3.1.43 \(\int \frac {1}{8 a e^2-d^3 x+8 d e^2 x^3+8 e^3 x^4} \, dx\) [43]

3.1.43.1 Optimal result
3.1.43.2 Mathematica [C] (verified)
3.1.43.3 Rubi [A] (verified)
3.1.43.4 Maple [C] (verified)
3.1.43.5 Fricas [B] (verification not implemented)
3.1.43.6 Sympy [A] (verification not implemented)
3.1.43.7 Maxima [F]
3.1.43.8 Giac [B] (verification not implemented)
3.1.43.9 Mupad [B] (verification not implemented)

3.1.43.1 Optimal result

Integrand size = 32, antiderivative size = 153 \[ \int \frac {1}{8 a e^2-d^3 x+8 d e^2 x^3+8 e^3 x^4} \, dx=\frac {2 \text {arctanh}\left (\frac {d+4 e x}{\sqrt {3 d^2-2 \sqrt {d^4-64 a e^3}}}\right )}{\sqrt {d^4-64 a e^3} \sqrt {3 d^2-2 \sqrt {d^4-64 a e^3}}}-\frac {2 \text {arctanh}\left (\frac {d+4 e x}{\sqrt {3 d^2+2 \sqrt {d^4-64 a e^3}}}\right )}{\sqrt {d^4-64 a e^3} \sqrt {3 d^2+2 \sqrt {d^4-64 a e^3}}} \]

output
2*arctanh((4*e*x+d)/(3*d^2-2*(-64*a*e^3+d^4)^(1/2))^(1/2))/(-64*a*e^3+d^4) 
^(1/2)/(3*d^2-2*(-64*a*e^3+d^4)^(1/2))^(1/2)-2*arctanh((4*e*x+d)/(3*d^2+2* 
(-64*a*e^3+d^4)^(1/2))^(1/2))/(-64*a*e^3+d^4)^(1/2)/(3*d^2+2*(-64*a*e^3+d^ 
4)^(1/2))^(1/2)
 
3.1.43.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3 in optimal.

Time = 0.02 (sec) , antiderivative size = 71, normalized size of antiderivative = 0.46 \[ \int \frac {1}{8 a e^2-d^3 x+8 d e^2 x^3+8 e^3 x^4} \, dx=-\text {RootSum}\left [8 a e^2-d^3 \text {$\#$1}+8 d e^2 \text {$\#$1}^3+8 e^3 \text {$\#$1}^4\&,\frac {\log (x-\text {$\#$1})}{d^3-24 d e^2 \text {$\#$1}^2-32 e^3 \text {$\#$1}^3}\&\right ] \]

input
Integrate[(8*a*e^2 - d^3*x + 8*d*e^2*x^3 + 8*e^3*x^4)^(-1),x]
 
output
-RootSum[8*a*e^2 - d^3*#1 + 8*d*e^2*#1^3 + 8*e^3*#1^4 & , Log[x - #1]/(d^3 
 - 24*d*e^2*#1^2 - 32*e^3*#1^3) & ]
 
3.1.43.3 Rubi [A] (verified)

Time = 0.36 (sec) , antiderivative size = 165, normalized size of antiderivative = 1.08, number of steps used = 4, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.094, Rules used = {2458, 1406, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{8 a e^2-d^3 x+8 d e^2 x^3+8 e^3 x^4} \, dx\)

\(\Big \downarrow \) 2458

\(\displaystyle \int \frac {1}{\frac {1}{32} \left (256 a e^2+\frac {5 d^4}{e}\right )-3 d^2 e \left (\frac {d}{4 e}+x\right )^2+8 e^3 \left (\frac {d}{4 e}+x\right )^4}d\left (\frac {d}{4 e}+x\right )\)

\(\Big \downarrow \) 1406

\(\displaystyle \frac {4 e^2 \int \frac {1}{8 e^3 \left (\frac {d}{4 e}+x\right )^2-\frac {1}{2} e \left (3 d^2+2 \sqrt {d^4-64 a e^3}\right )}d\left (\frac {d}{4 e}+x\right )}{\sqrt {d^4-64 a e^3}}-\frac {4 e^2 \int \frac {1}{8 e^3 \left (\frac {d}{4 e}+x\right )^2-\frac {1}{2} e \left (3 d^2-2 \sqrt {d^4-64 a e^3}\right )}d\left (\frac {d}{4 e}+x\right )}{\sqrt {d^4-64 a e^3}}\)

