Problem 1 teacher own.

Nasser Abbasi

 

Problem: a probe has the following position and velosity rbo=1.1 J and vbo= sqrt(2) I. Finds its position and velosity vectors after 3 hours and sketch the orbit.

 

Assumptions:

 

Method:

Find e,a,p. since time is given, solve for Universal variable X from

  ___

\/ u   (t-t0) = 

 

Relate this angle to the hyporabolic Eccentric angle F, then use the classical Hyporabolic solution for the kepler equation to find time duration.

 

Analysis:

 

At burn out, satellite is at perigee (this can be seen also from the fact that vbo is perpendicular to rbo)

 

 

 rbo  = 1.1     J,   hence rbo = 1.1

 vbo  = sqrt(2) I    hence vbo = sqrt(2)

 

          v^2       u

Energy = ------ - ----

2                                r

 

Hence Energy (calculated at perigee)= 2/2 – 1/1.1 = 0.0909091 DU^2/TU^2

 

Since E>0, this is a hyperbola.

 

             u

Energy = - -----                          ---(1)

            2a

 

To find ‘a’, Plug Energy in (1), and noting that u=1, we get

 

                1

 0.0909091 = - -----        

                2a

 

hence   a =  -5.5  DU       

 

              | I         J     K |

h = r0 x v0 = | 0        1.1    0 | = I (0) – J (0) + K (1.1*sqrt(2))

              | sqrt(2)   0     2 |

 

h = -1.555634 k

 

hence h = 1.555634

 

          h^2

Now, p = ----  = h^2

           u

 

Hence p = 2.42          

 


                         

To find e,  from p=a(1-e^2)

 

2.42    = -5.5 (1-e^2)

 

e=1.2

 

Now we are asked to find TOF when it crosses the x-axis. This means the angle mu = 90 degrees.

 

Using classical method, angle F is found from

 

             e + cos(90)

F = arccosh -------------              eq 4.2-21 BMW

             1+ e cos(90)

 

hence F = 0.6223625  radian

 

now, using equation 4.2-19 in BMW, we find TOF

 

        sqrt((-a)^3)

TOF =  -------------- ( e sinh(F) – F )

                      u

 

TOF = sqrt( -5.5^3 ) ( 1.2  sinh(0.6223625) - 0.6223625 )

 

TOF = 2.2395  TU