x

Y

x^2

x^3

x^4

xY

x^2 Y

     2

     3

     4

     7

     8

     9

     5

     5

     9

     6

     5

    10

     9

    11

     2

     3

     4

     9

    16

    49

    64

    81

    25

    25

     8

    27

    64

   343

   512

   729

   125

   125

          16

          81

         256

        2401

        4096

        6561

         625

         625

    18

    18

    20

    70

    72

    99

    10

    15

    36

    54

    80

   490

   576

   891

    50

    75

43

55

273

1933

       14661

    322

  2252

 

N=8

 

So equations are

 

  8     a0  +  a1 (43)   + a2 (273)   =   55

43            a0  +  a1 (273)  + a2 (1933)  =  322

  273   a0  +  a1 (1933) + a2 (14661) =  2252

 

To solve for a0,a1,a2, I used MATLAB.

 

A=

     8    43    273    

43                273   1933

273  1933  14661

 

x= [a0 a1 a2]’

 

b= [55 322 2252]

 

Ax=b;

 

Solve for x.


 

>> A=[8 43 273; 43 273 1933; 273 1933 14661]

 

A =

 

           8          43         273

          43         273        1933

         273        1933       14661

 

  

>> b=[55;322;2252]

 

b =

 

          55

         322

        2252

 

>> x=inv(A)*b

 

x =

 

          16.0269614835947

         -4.80691868758908

         0.488944365192578

 

so polynomial regression fit in least squares is

 

16.0269614835947  -4.80691868758908 x  + 0.488944365192578  x^2

 

 

 

The above is the plot of the fitted parabola to the data.

Now I need to compute the error.


 

x

Y

           Fitted y

             e=Y-y

e^2

     2

     3

     4

     7

     8

     9

     5

     5

     9

     6

     5

    10

     9

    11

     2

     3

          8.3689015691869

          6.00670470756071

          4.62239657631969         

          6.33680456490755

          8.86405135520715

          12.3691868758919

          4.21597717546382

          4.21597717546382

          -0.6310984308131

       0.00670470756070962

         -0.37760342368031

         -3.66319543509245

        -0.135948644792849

           1.3691868758919

          2.21597717546382

          1.21597717546382

          0.398285229374758

     4.49531034746368e-005

         0.142584345575092

          13.4190007956822

        0.0184820340210123

          1.87467270111462

          4.91055484217661

          1.47860049124897

 

 

 

 

22.2422253922967

 

 

So, using a parabola, the error (in least squares sense) is 22.2422, compared to 62.26268 when fitting a stright line.

 

So error using parabola fitting is about 30% of the error using a stright line. (all errors in least squares sense).