\(\Big \downarrow \) 221

\(\displaystyle \frac {2 \text {arctanh}\left (\frac {4 e \left (\frac {d}{4 e}+x\right )}{\sqrt {3 d^2-2 \sqrt {d^4-64 a e^3}}}\right )}{\sqrt {d^4-64 a e^3} \sqrt {3 d^2-2 \sqrt {d^4-64 a e^3}}}-\frac {2 \text {arctanh}\left (\frac {4 e \left (\frac {d}{4 e}+x\right )}{\sqrt {2 \sqrt {d^4-64 a e^3}+3 d^2}}\right )}{\sqrt {d^4-64 a e^3} \sqrt {2 \sqrt {d^4-64 a e^3}+3 d^2}}\)

input
Int[(8*a*e^2 - d^3*x + 8*d*e^2*x^3 + 8*e^3*x^4)^(-1),x]
 
output
(2*ArcTanh[(4*e*(d/(4*e) + x))/Sqrt[3*d^2 - 2*Sqrt[d^4 - 64*a*e^3]]])/(Sqr 
t[d^4 - 64*a*e^3]*Sqrt[3*d^2 - 2*Sqrt[d^4 - 64*a*e^3]]) - (2*ArcTanh[(4*e* 
(d/(4*e) + x))/Sqrt[3*d^2 + 2*Sqrt[d^4 - 64*a*e^3]]])/(Sqrt[d^4 - 64*a*e^3 
]*Sqrt[3*d^2 + 2*Sqrt[d^4 - 64*a*e^3]])
 

3.1.43.3.1 Defintions of rubi rules used

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 1406
Int[((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(-1), x_Symbol] :> With[{q = Rt[b^ 
2 - 4*a*c, 2]}, Simp[c/q   Int[1/(b/2 - q/2 + c*x^2), x], x] - Simp[c/q   I 
nt[1/(b/2 + q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c 
, 0] && PosQ[b^2 - 4*a*c]
 

rule 2458
Int[(Pn_)^(p_.), x_Symbol] :> With[{S = Coeff[Pn, x, Expon[Pn, x] - 1]/(Exp 
on[Pn, x]*Coeff[Pn, x, Expon[Pn, x]])}, Subst[Int[ExpandToSum[Pn /. x -> x 
- S, x]^p, x], x, x + S] /; BinomialQ[Pn /. x -> x - S, x] || (IntegerQ[Exp 
on[Pn, x]/2] && TrinomialQ[Pn /. x -> x - S, x])] /; FreeQ[p, x] && PolyQ[P 
n, x] && GtQ[Expon[Pn, x], 2] && NeQ[Coeff[Pn, x, Expon[Pn, x] - 1], 0]
 
3.1.43.4 Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.26 (sec) , antiderivative size = 67, normalized size of antiderivative = 0.44

method result size
default \(\munderset {\textit {\_R} =\operatorname {RootOf}\left (8 e^{3} \textit {\_Z}^{4}+8 d \,e^{2} \textit {\_Z}^{3}-d^{3} \textit {\_Z} +8 a \,e^{2}\right )}{\sum }\frac {\ln \left (x -\textit {\_R} \right )}{32 \textit {\_R}^{3} e^{3}+24 \textit {\_R}^{2} d \,e^{2}-d^{3}}\) \(67\)
risch \(\munderset {\textit {\_R} =\operatorname {RootOf}\left (8 e^{3} \textit {\_Z}^{4}+8 d \,e^{2} \textit {\_Z}^{3}-d^{3} \textit {\_Z} +8 a \,e^{2}\right )}{\sum }\frac {\ln \left (x -\textit {\_R} \right )}{32 \textit {\_R}^{3} e^{3}+24 \textit {\_R}^{2} d \,e^{2}-d^{3}}\) \(67\)

input
int(1/(8*e^3*x^4+8*d*e^2*x^3-d^3*x+8*a*e^2),x,method=_RETURNVERBOSE)
 
output
sum(1/(32*_R^3*e^3+24*_R^2*d*e^2-d^3)*ln(x-_R),_R=RootOf(8*_Z^4*e^3+8*_Z^3 
*d*e^2-_Z*d^3+8*a*e^2))
 
3.1.43.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1115 vs. \(2 (133) = 266\).

