3) we have \(\frac {\partial L}{\partial y^{\prime }}=\frac {\partial }{\partial y^{\prime }}e^{2x}\left ( y^{\prime 2}-y^{2}\right ) =2e^{2x}y^{\prime }\), which means

\begin{align*} 2e^{2x}y^{\prime }|_{x=b} & =0\\ 2e^{2b}y^{\prime }\left ( b\right ) & =0 \end{align*}

Hence

\[ \fbox {$y^{\prime }\left ( b\right ) =0$}\]

This gives us the second boundary condition we needed to solve (2).

Hence to summarize the problem becomes that of solving for \(y\) given

\[ L_{y}\left ( x,y,y^{\prime }\right ) -\frac {d}{dx}L_{y^{\prime }}\left ( x,y,y^{\prime }\right ) =0 \]

with the boundary conditions \(y\left ( 0\right ) =1\) and \(y^{\prime }\left ( 3\right ) =0\)

Now (2) can be written as

\begin{align*} \frac {\partial }{\partial y}e^{2x}\left ( y^{\prime 2}-y^{2}\right ) -\frac {d}{dx}\left ( 2e^{2x}y^{\prime }\right ) & =0\\ -2e^{2x}y-2\left ( 2e^{2x}y^{\prime }+e^{2x}y^{\prime \prime }\right ) & =0\\ -2y-4y^{\prime }-2y^{\prime \prime } & =0 \end{align*}

Hence

\[ \fbox {$y^{\prime \prime }+2y^{\prime }+y=0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ y\left ( 0\right ) =1$, $y^{\prime }\left ( 3\right ) =0$}\]

Assume \(y=Ae^{mx}\,\), hence the characteristic equation is \(m^{2}+2m+1=0\rightarrow m=\frac {-b\pm \sqrt {b^{2}-4ac}}{2a}=\frac {-2\pm \sqrt {4-4}}{2}=\)\(-1\)

Since we have repeated root, then the solution is

\[ \fbox {$y\left ( x\right ) =c_{1}e^{-x}+c_{2}xe^{-x}$}\]

When \(x=0\,,\ y=1\), hence \(c_{1}=1\)

\[ y^{\prime }\left ( x\right ) =-e^{-x}+c_{2}\left ( e^{-x}-xe^{-x}\right ) \]

when \(x=3,y^{\prime }=0,\) hence \(0=-e^{-3}+c_{2}\left ( e^{-3}-3e^{-3}\right ) \rightarrow c_{2}=-\frac {e^{-3}}{e^{-3}\left ( 2\right ) }\rightarrow \)\(c_{2}=-\frac {1}{2}\)

Hence the solution is

\[ y\left ( x\right ) =e^{-x}-\frac {1}{2}xe^{-x}\]

or

\[ \fbox {$y\left ( x\right ) =e^{-x}\left ( 1-\frac {1}{2}x\right ) $}\]

PIC

2 Problem 2 (section 3.5,#6, page 185)

problem: determine the natural boundary condition at \(x=b\) for the variational problem defined by \(J\left ( y\right ) =\int _{a}^{b}L\left ( x,y,y^{\prime }\right ) dx+G\left ( y\left ( b\right ) \right ) \) where \(y\in C^{2}\left [ a,b\right ] ,y\left ( a\right ) =y_{0}\) and \(G\) is a given differentiable function on \(\mathbb {R} \)

Solution:

Starting from first principles, first the preliminary standard setup.

Let \(J:\left ( A\subset V\right ) \rightarrow \mathbb {R} \), where \(A\) is the set of admissible functions, and \(V:C^{2}\left [ a,b\right ] \) Hence \(A=\left \{ y\in V:\ y\left ( a\right ) =0,y\left ( b\right ) =free\right \} .\)Let \(v\left ( x\right ) \) be a set \(A_{d}\left ( y\right ) \) of permissible directions defined as \(A_{d}\left ( y\right ) =\left \{ v\in V:y+tv\in A\right \} \) for some real scalar \(-\xi <t<\xi \), and Let \(L_{y}\left ( x,y,y^{\prime }\right ) \equiv \frac {\partial L}{\partial y}L\left ( x,y,y^{\prime }\right ) \), and \(L_{y^{\prime }}\left ( x,y,y^{\prime }\right ) \equiv \frac {\partial L}{\partial y^{\prime }}L\left ( x,y,y^{\prime }\right ) \)

