Problem 18.5

Nasser Abbasi, MAE 185. UCI. April 24, 2003.

 

Given data

X

1

2

3

5

6

F(x)

4.75

4

5.25

19.75

36

 

Calculate f(4) using Newton’s interpolating polynomial or order 1 through 4.

 

Solution:

 

Set up the forward divided-difference table.

First I set it in symbolic form, then plug in the values.

 

 

 

 

 

 

 

 

 

x0

F0

           F1-f0

F[x0,x1]= ------

           X1-x0

 

 

                                                                                                                                           

            F[x1,x2] – F[x0,x1]

F[x0,x1,x2]= ------------------

                 X2 – x0

                      

           F[x1,x2,x3] – F[x0,x1,x2]

F[x0,x1,x2,x3]= ---------------------

                X3 – x0

                      

              F[x1,x2,x3,x4] – F[x0,x1,x2,x3]

F[x0,x1,x2,x3,x4]= --------------------------

                        X4 – x0

                      

x1

F1

          F2-F1                              

F[x1,x2]= -----

          X2-x1

 

            F[x2,x3] – F[x1,x2]

F[x1,x2,x3]= ------------------

                 X3 – x1

                      

            F[x2,x3,x4] – F[x1,x2,x3]

F[x1,x2,x3,x4]= ---------------------

                   X4 – x1

                      

 

x2

F2

          F3-f2

F[x2,x3]= -----

          X3-x2

 

            F[x3,x4] – F[x2,x3]

F[x2,x3,x4]= ------------------

               X4 – x2

                      

 

 

x3

F3

          F4-f3

F[x3,x4]= ------

          X4-X3

 

 

 

x4

F4

 

 

 

 

 


 

Now plug in the values for the observation points xi, fi, into the above table to get:

 

 

1

4.75

4-4.75

-------- = -0.75

2-1

 

 

 

 

                                                                                                                                          

1.25 – (-0.75)

--------------- = 1

   3 - 1        

2 – 1

---------- = 0.25

 5 - 1

                      

0.25 – 0.25

----------------- = 0

   6 - 1

                      

2

4

5.25 - 4                             

--------- =1.25

 3 - 2

 

 

 

7.25 – 1.25

------------ = 2

 5 - 2                      

3 - 2

---------- = 0.25

 6 - 2

                      

 

3

5.25

19.75–5.25

----------= 7.25

 5-3

 

 

 

 16.25 – 7.25

-------------- = 3

  6 - 3

                      

 

 

5

19.75

36–19.75         

-------- = 16.25

  6-5

 

 

 

6

36

 

 

 

 

 

So,

a0 = 4.75

a1 = -0.75

a2 = 1

a3 = 0.25

a4 = 0

 

So, Newton polynomial of order 1 is:

 

F(x) = a0 + a1 (x-x0)

F(x) = 4.75 – 0.75 (x-1) =  5.5 – 0.75 x

 

so

F(4) = 5.5 – 0.75 (4) =  2.5

 


 

Newton polynomial of order 2 is:

 

F(x) = the order one polynomial +  a2 (x-x0)(x-x1)

F(x) = 5.5 – 0.75 x +  (x-1)(x-2)

F(x) =  7.5 – 3.75 x + x^2

so

F(4) =  8.5

 

Newton polynomial of order 3 is:

 

F(x) = the order two polynomial + a3 (x-x0)(x-x1)(x-x2)

F(x) =   7.5 – 3.75 x + x^2  + 0.25 (x-1)(x-2)(x-3)

F(x) =  6 – x – 0.5 x^2 + 0.25 x^3

 

so

F(4) =  10;

 

So, Newton polynomial of order 4 is:

 

F(x) = the order 3 polynomial +  a4 (x-x0)(x-x1)(x-x2)(x-x3)

F(x) = 6 – x – 0.5 x^2 + 0.25 x^3 + a4 (x-x0)(x-x1)(x-x2)(x-x3)

 

However, a4 = 0 . So this case is the same as the last case. Nothing to do.

 


 

Now, Plot it to make sure the observation points are on the interpolation polynomial

 

>> ezplot('6-x-.5*x^2+.25*x^3',[-2,7]);

>> grid

>> hold on;

>> plot(1,4.75,'*r'); plot(2,4,'*r'); plot(3,5.25,'*r'); plot(5,19.75,'*r'); plot(6,36,'*r');

>>