Log(y)=A*f1(x) + B*f2(x)

f1(x)=1

f2(x)=log(x)

 

 

x

Y 

Log(y)

F1

F1^2

F2(x)=log(x)

F2^2

F1*F2

Log(Y)*F1

Log(Y)*F2

2.5                       3.5                         5                         6                       7.5                        10                      12.5                        15                      17.5                      20

7                       5.5                       3.9                       3.5                       3.1                       2.8                       2.6                       2.4                       2.3                       2.3

0.845098040014257         0.740362689494244         0.591064607026499         0.544068044350276         0.491361693834273         0.447158031342219         0.414973347970818         0.380211241711606         0.361727836017593         0.361727836017593

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0.397940008672038         0.544068044350276         0.698970004336019         0.778151250383644           0.8750612633917                         1          1.09691001300806          1.17609125905568          1.24303804868629          1.30102999566398

0.158356250501901

0.296010036883134

0.488559066961494

0.605519368473628

0.765732214688678

   1

1.20321157663733

1.38319064962718

1.54514359048183

1.69267904961742

0.397940008672038         0.544068044350276         0.698970004336019         0.778151250383644           0.8750612633917                         1          1.09691001300806          1.17609125905568          1.24303804868629          1.30102999566398

0.845098040014257         0.740362689494244         0.591064607026499         0.544068044350276         0.491361693834273         0.447158031342219         0.414973347970818         0.380211241711606         0.361727836017593         0.361727836017593

0.336298321371996         0.402807680583044          0.41313643093618         0.423367229004951         0.429971584588904         0.447158031342219         0.455188420520668         0.447163117971726         0.449641463438823          0.47061876492551

 

 

 

 

10

 

9.1384018038726

9.11125988754769

5.17775336777938

4.27535104468402

 

N=10

 

 

 

Solve for A,B:

 

A_matrix =

 

                        10          9.11125988754769

          9.11125988754769           9.1384018038726

 

b =

 

          5.17775336777938

          4.27535104468402

 

Solve for x.


>> x=inv(A_matrix) * b

 

x =

 

         0.999234664547637

        -0.528422340830939

 

so, A=  0.999234664547637

    B=  -0.528422340830939

 

But A = log10(a)

 

      A

So  10   =  a

 

So  a =   9.9823930184707

 

b= B = -0.528422340830939

 

so fitting power function is   9.982383 x ^(-0.5284223)

 

 


 

>> plot(x,Y,'o')

>> y=9.982383 * x .^(-0.5284223);

>> y'

          6.15111510562453

          5.14916183120815

          4.26464506030034

          3.87294879566411

          3.44217022210418

          2.95673177595292

          2.62786176913272

          2.38649968051915

          2.19981016237795

          2.04993913240556

>> hold on;

>> plot(x,y,'r');

>> legend('observation','power fit');