Now we write

\begin{align*} \delta J\left ( y,v\right ) & =\frac {d}{dt}J\left ( y+tv\right ) |_{t=0}\\ & =\int _{a}^{b}L_{y}\left ( x,y,y^{\prime }\right ) v+L_{y^{\prime }}\left ( x,y,y^{\prime }\right ) v^{\prime }\ dx+\frac {d}{dt}G\left ( y\left ( b\right ) +tv\left ( b\right ) \right ) |_{t=0}\\ & =\int _{a}^{b}L_{y}\left ( x,y,y^{\prime }\right ) v+L_{y^{\prime }}\left ( x,y,y^{\prime }\right ) v^{\prime }\ dx+v\left ( b\right ) G^{\prime }\left ( y\left ( b\right ) \right ) \end{align*}

Therefor a necessary condition for \(y\left ( x\right ) \in A\) to be a local minimum for \(J\left ( y\right ) \) is that \(\delta J\left ( y,v\right ) =0\) for all \(v\in A_{d}\), which means

\[ \left ( \int _{a}^{b}L_{y}\left ( x,y,y^{\prime }\right ) v+L_{y^{\prime }}\left ( x,y,y^{\prime }\right ) v^{\prime }\ dx\right ) +v\left ( b\right ) G^{\prime }\left ( y\left ( b\right ) \right ) =0 \]

Integrating the second term in the integral above by parts results in the general expression for the necessary condition for \(y\left ( x\right ) \) to be a local minimum for \(J\left ( y\right ) \), which is

\[ \int _{a}^{b}\left \{ L_{y}\left ( x,y,y^{\prime }\right ) -\frac {d}{dx}L_{y^{\prime }}\left ( x,y,y^{\prime }\right ) \right \} v\ dx+\left [ L_{y^{\prime }}\left ( x,y,y^{\prime }\right ) v\right ] _{a}^{b}+v\left ( b\right ) G^{\prime }\left ( y\left ( b\right ) \right ) =0 \]

Hence

\begin{multline*} \int _{a}^{b}\left \{ L_{y}\left ( x,y,y^{\prime }\right ) -\frac {d}{dx}L_{y^{\prime }}\left ( x,y,y^{\prime }\right ) \right \} v\ dx+\\ L_{y^{\prime }}\left ( b,y\left ( b\right ) ,y^{\prime }\left ( b\right ) \right ) v\left ( b\right ) -L_{y^{\prime }}\left ( a,y\left ( a\right ) ,y^{\prime }\left ( a\right ) \right ) v\left ( a\right ) +v\left ( b\right ) G^{\prime }\left ( y\left ( b\right ) \right ) =0 \end{multline*}

Since \(y\left ( a\right ) =y_{0}\), we must have \(v\left ( a\right ) =0\), then the above simplifies to

\begin{equation} \int _{a}^{b}\left \{ L_{y}\left ( x,y,y^{\prime }\right ) -\frac {d}{dx}L_{y^{\prime }}\left ( x,y,y^{\prime }\right ) \right \} v\ dx+\left \{ L_{y^{\prime }}\left ( b,y\left ( b\right ) ,y^{\prime }\left ( b\right ) \right ) +G^{\prime }\left ( y\left ( b\right ) \right ) \right \} v\left ( b\right ) =0 \tag {1}\end{equation}

Let us now consider those functions \(v\in A_{d}\) which have the property that \(v\left ( b\right ) \neq 0.\) For these \(v\)’s, for the second term in (1) to become zero, we now must have

\[ L_{y^{\prime }}\left ( b,y\left ( b\right ) ,y^{\prime }\left ( b\right ) \right ) +G^{\prime }\left ( y\left ( b\right ) \right ) =0 \]

Hence

\[ \fbox {$\left . \frac {\partial L}{\partial y^{\prime }}\right \vert _{x=b}=-\left . G^{\prime }\left ( y\left ( x\right ) \right ) \right \vert _{x=b}$}\]

Hence the natural boundary condition on \(y\left ( x\right ) \) at \(x=b\) must satisfy the above.  (I do not see how can one go further without being given what \(L\) and \(G\) are.)