Time = 0.31 (sec) , antiderivative size = 1115, normalized size of antiderivative = 7.29 \[ \int \frac {1}{8 a e^2-d^3 x+8 d e^2 x^3+8 e^3 x^4} \, dx=\text {Too large to display} \]

input
integrate(1/(8*e^3*x^4+8*d*e^2*x^3-d^3*x+8*a*e^2),x, algorithm="fricas")
 
output
-sqrt((3*d^2 + 2*(5*d^8 - 64*a*d^4*e^3 - 16384*a^2*e^6)/sqrt(25*d^12 + 960 
*a*d^8*e^3 - 98304*a^2*d^4*e^6 - 4194304*a^3*e^9))/(5*d^8 - 64*a*d^4*e^3 - 
 16384*a^2*e^6))*log(8*e*x + 2*(2*d^4 - 128*a*e^3 - 3*(5*d^10 - 64*a*d^6*e 
^3 - 16384*a^2*d^2*e^6)/sqrt(25*d^12 + 960*a*d^8*e^3 - 98304*a^2*d^4*e^6 - 
 4194304*a^3*e^9))*sqrt((3*d^2 + 2*(5*d^8 - 64*a*d^4*e^3 - 16384*a^2*e^6)/ 
sqrt(25*d^12 + 960*a*d^8*e^3 - 98304*a^2*d^4*e^6 - 4194304*a^3*e^9))/(5*d^ 
8 - 64*a*d^4*e^3 - 16384*a^2*e^6)) + 2*d) + sqrt((3*d^2 + 2*(5*d^8 - 64*a* 
d^4*e^3 - 16384*a^2*e^6)/sqrt(25*d^12 + 960*a*d^8*e^3 - 98304*a^2*d^4*e^6 
- 4194304*a^3*e^9))/(5*d^8 - 64*a*d^4*e^3 - 16384*a^2*e^6))*log(8*e*x - 2* 
(2*d^4 - 128*a*e^3 - 3*(5*d^10 - 64*a*d^6*e^3 - 16384*a^2*d^2*e^6)/sqrt(25 
*d^12 + 960*a*d^8*e^3 - 98304*a^2*d^4*e^6 - 4194304*a^3*e^9))*sqrt((3*d^2 
+ 2*(5*d^8 - 64*a*d^4*e^3 - 16384*a^2*e^6)/sqrt(25*d^12 + 960*a*d^8*e^3 - 
98304*a^2*d^4*e^6 - 4194304*a^3*e^9))/(5*d^8 - 64*a*d^4*e^3 - 16384*a^2*e^ 
6)) + 2*d) - sqrt((3*d^2 - 2*(5*d^8 - 64*a*d^4*e^3 - 16384*a^2*e^6)/sqrt(2 
5*d^12 + 960*a*d^8*e^3 - 98304*a^2*d^4*e^6 - 4194304*a^3*e^9))/(5*d^8 - 64 
*a*d^4*e^3 - 16384*a^2*e^6))*log(8*e*x + 2*(2*d^4 - 128*a*e^3 + 3*(5*d^10 
- 64*a*d^6*e^3 - 16384*a^2*d^2*e^6)/sqrt(25*d^12 + 960*a*d^8*e^3 - 98304*a 
^2*d^4*e^6 - 4194304*a^3*e^9))*sqrt((3*d^2 - 2*(5*d^8 - 64*a*d^4*e^3 - 163 
84*a^2*e^6)/sqrt(25*d^12 + 960*a*d^8*e^3 - 98304*a^2*d^4*e^6 - 4194304*a^3 
*e^9))/(5*d^8 - 64*a*d^4*e^3 - 16384*a^2*e^6)) + 2*d) + sqrt((3*d^2 - 2...
 
3.1.43.6 Sympy [A] (verification not implemented)

Time = 0.99 (sec) , antiderivative size = 122, normalized size of antiderivative = 0.80 \[ \int \frac {1}{8 a e^2-d^3 x+8 d e^2 x^3+8 e^3 x^4} \, dx=\operatorname {RootSum} {\left (t^{4} \cdot \left (1048576 a^{3} e^{9} - 12288 a^{2} d^{4} e^{6} - 384 a d^{8} e^{3} + 5 d^{12}\right ) + t^{2} \cdot \left (384 a d^{2} e^{3} - 6 d^{6}\right ) + 1, \left ( t \mapsto t \log {\left (x + \frac {- 49152 t^{3} a^{2} d^{2} e^{6} - 192 t^{3} a d^{6} e^{3} + 15 t^{3} d^{10} + 256 t a e^{3} - 13 t d^{4} + 2 d}{8 e} \right )} \right )\right )} \]

input
integrate(1/(8*e**3*x**4+8*d*e**2*x**3-d**3*x+8*a*e**2),x)
 
output
RootSum(_t**4*(1048576*a**3*e**9 - 12288*a**2*d**4*e**6 - 384*a*d**8*e**3 
+ 5*d**12) + _t**2*(384*a*d**2*e**3 - 6*d**6) + 1, Lambda(_t, _t*log(x + ( 
-49152*_t**3*a**2*d**2*e**6 - 192*_t**3*a*d**6*e**3 + 15*_t**3*d**10 + 256 
*_t*a*e**3 - 13*_t*d**4 + 2*d)/(8*e))))
 
3.1.43.7 Maxima [F]

\[ \int \frac {1}{8 a e^2-d^3 x+8 d e^2 x^3+8 e^3 x^4} \, dx=\int { \frac {1}{8 \, e^{3} x^{4} + 8 \, d e^{2} x^{3} - d^{3} x + 8 \, a e^{2}} \,d x } \]

input
integrate(1/(8*e^3*x^4+8*d*e^2*x^3-d^3*x+8*a*e^2),x, algorithm="maxima")
 
output
integrate(1/(8*e^3*x^4 + 8*d*e^2*x^3 - d^3*x + 8*a*e^2), x)
 
3.1.43.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 577 vs. \(2 (133) = 266\).

Time = 0.28 (sec) , antiderivative size = 577, normalized size of antiderivative = 3.77 \[ \int \frac {1}{8 a e^2-d^3 x+8 d e^2 x^3+8 e^3 x^4} \, dx=-\frac {2 \, \log \left (x + \frac {1}{4} \, \sqrt {\frac {3 \, d^{2} e^{2} + 2 \, \sqrt {d^{4} - 64 \, a e^{3}} e^{2}}{e^{4}}} + \frac {d}{4 \, e}\right )}{e^{3} {\left (\sqrt {\frac {3 \, d^{2} e^{2} + 2 \, \sqrt {d^{4} - 64 \, a e^{3}} e^{2}}{e^{4}}} + \frac {d}{e}\right )}^{3} - 3 \, d e^{2} {\left (\sqrt {\frac {3 \, d^{2} e^{2} + 2 \, \sqrt {d^{4} - 64 \, a e^{3}} e^{2}}{e^{4}}} + \frac {d}{e}\right )}^{2} + 2 \, d^{3}} + \frac {2 \, \log \left (x - \frac {1}{4} \, \sqrt {\frac {3 \, d^{2} e^{2} + 2 \, \sqrt {d^{4} - 64 \, a e^{3}} e^{2}}{e^{4}}} + \frac {d}{4 \, e}\right )}{e^{3} {\left (\sqrt {\frac {3 \, d^{2} e^{2} + 2 \, \sqrt {d^{4} - 64 \, a e^{3}} e^{2}}{e^{4}}} - \frac {d}{e}\right )}^{3} + 3 \, d e^{2} {\left (\sqrt {\frac {3 \, d^{2} e^{2} + 2 \, \sqrt {d^{4} - 64 \, a e^{3}} e^{2}}{e^{4}}} - \frac {d}{e}\right )}^{2} - 2 \, d^{3}} - \frac {2 \, \log \left (x + \frac {1}{4} \, \sqrt {\frac {3 \, d^{2} e^{2} - 2 \, \sqrt {d^{4} - 64 \, a e^{3}} e^{2}}{e^{4}}} + \frac {d}{4 \, e}\right )}{e^{3} {\left (\sqrt {\frac {3 \, d^{2} e^{2} - 2 \, \sqrt {d^{4} - 64 \, a e^{3}} e^{2}}{e^{4}}} + \frac {d}{e}\right )}^{3} - 3 \, d e^{2} {\left (\sqrt {\frac {3 \, d^{2} e^{2} - 2 \, \sqrt {d^{4} - 64 \, a e^{3}} e^{2}}{e^{4}}} + \frac {d}{e}\right )}^{2} + 2 \, d^{3}} + \frac {2 \, \log \left (x - \frac {1}{4} \, \sqrt {\frac {3 \, d^{2} e^{2} - 2 \, \sqrt {d^{4} - 64 \, a e^{3}} e^{2}}{e^{4}}} + \frac {d}{4 \, e}\right )}{e^{3} {\left (\sqrt {\frac {3 \, d^{2} e^{2} - 2 \, \sqrt {d^{4} - 64 \, a e^{3}} e^{2}}{e^{4}}} - \frac {d}{e}\right )}^{3} + 3 \, d e^{2} {\left (\sqrt {\frac {3 \, d^{2} e^{2} - 2 \, \sqrt {d^{4} - 64 \, a e^{3}} e^{2}}{e^{4}}} - \frac {d}{e}\right )}^{2} - 2 \, d^{3}} \]

input
integrate(1/(8*e^3*x^4+8*d*e^2*x^3-d^3*x+8*a*e^2),x, algorithm="giac")
 
output
-2*log(x + 1/4*sqrt((3*d^2*e^2 + 2*sqrt(d^4 - 64*a*e^3)*e^2)/e^4) + 1/4*d/ 
e)/(e^3*(sqrt((3*d^2*e^2 + 2*sqrt(d^4 - 64*a*e^3)*e^2)/e^4) + d/e)^3 - 3*d 
*e^2*(sqrt((3*d^2*e^2 + 2*sqrt(d^4 - 64*a*e^3)*e^2)/e^4) + d/e)^2 + 2*d^3) 
 + 2*log(x - 1/4*sqrt((3*d^2*e^2 + 2*sqrt(d^4 - 64*a*e^3)*e^2)/e^4) + 1/4* 
d/e)/(e^3*(sqrt((3*d^2*e^2 + 2*sqrt(d^4 - 64*a*e^3)*e^2)/e^4) - d/e)^3 + 3 
*d*e^2*(sqrt((3*d^2*e^2 + 2*sqrt(d^4 - 64*a*e^3)*e^2)/e^4) - d/e)^2 - 2*d^ 
3) - 2*log(x + 1/4*sqrt((3*d^2*e^2 - 2*sqrt(d^4 - 64*a*e^3)*e^2)/e^4) + 1/ 
4*d/e)/(e^3*(sqrt((3*d^2*e^2 - 2*sqrt(d^4 - 64*a*e^3)*e^2)/e^4) + d/e)^3 - 
 3*d*e^2*(sqrt((3*d^2*e^2 - 2*sqrt(d^4 - 64*a*e^3)*e^2)/e^4) + d/e)^2 + 2* 
d^3) + 2*log(x - 1/4*sqrt((3*d^2*e^2 - 2*sqrt(d^4 - 64*a*e^3)*e^2)/e^4) + 
1/4*d/e)/(e^3*(sqrt((3*d^2*e^2 - 2*sqrt(d^4 - 64*a*e^3)*e^2)/e^4) - d/e)^3 
 + 3*d*e^2*(sqrt((3*d^2*e^2 - 2*sqrt(d^4 - 64*a*e^3)*e^2)/e^4) - d/e)^2 - 
2*d^3)
 
3.1.43.9 Mupad [B] (verification not implemented)

Time = 11.30 (sec) , antiderivative size = 1264, normalized size of antiderivative = 8.26 \[ \int \frac {1}{8 a e^2-d^3 x+8 d e^2 x^3+8 e^3 x^4} \, dx=-\mathrm {atan}\left (\frac {d^3\,\sqrt {-262144\,a^3\,e^9+12288\,a^2\,d^4\,e^6-192\,a\,d^8\,e^3+d^{12}}\,3{}\mathrm {i}+d^9\,2{}\mathrm {i}-a\,d^5\,e^3\,256{}\mathrm {i}+a^2\,d\,e^6\,8192{}\mathrm {i}+a^2\,e^7\,x\,32768{}\mathrm {i}+d^8\,e\,x\,8{}\mathrm {i}+d^2\,e\,x\,\sqrt {-262144\,a^3\,e^9+12288\,a^2\,d^4\,e^6-192\,a\,d^8\,e^3+d^{12}}\,12{}\mathrm {i}-a\,d^4\,e^4\,x\,1024{}\mathrm {i}}{5\,d^{12}\,\sqrt {\frac {2\,\sqrt {-262144\,a^3\,e^9+12288\,a^2\,d^4\,e^6-192\,a\,d^8\,e^3+d^{12}}+3\,d^6-192\,a\,d^2\,e^3}{1048576\,a^3\,e^9-12288\,a^2\,d^4\,e^6-384\,a\,d^8\,e^3+5\,d^{12}}}+1048576\,a^3\,e^9\,\sqrt {\frac {2\,\sqrt {-262144\,a^3\,e^9+12288\,a^2\,d^4\,e^6-192\,a\,d^8\,e^3+d^{12}}+3\,d^6-192\,a\,d^2\,e^3}{1048576\,a^3\,e^9-12288\,a^2\,d^4\,e^6-384\,a\,d^8\,e^3+5\,d^{12}}}-384\,a\,d^8\,e^3\,\sqrt {\frac {2\,\sqrt {-262144\,a^3\,e^9+12288\,a^2\,d^4\,e^6-192\,a\,d^8\,e^3+d^{12}}+3\,d^6-192\,a\,d^2\,e^3}{1048576\,a^3\,e^9-12288\,a^2\,d^4\,e^6-384\,a\,d^8\,e^3+5\,d^{12}}}-12288\,a^2\,d^4\,e^6\,\sqrt {\frac {2\,\sqrt {-262144\,a^3\,e^9+12288\,a^2\,d^4\,e^6-192\,a\,d^8\,e^3+d^{12}}+3\,d^6-192\,a\,d^2\,e^3}{1048576\,a^3\,e^9-12288\,a^2\,d^4\,e^6-384\,a\,d^8\,e^3+5\,d^{12}}}}\right )\,\sqrt {\frac {2\,\sqrt {-262144\,a^3\,e^9+12288\,a^2\,d^4\,e^6-192\,a\,d^8\,e^3+d^{12}}+3\,d^6-192\,a\,d^2\,e^3}{1048576\,a^3\,e^9-12288\,a^2\,d^4\,e^6-384\,a\,d^8\,e^3+5\,d^{12}}}\,2{}\mathrm {i}+\mathrm {atan}\left (\frac {d^3\,\sqrt {-262144\,a^3\,e^9+12288\,a^2\,d^4\,e^6-192\,a\,d^8\,e^3+d^{12}}\,3{}\mathrm {i}-d^9\,2{}\mathrm {i}+a\,d^5\,e^3\,256{}\mathrm {i}-a^2\,d\,e^6\,8192{}\mathrm {i}-a^2\,e^7\,x\,32768{}\mathrm {i}-d^8\,e\,x\,8{}\mathrm {i}+d^2\,e\,x\,\sqrt {-262144\,a^3\,e^9+12288\,a^2\,d^4\,e^6-192\,a\,d^8\,e^3+d^{12}}\,12{}\mathrm {i}+a\,d^4\,e^4\,x\,1024{}\mathrm {i}}{5\,d^{12}\,\sqrt {-\frac {2\,\sqrt {-262144\,a^3\,e^9+12288\,a^2\,d^4\,e^6-192\,a\,d^8\,e^3+d^{12}}-3\,d^6+192\,a\,d^2\,e^3}{1048576\,a^3\,e^9-12288\,a^2\,d^4\,e^6-384\,a\,d^8\,e^3+5\,d^{12}}}+1048576\,a^3\,e^9\,\sqrt {-\frac {2\,\sqrt {-262144\,a^3\,e^9+12288\,a^2\,d^4\,e^6-192\,a\,d^8\,e^3+d^{12}}-3\,d^6+192\,a\,d^2\,e^3}{1048576\,a^3\,e^9-12288\,a^2\,d^4\,e^6-384\,a\,d^8\,e^3+5\,d^{12}}}-384\,a\,d^8\,e^3\,\sqrt {-\frac {2\,\sqrt {-262144\,a^3\,e^9+12288\,a^2\,d^4\,e^6-192\,a\,d^8\,e^3+d^{12}}-3\,d^6+192\,a\,d^2\,e^3}{1048576\,a^3\,e^9-12288\,a^2\,d^4\,e^6-384\,a\,d^8\,e^3+5\,d^{12}}}-12288\,a^2\,d^4\,e^6\,\sqrt {-\frac {2\,\sqrt {-262144\,a^3\,e^9+12288\,a^2\,d^4\,e^6-192\,a\,d^8\,e^3+d^{12}}-3\,d^6+192\,a\,d^2\,e^3}{1048576\,a^3\,e^9-12288\,a^2\,d^4\,e^6-384\,a\,d^8\,e^3+5\,d^{12}}}}\right )\,\sqrt {-\frac {2\,\sqrt {-262144\,a^3\,e^9+12288\,a^2\,d^4\,e^6-192\,a\,d^8\,e^3+d^{12}}-3\,d^6+192\,a\,d^2\,e^3}{1048576\,a^3\,e^9-12288\,a^2\,d^4\,e^6-384\,a\,d^8\,e^3+5\,d^{12}}}\,2{}\mathrm {i} \]

input
int(1/(8*a*e^2 - d^3*x + 8*e^3*x^4 + 8*d*e^2*x^3),x)
 
output
atan((d^3*(d^12 - 262144*a^3*e^9 - 192*a*d^8*e^3 + 12288*a^2*d^4*e^6)^(1/2 
)*3i - d^9*2i + a*d^5*e^3*256i - a^2*d*e^6*8192i - a^2*e^7*x*32768i - d^8* 
e*x*8i + d^2*e*x*(d^12 - 262144*a^3*e^9 - 192*a*d^8*e^3 + 12288*a^2*d^4*e^ 
6)^(1/2)*12i + a*d^4*e^4*x*1024i)/(5*d^12*(-(2*(d^12 - 262144*a^3*e^9 - 19 
2*a*d^8*e^3 + 12288*a^2*d^4*e^6)^(1/2) - 3*d^6 + 192*a*d^2*e^3)/(5*d^12 + 
1048576*a^3*e^9 - 384*a*d^8*e^3 - 12288*a^2*d^4*e^6))^(1/2) + 1048576*a^3* 
e^9*(-(2*(d^12 - 262144*a^3*e^9 - 192*a*d^8*e^3 + 12288*a^2*d^4*e^6)^(1/2) 
 - 3*d^6 + 192*a*d^2*e^3)/(5*d^12 + 1048576*a^3*e^9 - 384*a*d^8*e^3 - 1228 
8*a^2*d^4*e^6))^(1/2) - 384*a*d^8*e^3*(-(2*(d^12 - 262144*a^3*e^9 - 192*a* 
d^8*e^3 + 12288*a^2*d^4*e^6)^(1/2) - 3*d^6 + 192*a*d^2*e^3)/(5*d^12 + 1048 
576*a^3*e^9 - 384*a*d^8*e^3 - 12288*a^2*d^4*e^6))^(1/2) - 12288*a^2*d^4*e^ 
6*(-(2*(d^12 - 262144*a^3*e^9 - 192*a*d^8*e^3 + 12288*a^2*d^4*e^6)^(1/2) - 
 3*d^6 + 192*a*d^2*e^3)/(5*d^12 + 1048576*a^3*e^9 - 384*a*d^8*e^3 - 12288* 
a^2*d^4*e^6))^(1/2)))*(-(2*(d^12 - 262144*a^3*e^9 - 192*a*d^8*e^3 + 12288* 
a^2*d^4*e^6)^(1/2) - 3*d^6 + 192*a*d^2*e^3)/(5*d^12 + 1048576*a^3*e^9 - 38 
4*a*d^8*e^3 - 12288*a^2*d^4*e^6))^(1/2)*2i - atan((d^3*(d^12 - 262144*a^3* 
e^9 - 192*a*d^8*e^3 + 12288*a^2*d^4*e^6)^(1/2)*3i + d^9*2i - a*d^5*e^3*256 
i + a^2*d*e^6*8192i + a^2*e^7*x*32768i + d^8*e*x*8i + d^2*e*x*(d^12 - 2621 
44*a^3*e^9 - 192*a*d^8*e^3 + 12288*a^2*d^4*e^6)^(1/2)*12i - a*d^4*e^4*x*10 
24i)/(5*d^12*((2*(d^12 - 262144*a^3*e^9 - 192*a*d^8*e^3 + 12288*a^2*d^4...